
0-89791-993-9/97 $10.00  1997 IEEE

Optimization Techniques for High-Performance Digital Circuits

Chandu Visweswariah

IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

chandu@watson.ibm.com

Abstract

The relentless push for high performance in custom dig-

ital circuits has led to renewed emphasis on circuit opti-

mization or tuning. The parameters of the optimization

are typically transistor and interconnect sizes. The de-

sign metrics are not just delay, transition times, power

and area, but also signal integrity and manufacturability.

This tutorial paper discusses some of the recently pro-

posed methods of circuit optimization, with an emphasis

on practical application and methodology impact.

Circuit optimization techniques fall into three broad

categories. The �rst is dynamic tuning, based on time-

domain simulation of the underlying circuit, typically

combined with adjoint sensitivity computation. These

methods are accurate but require the speci�cation of in-

put signals, and are best applied to small data-ow cir-

cuits and \cross-sections" of larger circuits. E�cient

sensitivity computation renders feasible the tuning of cir-

cuits with a few thousand transistors. Second, static

tuners employ static timing analysis to evaluate the per-

formance of the circuit. All paths through the logic are

simultaneously tuned, and no input vectors are required.

Large control macros are best tuned by these methods.

However, in the context of deep submicron custom de-

sign, the inaccuracy of the delay models employed by

these methods often limits their utility. Aggressive dy-

namic or static tuning can push a circuit into a precip-

itous corner of the manufacturing process space, which

is a problem addressed by the third class of circuit op-

timization tools, statistical tuners. Statistical techniques

are used to enhance manufacturability or maximize yield.

In addition to surveying the above techniques, topics

such as the use of state-of-the-art nonlinear optimization

methods and special considerations for interconnect siz-

ing, clock tree optimization and noise-aware tuning will

be briey considered.

1 Introduction

Automatic circuit optimization is an essential part
of rapidly, repeatably and robustly designing high-
performance circuits. The relentless push for ever higher
performance in digital circuits, the need to design cir-
cuits of greater complexity, the emphasis on custom de-
sign and shrinking product cycles have led to an in-
creased interest in optimization techniques.

Given a logically correct circuit schematic, the circuit
tuning problem can be stated as that of optimally assign-
ing sizes to transistors and/or wires. The performance

metrics are (some subset of) delay, transition time, area,

power dissipation, signal integrity, additional timing con-
straints, layout constraints and manufacturability. Most
of these metrics are nonlinear functions of the tunable
parameters. Each metric can be presented as either an
objective function or a constraint. The parameters of the
problem are transistor and wire sizes, and these para-
meters are usually required to lie within simple bounds.
Many circuit tuning problems are best stated asminimax

problems in which the optimizer is required to minimize
the maximum of a set of functions. For example, the
problem may be stated as minimizing the worst delay
across several paths through the logic.

This tutorial paper will address various methods that
are used to solve circuit optimization problems. Only
continuous optimization problems will be considered in
this paper, as opposed to discrete problems (such as
choice of gates from a discrete library, reordering of input
pins and bu�er insertion).

Circuit optimization techniques fall into three broad
categories: dynamic tuning (discussed in Section 2), sta-
tic tuning (Section 3) and statistical tuning (Section 4).
Application of state-of-the-art nonlinear optimization
methods to circuit tuning is a vast subject in its own
right. Section 5 is devoted to some practical considera-
tions in the choice and application of optimization pack-
ages. Special topics such as interconnect tuning, opti-
mization of clock distribution networks and noise-aware
tuning are briey mentioned in Section 6. Finally, some
promising avenues of future research are enumerated in
Section 7.

