Approximate Timing Analysis of Combinational Circuits under the XBDO Model*

Yuji Kukimotot Wilsin Gostif

Alexander Saldanhat

Robert K. Braytony

Department of Electrical Engineering and Computer Sciences
University of Cdifornia, Berkeley, CA 947207
Cadence Berkeley Laboratories, Berkeley, CA 94704z

{kuki mot o, wi | si n, brayton}@ecs. ber kel ey. edu

Abstract

This paper is concerned with approximate delay computation
algorithms for combinational circuits. As aresult of intensive re-
searchin theearly 90's[3, 8] efficient tools exist which can analyze
circuits of thousands of gatesin a few minutes or even in seconds
for many cases. However, the computation time of these tools is
not so predictablesince theinternal engine of the analysisiseither a
SAT solver [8] or amodified ATPG algorithm [3], both of which are
just heuristic algorithms for an NP-complete problem. Although
they are highly tuned for CAD applications, there exists a class of
problem instances which exhibits the worst-case exponential CPU
time behavior. In the context of timing analysis, circuits with ahigh
amount of reconvergence, e.g. C6288 of the ISCAS benchmark
suite, are known to be difficult to analyze under sophisticated delay
modelsevenwith state-of-the-art techniques. For example[8] could
not completethe analysis of C6288 under the mapped delay model.
To make timing analysis of such corner case circuits feasible we
propose an approximate computation scheme to the timing analy-
sis problem as an extension to the exact analysis method proposed
in [8]. Sensitization conditions are conservatively approximated in
a selective fashion so that the size of SAT problems solved during
analysisis controlled. Experimental results show that the approx-
imation technique is effective in reducing the total analysis time
without losing accuracy for the case where the exact approach takes
much time or cannot complete.

1 Introduction

During late 80's and early 90's significant progress[2, 8] was made
in the theory of exact gate-level timing analysis. In this, false
paths are correctly identified so that exact delays can be computed.
As the theory progressed, the efficiency and size limitation of ac-
tual implementations of timing analysis tools were dramatically
improved [3, 8]. Although state-of-the-art implementations can
handle circuits composed of thousands of gates under mapped de-
lay models, it is evident that the current size limitation is far from
satisfactory for analyzing industrial-strength circuits. Furthermore,
even if they can handlelarge circuits, the computation time is often
prohibitively large especially when delay models are elaborate.

To aleviate this problem several researchers have proposed ap-
proximate timing analysis algorithms. The goal is to compute a
conservative yet accurate enough approximation of true delaysin
less computation time to make analysis of large circuits tractable.

Huang et al. [4, 6] proposed, as part of optimization techniques
used in exact analysis, a simple approximation heuristic, in which
a complex timed Boolean calculus expression at an internal node
is simplified to a new independent variable arriving at the latest

1This work was supported by SRC-97-DC-324.

0-89791-993-9/97 $10.00 J 1997 IEEE

sal danha@adence. com

time referred to in the original expression. This simplification is
applied only when the number of terms in the Boolean calculus
expression exceeds a certain limit, to control the computational
complexity. Accuracy loss comes from the fact that the original
functional relationship is completely lost by the substitution. They
also investigated a more powerful approximation techniquein [5],
in which each timed Boolean calculus formulais under- and over-
approximated by sum of literals and productsof literals respectively
so that each sensitizability check, which isasatisfiability problemin
the exact analysis, can be performed conservatively in polynomial
time. Since this approximation isfairly aggressiveto guaranteethe
polynomial time complexity, estimated delaysdo not seem accurate
enough to be useful. Unfortunately their results, shownin [5], are
not clear about the accuracy of approximate delays. They merely
showed ratiosof internal nodeswhosedelaysmatch the exact delays
at thenodes. No result was shown on the accuracy of circuit delays.
More recently Yalcin et al. [11] proposed an approximation
technique, which utilizes user’s knowledge about primary inputs.
They categorize each primary input either as data or control and
label all the internal nodes either data or control using a certain
rule. The sensitization condition at each node is then simplified
conservatively so that it becomesindependent of the data variables.
The intuition behind thisis that the delay of acircuit is most likely
determined by control signals while data signals have only minor
effectsinthefinal delay. [11] showsexperimentally that adramatic
speed-up is possible without losing much accuracy for unit-delay
timing analysis based on static sensitization. Unfortunately this
sensitization criterion is known to underapproximate true delays,
i.e. it isnot a safecriterion, which defeatsthe whole purpose of tim-
ing analysis. More recently they confirmed that a similar speed-up
and accuracy can be achieved for a correct sensitization criterion
(the floating mode) under the unit-delay model [9]. Although an
application of the same techniqueto more sophisticated delay mod-
els is theoretically possible, it is not clear whether their algorithm
can handlelarge circuits under those delay models. Moreover, their
CPU times for exact analysis are much worse than state-of-the-
art implementations available, which cancels some of the speed-up
sincetheir speed-up is reported relative to this slower algorithm?.
In this paper we apply their ideaof using data/control separation
to a state-of-the-art timing analysis technique [8] to design an ap-
proximate algorithm. The sensitization criterion here is the XBDO
model [8], which is one of the well-accepted delay models shown
to be correct and accurate. In addition a novel technique to control
the complexity of the analysis is proposed. The combination of
these two ideas leads to a new approximation scheme, which for