2 Dynamic tuning

Dynamic tuning[1, 2, 3, 4, 5, 6, 7] implies circuit opti-
mization based on dynamic time-domain simulation of
the underlying circuit. The typical ow of a dynamic
tuner is shown in Fig. 1. Under the control of the nonlin-
ear optimizer, tunable parameters are set to their initial
values and a simulation is performed. The measurements
of interest, and the gradients of each measurement with
respect to all tunable parameters are fed back to the
optimizer. Based on this information, the nonlinear op-
timization package suggests a new solution vector, which
is a new assignment of parameter values that is expected
to improve the circuit. The iterative process is carried to
convergence, or until a user-speci�ed maximum number
of iterations is reached. Convergence is typically judged
by su�cient stationarity combined with su�cient fea-

sibility, or a determination of infeasibility. Stationarity
implies smallness of the projected gradient in the sub-
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Figure 1: Typical ow of a dynamic tuner.

space of variables that are not at their bounds and fea-
sibility implies that all constraints are satis�ed.

The parameters in dynamic tuning usually include
transistor and wire sizes and they must conform to sim-
ple bounds. Ratio-ing of transistor widths to one another
must be permitted. Further, grouping of similar struc-
tures is useful to ensure that corresponding transistors
of the structures are maintained at the same size during
the tuning procedure. For example, a 64-bit multiplexor
may have to be tuned so that the corresponding tran-
sistors of each group have the same �nal sizes, thus per-
mitting a regular layout. The measurements in dynamic
tuning usually include area (often modeled by the sum
of the tunable transistor widths), delay and transition
time or slew. The objective function and constraints are
expressed in terms of these measurements. Minimax op-

timization is a useful feature whereby the worst of a set
of measurements is minimized. For example, the prob-
lem may be stated as minimizing the worst delay of m
paths through the circuit, as shown below.

minimize maximum ci(x):
x 2 <n i 2 f1; 2; � � �;mg

(1)

Note that the optimizer has no a priori knowledge of
which of these paths exhibits the worst delay. Further,
di�erent paths may be critical during di�erent iterations
of the optimization.

The main advantage of dynamic tuning is its accuracy.
The tuning is realistic since it is based on full-blown
transient simulation. Likewise, false paths are avoided in
contrast to static tuning methods. If the transistor sizing
at any iteration causes failure of a measured signal to
switch correctly, the transient simulation is able to detect
this situation. In such a case, a non-working circuit has
been obtained, usually because of the optimizer taking
too aggressive a step. Recovery from this situation is
implemented by requiring the optimizer to cut back on
its step size and trying again.

However, dynamic tuning su�ers from a number of

disadvantages. The main disadvantage of dynamic tun-
ing is that it is speci�c to the input pattern sensitizations
and measurements speci�ed. Unlike static tuning, it is
not possible to tune any but the smallest circuit for all
possible input patterns and all possible paths through
the logic. The initial parameter assignments should re-
ect a working and simulatable circuit in which the log-
ical transitions of interest occur.

As with the use of any optimizer, the solution ob-
tained is only as good as the problem speci�cation.
Dynamic tuning is particularly vulnerable to designers
omitting tacit requirements and then encountering un-
expected results. For example, if the input stage of a
circuit is tunable, the optimizer may blow up its size,
taking advantage of the fact that in the simulation, this
gate is driven by a voltage source! Making the input
stage non-tunable or constraining the input capacitance
seen by the previous stage will lead to more realistic re-
sults. Another insidious problem is that transistors that
do not switch during the simulation are shrunk to their
minimumsize in order to satisfy an area constraint, or to
reduce the loading on other transistors that do switch.
Yet another example is that the target delay on a net
may be met by the optimizer but the transition time may
be unacceptable. A disciplined approach to accurately
expressing all aspects of the problem at hand is essential
to making good use of any optimization program!

Dynamic tuning is most often applied to small data-
ow circuits in which the critical paths are well known
and the input patterns to sensitize these paths are easy
to come by. The relative computational ine�ciency of
these tools also limits the size of circuit that can be
tuned.

2.1 Gradient computation

The bottleneck in dynamic tuning is often the computa-
tion of time-domain gradients. Gradients are typically
computed by the circuit simulator. There are two well
known methods of computing the gradients, the direct

method[8] and the adjoint method[9]. The reader is re-
ferred to [10] for a tutorial description of the theory be-
hind these twomethods. This section will present a quick
overview of these two methods and their applicability to
the circuit optimization problem.

The directmethod is based on direct di�erentiation
of the branch constitutive relations (BCRs) that govern
the electrical behavior of the elements of the circuit. The
relations thus derived represent a sensitivity circuit of
the same topology as the original circuit but with di�er-
ent circuit elements. The solution of this related circuit
yields the sensitivity of all measurements with respect
to a single parameter. Fortunately, the system matrix of
the original and sensitivity circuits are the same at each
time instant, and hence the cost of LU factorization can
be amortized during the analysis of the sensitivity cir-
cuit. Note that the sensitivity circuit must be solved
as many times as the number of parameters, which is
expensive for large numbers of tunable parameters.



The adjoint method is the method of choice for
computing gradients of large circuits. In the circuit
context, the adjoint method is best understood as an
application of Tellegen's theorem[11]. As in the direct
method, an associated circuit called the adjoint circuit

is formed. The adjoint circuit has the same topology
as the nominal circuit, but di�erent electrical elements.
Like the direct method, the LU factors of the nominal
circuit can be re-used during the adjoint analysis, mod-
ulo some time point mismatch issues, as discussed below.
Control is reversed and time run backwards during the
adjoint analysis. Finally, the waveforms of the original
and adjoint circuits are convolved to yield the required
sensitivities.

The main advantage of the adjoint method is that it
yields the gradients of one function with respect to all

the parameters in a single adjoint analysis. However,
because time is run backwards, the nominal and adjoint
analyses cannot be carried out simultaneously. Further,
it is not easy to make the time points of the two analy-
ses coincide, leading to a clumsy time point mismatch
problem. The convolution of waveforms is an additional
source of computational and memory overhead in the
adjoint method.

The single function which forms the sensitivity func-
tion in the adjoint method can be any scalar di�eren-
tiable function of any number of circuit measurements[6].
Nonlinear optimizers often build merit functions which
are internal functions that are iteratively minimized
to solve the problem at hand. For example,
LANCELOT[12] builds the following merit function �.

� = f(x) +
nX

i=1

�ici(x) +
1

2�

nX

i=1

c2
i (x); (2)

where f(x) is the objective function, c(x) are n equal-
ity constraints, � are the Lagrange multipliers or dual
variables and � is a penalty parameter that controls the
weight of the quadratic augmentation of the Lagrangian.

The gradient of such merit functions can be found
in the course of a single adjoint analysis. If the opti-
mizer needs only the gradients of the merit function and
not the gradients of individual constraints or objective
functions, these gradients can be computed extremely ef-
�ciently. Even if individual gradients are desired, to the
extent that objective functions and constraints are ex-
pressed as di�erentiable functions of multiple measure-
ments, the adjoint method can be applied to compute
the gradients of these individual functions as \adjoint
groups."

With either method of computing gradients, chain

ruling and combining of gradients is essential. When the
width of a transistor varies, the associated intrinsic par-
asitic capacitances as well as the di�usion capacitances
on the source and drain vary. The sensitivity of each
measurement with respect to these parasitics has to be
computed, and then chain ruled and combined to obtain
the composite sensitivity with respect to all rami�cations
of the variation of the parameter of interest.

2.2 Practical implementation

Most dynamic tuners are limited to a few 10s of transis-
tors. DELIGHT.SPICE[1] was one of the early practical
implementations of a dynamic circuit optimization capa-
bility. The ability to handle semi-in�nite constraints was
implemented in that package (see Section 5.2 for a dis-
cussion of semi-in�nite constraints). Further, the need
for a good user interface was stressed.

It has been shown that gradient computation of large
circuits is practical provided a fast circuit simulator[13,
10] with device modeling simpli�cations is used. In
this context, gradient computation can be extremely
e�cient[14, 15, 16, 10, 5, 6]. Depending on the modeling
simpli�cations used, the associated sensitivity or adjoint
circuit can be trivial to solve. In the case of SPECS[13],
the associated circuit consists of disconnected capacitors,
with impulses of charge transferred between the capaci-
tors at times corresponding to event times in the nominal
transient solution. Further, the piecewise nature of the
waveforms reduces the cost of otherwise costly convolu-
tions. Expressions can be telescoped to create convolu-
tion routines that are signi�cantly faster than general-
purpose convolution codes.