1One of thereasonswhy their exact algorithm is slower is that they try to represent
in BDD dl theinput mintermsthat activate the longest sensitizable delay while most
of the state-of -the-art techniques determine the delay without representing those input
mintermsexplicitly.

some extreme cases shows a speed-up of 70x, while maintaining
accuracy within the noise range.

This paper is organized as follows. Section 2 summarizesfalse
path analysis, which forms a basis of this work. We specially
focus on the technique proposed in [8]. Section 3 proposes two
approximation schemes and discusses how they can be selectively
applied to trade off accuracy and speed-up. Experimental results
are given in Section 4. Section 5 concludesthe paper.

2 Prdiminaries

In this section, we review sensitization theory for the false path
problem. Specifically, the theory developedin [8] is detailed below
since the analysis following this section is heavily based on this
particular theory.

2.1 Functional Delay Analysis

Functional delay analysis, or false path analysis, seeksto determine
when all the primary output signals of a Boolean network become
stable at their final values given maximum delays of each gate
and arrival times at the primary inputs. Since some paths may
never be sensitized, the stable time computed by functional delay
analysis can be earlier than the time computed by topological delay
analysis, thereby capturing the timing characteristic of the network
more accurately. Those paths along which signals never propagate
are called false paths.

The extended bounded delay-0 model [8], the XBDO model, is
the delay model most commonly usedin falsepath analysis. Itisthe
underlying model for the floating mode analysis [1] and viability
analysis [7]. Under the XBDO model, each gate in a network has
a maximum positive delay and a minimum delay which is zero.
Sensitization analysisis done under the assumption that each gate
can take any delay between its maximum value and zero.

The coreideaof [8] is to characterize recursively the set of all
input vectors that make the signal value of a primary output stable
to aconstant by agiven required time. Oncethese setsareidentified
both for constants 0 and 1, one can compare these against the on-
set and the off-set of the primary output respectively to see if the
output is indeed stable for all input vectors by the required time.
The overall scenario of computing true delay is to start by setting
the required time to the longest topological delay minusé > 0 and
gradually decreaseit until someinput vector cannot make the output
stable by the required time. The next to the last required time gives
an approximation to the true arrival time at the output. Thisprocess
of guessing the next required time can be sped up and refined by
making use of a binary search.

Let usillustrate how we can compute these sets. Let n and d,,
be a node (gate) in a Boolean network " and the maximum delay
of the node n respectively?. Let sz,v be the characteristic function
of the set of input minterms under which the output of the node
n becomes stable to a constant v € {0, 1} by time ¢. Let f,, be
the local functionality of the node r in terms of immediate fanins
ma, ..., my Of n. For ease of explanation, let f,, = mimy,i.e, n
is atwo-input AND gate. It is clear from the functionality of the
AND gate that to set . to a constant 1 by time ¢, both of the fanins
of n, m1 andmg, arerequired to be stableat 1 by time¢ — d,,. This
is equivalent to

t t—dp t—dp
Xn1= Xml,l : sz,l .
Note that the two x functions for the fanins are AND’ed to take
the intersection of the two sets. Similarly, to set . to a constant O

2|t is possible to differentiaterise delaysfrom fall delays. In this paper, however,
we do not distinguish between them to simplify exposition.

by time ¢, at least one of the fanins must be stabilized to 0 by time
t—dy.