Recently, a SPECS-based tuner called Ji�yTune[5, 6,
7] was reported to tune a circuit with 6,900 transistors
in about 2 hours of CPU time (the circuit had 4,128
tunable transistors, 41 delay constraints, an area objec-
tive function and involved 125 cycles of simulation). An
intuitive graphical user interface was part of Ji�yTune,
allowing users to specify the tuning problem by pointing
and clicking in a schematic environment. Results of tun-
ing were graphically back-annotated onto the schematic.
All details of the tuning problem were stored as attrib-
utes of the schematic. So if the circuit had to be re-
tuned in any situation (change of technology, change in
requirements, re-mapping), the re-tuning could be ac-
complished at the push of a button. Thus the tuning
environment encouraged and facilitated design re-use.

Some remarks about how dynamic tuning �ts into the
overall design methodology are in order. If dynamic tun-
ing is used on small, full-custom circuits, then the spec-
i�cation of the problem and the layout of the resulting
schematic can be performed manually. However, in order
to apply dynamic tuning to larger circuits, the di�culty
in coming up with input patterns and the concomitant
post-tuning layout problem must be addressed. For ex-
ample, the critical paths as identi�ed at the end of a sta-
tic tuning (or even a static timing analysis) can be carved
out, sensitized and automatically fed to a dynamic tuner.
Dynamic tuning is most e�ective at the schematic level
before layout. On an extracted schematic, the corre-
spondence between transistor sizes and associated di�u-
sion capacitances is often lost, making it impossible to
obtain electrically accurate gradients. An extractor that
produces netlists in which parasitics are parameterized
by the size of associated devices would �ll this method-
ology gap which currently prevents post-layout tuning.



3 Static tuning

Static tuning implies circuit optimization based on sta-

tic timing analysis[17]. One of the earliest static tuners
was TILOS[18]. In these approaches[19], transistors are
usually modeled by equivalent RC circuits. The actual
values of the resistances and capacitances are computed
during a pre-characterization procedure. The delay of
each channel-connected set of transistors is computed
using the Elmore delay model[20, 21]. Alternatively, de-
lay macromodels are used in [22]. Conventional static
timing analysis is used to determine the critical path.
The delay of the critical path can then be expressed as a
function of the widths of transistors. This expression is
a posynomial function (a particular algebraic form, see
[23]) of transistor widths. The observation is then made
that by a simple variable substitution, the posynomial
function can be converted to a convex function. Thus
any local minimum is guaranteed to be a global mini-
mum.

The procedure in TILOS and derivative tools is to
start all transistors at their minimum widths, and iter-
atively bump up the width of the transistor to which
the critical path is most sensitive at each step of the
algorithm. The procedure is repeated until the lowest
critical path delay through the circuit is found. More
recently, power optimization has also been proposed in
this general framework[24, 25].

The main advantages of static timing analysis are its
pattern independence and its speed. Very large circuits
can be tuned relatively quickly. All paths are implic-
itly taken into account because of the underlying static
timing basis. The designer is freed of the onus of com-
ing up with input patterns or identifying critical paths.
Since many industrial designs are veri�ed by static tim-
ing analysis, there are obvious advantages to carrying out
static tuning in that same general framework. Further,
interconnect delay can easily be modeled and accommo-
dated into this framework.

Unfortunately, static timing analysis has a number
of drawbacks. The most serious one is accuracy. El-
more delays do not provide reasonable accuracy in the
context of high-performance sub-micron circuits. Thus a
gain of 20% or more in performance based on Elmore de-
lay models may not have improved the circuit in reality!
Other modeling techniques like \collapsing" each logic
gate into an equivalent inverter signi�cantly degrade the
accuracy. Unfortunately, the mathematical elegance of
mapping the problem into a convex one and the intuitive
satisfaction of �nding a global minimum are rendered
void by the crudeness of the delay approximation. Im-
proving the accuracy of the delay model by, for example,
taking into account input waveform shapes, can destroy
the posynomial nature of the formulation.

The second major drawback of static tuning is the
false path problem. The optimizer may be hard at work
tuning false paths through the circuit, and therefore un-
able to achieve any performance gains in the paths that
really matter. But this problem is no more or less serious

than the false path problem in static timing analysis, and
if the circuit \sign-o�" is based on static timing analysis,
this activity may be a legitimate one. The third prob-
lem with static tuning is the lack of delay models that
are functions of transistor sizes. Often, analytic delay
models are built up for gates in a library as a function
of input slope and output load. These models are quite
accurate provided one stays within the \sweet spot," or
a reasonable range of input slopes and output loads in
which the models are valid. Unfortunately, such models
are built by an exhaustive and time-consuming SPICE-
based characterization process. These models generally
do not exist as a function of transistor widths, thus mak-
ing them unusable during tuning of transistor sizes. Fi-
nally, starting with all transistors set to their minimum
size could lead to circuits that may not even have the cor-
rect logical transitions. Dynamic tuners, since they are
based on a realistic simulation of the circuit, have the
advantage of being able to detect such \non-working"
circuits and attempting to recover from them.

Static timing analysis in the context of custom circuits
is successful only when each channel-connected compo-

nent (or \DC-connected component" or \strongly con-
nected component") is timed using a dynamic simula-
tor of reasonable accuracy under the covers. For tuning
purposes, the fast gradient computation methods of Sec-
tion 2.1 can then be exploited. Unfortunately, there are
no credible, gradient-based static tuners built with such
timers used for the underlying analysis.

4 Statistical tuning

Yield loss on a fabrication line can be attributed to cat-

astrophic and parametric (or circuit-limited) yield loss.
Catastrophic yield loss is due, for example, to dust par-
ticles that cause opens or shorts on metal lines. Para-
metric yield loss, which is discussed in this section, oc-
curs due to inherent manufacturing variations, leading to
chips that do not have the required performance charac-
teristics. In sorted designs like microprocessor chips, this
degradation can mean that insu�cient chips end up in
the high-performance, high-pro�t bin. In non-sorted de-
signs (for example, a bus controller chip) circuits below
a performance threshold must be thrown away. Across
the chip linewidth variations (ACLVs) constitute the sin-
gle dominant set of parameters that lead to variations in
the performance of the circuit. Statistical tuning is the
process of changing design parameters to minimize the
circuit-limited yield loss.

Aggressive tuning of a circuit often drives it into a
corner of the process space, thus causing its yield to suf-
fer. This problem has been studied extensively in the
literature and [26] is a good tutorial introduction to the
subject. In addition, the books [27, 28] provide a survey
of the state-of-the-art and provide extensive pointers to
further reading, while [29] is a useful reference on the
topic of creating and building statistical models.

The approaches to various aspects of statistical tuning
are listed below.



� In Monte Carlo analysis, the parametric space is
sampled and the design simulated at each sample
point. Of course, this method assumes that distri-
butions of the parameters are known. Further, by
various principal component and correlation analy-
ses, the number of independent parameters is re-
duced so as to limit the dimensionality of the space
being sampled and therefore the number of simula-
tions required. The results of the simulation runs
can be used to determine both the distribution and
worst-case behavior of the circuit.

Designs are often simulated at multiple process cor-
ners, which is a simple form of Monte Carlo analy-
sis. It is possible in the context of a dynamic tuner
to replicate the nominal objective function(s) and
constraints across all process corners, and simul-
taneously tune at all process corners[6]. Nominal
objective functions are transformed into minimax
functions across the process corners.

� Extreme case analysis is aimed at �nding the worst-
case behavior of the circuit given a statistical model
of the parameter variations. The goal is not to pre-
dict the statistical distribution of the performance,
but to predict the worst-case. A simple statement of
the problem would be, for example, to maximize the
delay of a circuit by optimally assigning transistor
lengths from a pre-characterized distribution.

� Yield prediction and optimization seek to explicitly
model the yield characteristics of a circuit as a re-
sponse surface. Once this is done, the actual para-
metric yield of a circuit in the face of manufacturing
variations can be predicted. Further, based on the
yield model, the circuit can be modi�ed to maximize
the yield.

� Design centering methods do not explicitly compute
or model yields. Instead, they take the approach
that pushing the circuit deeper into the interior of
the feasible region in the space of parameter varia-
tions will result in a more robust circuit and there-
fore higher yields. While design centering methods
operate on such a geometric model of the feasible re-
gion, method-of-moments-based techniques implic-
itly attempt to move designs away from regions of
low yield to regions of high yield without seeking to
explicitly compute the feasible region[30].

Despite much research on the topic of statistical tun-
ing, Monte Carlo and extreme case analyses are the most
popular approaches; industrial practice consists predom-
inantly of these two methods. The advantages of these
methods that are not shared by the other techniques are
that they are easy to understand and in a form that is
easily accessible to the design engineer.

5 Optimization methods

5.1 Choice of optimization method

The choice of the optimization method for circuit tun-
ing is crucial. Some introductory comments on this
topic are in order. Circuit tuning is a nonlinear problem
that cannot be solved by a linear optimizer; no amount
of familiarity with linear optimization on the part of
the developer can overcome this limitation! From the
point of view of mathematical optimization, geometric
programming[31] is an old technique whose development
predates the considerable advances in the �eld. Because
of its inherent inexibility it is rarely the most appropri-
ate method and is essentially abandoned by researchers
in nonlinear optimization. Our desire to preserve exi-
bility and solve large tuning problems logically drives us
towards the choice of large-scale, general-purpose non-
linear optimization packages.

Circuit tuning is best approached by gradient-based

nonlinear optimization. In the absence of gradients,
large problems cannot be solved and one is typically lim-
ited to problems in a few 10s of variables. Worse, there is
often no guarantee of convergence or optimality in such
\gradient-free" techniques. The e�cient computation of
gradients and even Hessians (matrix of second partial
derivatives) is key to e�ective optimization of large cir-
cuits. Note that gradient-based optimizers attempt to
converge to a local feasible and stationary point; there
is no guarantee of global optimality.

When tuning is applied to real-life situations, one
�nds that there is a need for exibility in the statement
of the problem. For combinational logic, we might want
to minimize area subject to a delay constraint. For cus-
tom, high-performance circuitry, we may want to min-
imize delay at any cost. For dynamic logic, we may
have numerous timing constraints. To handle multiple
paths through the logic, minimax optimization is indis-
pensable. Therefore, tuning tools should allow the user
to choose the objective function and the constraints de-
pending on the situation at hand. Thus an optimizer
that can accommodate general constraints must be cho-
sen.

The good news is that there has been tremen-
dous progress in general-purpose nonlinear optimiza-
tion methods during the last two decades (see the book
[32] for a good introduction to optimization methods;
[33, 34, 35] for more advanced discussions and [36] for
a practical guide on optimization software; also see the
pair of articles [37, 38] for a discussion of unconstrained
and constrained optimizationmethods, respectively; and
�nally [39, 40] for surveys of the state-of-the-art). Many
pioneering attempts at circuit optimization during the
late '60s and '70s are now being revisited since we have
the optimization methods and computing horsepower to
make those approaches practical for the �rst time.

The two best known large-scale optimizers that �t the
bill are MINOS[41] and LANCELOT[12]. Further, by
taking advantage of some features of the CUTE testing



environment[42], a user can easily benchmark many dif-
ferent nonlinear optimizers by expressing the optimiza-
tion problem in the SIF language[12]. SIF allows the user
to exploit group partial separability[12] in the statement
of the tuning problem[22], which is particularly advan-
tageous in static tuning. LANCELOT is best at solving
highly nonlinear large-scale problems with nonlinear con-
straints. MINOS is advantageous when the constraints
are linear or near-linear and the number of degrees of
freedom at the solution is small.

5.2 Application of optimization methods

Nonlinear optimization packages are sophisticated soft-
ware programs with a wealth of options. One can often
reap rich awards by utilizing the available options wisely
and by customization of the optimization code to the
problem at hand. Hence, these packages must be ap-
plied not as black boxes but with care and if possible,
with the help of a knowledgeable optimization person.

The circuit analysis carried out at each iteration of
the tuning is more CPU intensive than the nonlinear op-
timization algorithm. Hence, every e�ort must be made
during the optimization procedure to reduce the num-
ber of iterations, even at the cost of expensive compu-
tations. This situation leads to an interesting and un-
usual proposition for nonlinear optimization packages,
which are usually tailored to analytic problems in which
function and gradient evaluations are relatively inexpen-
sive. Analytic problems do not exhibit noise in the data,
whereas any simulation-based data is inherently noisy.
Most nonlinear optimizers are not tailored to handle
noise in the data and must be customized to some extent.
The customization may consist of choices of settings or
tolerances, or even modi�cation of the algorithms. Great
care must be taken in the choice of stopping criteria, tol-
erances for bound checks, tolerances on step sizes, initial
choice of trust-region radius, etc.,[5].

Minimax optimization can be approached in a number
of ways. The simplest is to remap the problem from

minimize maximum ci(x)
x 2 <n i 2 f1; 2; � � �;mg

(3)

to

minimize z
x 2 <n; z
subject to z � ci(x); i 2 f1; 2; � � � ;mg:

(4)

The linear variable z is minimized, subject to the con-
straint that it is larger than each of the constituent ci(x)
constraints; therefore, at optimality, z is as small as pos-
sible but larger than all the ci(x) values. Two \tricks"
can be used to make the minimax optimization more
e�ective. The �rst is to initialize z to the largest of
the ci(x) values after the �rst function evaluation, thus
starting o� the problem in a feasible state. The second
is to initialize the Lagrange multipliers corresponding to
the constraints in (4) above to 1=m, since the �rst-order
Kuhn-Tucker conditions[34] dictate that the Lagrange
multipliers must sum to unity at optimality.

In addition to providing gradients, if at all possible,
Hessian (second partial derivative) information must be
provided to the optimizer. In the absence of such infor-
mation, the optimizer usually applies qausi-Newton low
rank updates[35] on an initial guess (e.g., scaled unity
matrix) of the Hessian, requiring a large number of iter-
ations to build up good curvature information. Provid-
ing Hessian data to the optimizer dramatically reduces
the number of iterations required to solve optimization
problems.

The observation has been made that the optimizer
usually introduces variables of its own to remap the prob-
lem when necessary. For example, slack variables are
commonly introduced to convert inequalities to equal-
ity constraints. Further, new linear variables are added
to accommodate minimax functions as in (4). These
variables are independent of the problem variables, and
hence any change in the sub-space of these variables does
not require a re-evaluation of the circuit. One can thus
consider two-step updates[43] or spacer steps[44] in this
sub-space. Since these slack and pseudo-variables often
occur in a known and simple functional form in the merit
function of the optimizer, the merit function can be ad-
ditionally optimized in the sub-space of these variables
at each iteration of the optimization, without having to
pay any additional circuit analysis cost. This \second
step" has been found to improve the overall e�ectiveness
of the optimization.

Two other types of optimization deserve mention. It
has been argued that circuit tuning is a multi-criterion

optimization problem[45] and what the designer really
wants is the entire set of Pareto optimal points[46]. In
practice, however, either repeated \goal-based" single-
criterion optimization runs or repeated optimization
runs with di�erent weights on the various objective func-
tions su�ce to understand the inherent trade-o�s in-
volved. Second, the accommodation of semi-in�nite con-

straints is a useful feature of any circuit tuner[1]. The
statement of a semi-in�nite problem is

minimize f(x)
x 2 <n

subject to g(x; p) � 0 for all pu � p � pl:
(5)

For example, the user may want to minimize area (f in
(5) above), subject to the delay through the circuit (g)
being less than a certain target, for any power supply
value (the semi-in�nite parameter p) in a certain range.
Unfortunately, methods for multi-criteria optimization
and accommodation of semi-in�nite constraints (espe-
cially when multi-dimensional) make a tuner less e�-
cient and much more complicated. These enhancements
are not used in practice.

6 Special topics

6.1 Interconnect tuning

Performance optimization of interconnect is the subject
of a separate paper by J. Cong et al in these proceedings,
and so will be mentioned only briey here. A survey of



interconnect optimization methods can be found in [47].
With �ner metal lines, a higher fraction of the total delay
is due to on-chip interconnect, and hence more attention
needs to be paid to this part of the design. Simultane-
ous tuning of gates and interconnect[48, 49, 6] has been
shown to yield superior results to tuning just the inter-
connect or just the drivers. Further, reduced order mod-
eling of interconnect[50, 51, 52] has allowed the analysis
of large interconnect networks in a computationally e�-
cient manner. The availability of sensitivities[53] makes
these macromodels attractive from a tuning perspective.

In practice, local nets and short global nets are usu-
ally sized to have the minimum allowed width. Long
global nets are either made wider, or the delay improved
by the manual insertion of bu�ers or repeaters. Inter-
connect tuners work best when they are tightly coupled
to the oorplanner and layout data. Recently, many ap-
proaches to wire sizing, bu�er placement and topology
changes have appeared in the literature[47]. The chal-
lenge for the future is a holistic solution that combines all
three approaches. Special considerations are in order for
the design of power distribution[54] and clock distribu-
tion networks. In the case of clock distribution networks,
the design is usually carried out in two phases[55]. First
the topology of the clock network is determined. Then
the bu�ers are placed and wires sized so as to both mini-
mize the skew to the target points and reduce sensitivity
to process variations. Transmission line e�ects may be
important during this procedure[56].

6.2 Noise-aware tuning

Signal integrity and noise analysis are increasingly im-
portant and challenging aspects of high-speed digital de-
sign. Noise checking is usually carried out on a static ba-
sis in the same framework as static timing analysis[57].
However, noise-aware tuning can be applied to both sta-
tic and dynamic methods. In the simplest case, addi-
tional noise constraints can be added to the tuner. These
constraints can be derived from rules of thumb related to
noise considerations, or from detailed analysis. The rules
of thumb may take a simple form such as ratio-ing of de-
vice sizes. More formally, stability criteria[57] can be
added to the tuning procedure as additional constraints.

There is usually a direct trade-o� between noise im-
munity and performance. For example, the half-latch
in a dynamic gate can be sized for aggressive perfor-
mance, but there is a concomitant loss in noise margin.
In digital circuits, channel lengths are usually not tuned;
they are left at their minimum allowed size. However,
in the context of the tradeo� between noise and perfor-
mance, one could consider tuning device lengths. Tun-
ing of device lengths can therefore play a signi�cant role
in noise-aware tuning (and, in fact, in statistical tuning
since length variations are the primary cause of circuit-
limited yield).

7 Avenues of future research

Tuning of circuits on a static-timing basis is one of the
most challenging problems faced today. Maintaining suf-
�cient timing accuracy while tuning large problems in
the presence of arbitrary timing constraints is a di�-
cult problem. Noise-aware tuning will gain prominence
as more formal noise analysis methods are developed.
Computation of Hessians of circuits will go a long way
in making tuning more e�cient. Further into the future,
the solution of mixed continuous/integer problems will
enable designers to optimize continuous variables simul-
taneously with discrete ones. Design centering and yield
optimization require further work before they can enter
the mainstream IC design process. For the brave, multi-
criteria optimization and accommodationof semi-in�nite
constraints pose a long series of challenges.
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