X1 = Xomid + Xomnd!
Here the two x functions are OR’ed to take the union of the two
conditions. It is easy to see that the above computations can be
generalized to the case where the local functionality of n is given
as an arbitrary function in terms of its fanins as follows.

Xiw= > [T] v TT vl

pPEPY mi€p ™, Ep

where P! and P? are the sets of al primes of f,, and f,, respec-
tively. One can easily verify that the recursive formulations for the
AND gate shown above are captured in this general formulation by
noticing P: = {mim>}, PY = {71, Mz} for f, = mima. The
terminal casesare given when the node . isaprimary input x.

Xi,l T ift > arr(z)
=0 otherwise

Xi,o = 7T ift > arr(z)
=0 otherwise

where arr(z) denotes the arrival time of «. The above formulas
simply say that a primary input is stable only after its given arrival
time. The key observation of this formulation is that characteristic
functions can be computed recursively.

Once characteristic functions for constants 0 and 1 are com-
puted at a primary output, two comparisons are made: one for the
characteristic function for 1 against the on-set of the output, and the
other for the characteristic function for 0 against the off-set of the
output. Each comparison is done by creating a Boolean network
which computes the difference between two functions and using a
SAT solver to check whether the output of the network is satisfiable.
The Boolean network is called ay-network.

2.2 Optimal Construction of y-Networks

To argue the approximation algorithms presented in this paper, fur-
ther details on the construction of -networks need to beunderstood.
We have mentioned that a x-network isconstructed recursively from
a primary output. In [8] further optimization to reduce the size of
y-networksis discussed.

Given arequired time at a primary output, assume that a back-
ward required-time propagation of A/ is done to primary inputs so
that the list of all required times at each internal nodeis computed.
The propagation is done so that all the potential required times are
computed at each node instead of the earliest required time. If the
x-network is constructed naively, for each internal node in \V, a
distinct nodeisto be created for eachrequired timein thelist. This,
however, is not necessary sinceit is possible that different required
times exhibit the same stability behavior, in which case having a
single node in the x-network for the required times is enough. To
detect such a case aforward arrival-time propagation from primary
inputs to primary outputs is performed to compute the list of all
potential arrival times at each node. Notethat each potential arrival
time correspondsto the topological delay of a path from a primary
input to the internal node. Therefore the stability of the node can
only change at those times. In other words between two adjacent
potential arrival times, one cannot see any changein the stability.

Consider an internal node n € N. Let R = (r1,...,rp)
and A = (as,...,a,) denote the sorted list of required times and
that of arrival times respectively at node n. Consider x function
xn'o(v=0,1). Leta; € A bethemaximum arrival time suchthat
a; < r;. Sincethereisno event happening betweentimea; andr;,
Xniy = xn'lw. Matchings from required times to arrival times are

performed in this fashion to identify the subset of A that isrequired
to compute the final ¥ function. This optimization avoids creating
redundant nodesin the y network thereby reducingthe sizeof the x
network without losing any accuracy in analysis. Only those arrival
times which have a match with required times yield nodesin the y
network.

Another type of optimization suggestedin [8] is to generate the
list of arrival times more carefully. For each potential arrival time,
equivalence between the corresponding x function and the on-set
or the off-set (whichever suitable) is checked by a satisfiability call
and a new node is created in y network only if the two functions
are different. Otherwise, the original function or its complement
isused asit is. Although this requires additional CPU time spent
on satisfiability calls, it is experimentally confirmed that the size
reduction of the final y network is so significant that the the total
run-time decreasesin most cases.

3 Approximation Algorithms

3.1 Limitation of the Exact Algorithm

Although the exact algorithm proposed in [8] can handle many
circuits of thousandsof gates, it still has asize limitation. If alarge
network is given and timing analysisis requested under a detailed
delay model like the technology mapped delay model, it is likely
that the algorithm runs practically forever®. Even if timing analysis
istractable, the computation time can betoo large to be practical .

As seen in the previous section, the exact timing analysis con-
sists of repeated SAT solver calls. More precisely, for each time
tested at a primary output, a x-network is constructed such that
the network computes the difference between the on-set (off-set)
of the primary output and the set of input vectors which make the
primary output stableto value 1 (0) by the giventime. If the output
never becomes 1 for any input assignment, i.e. it is not satisfiable,
we know that the output becomes stable completely by the time
tested. To test whether this condition holds, a SAT formula which
is satisfiableonly if the output is satisfiableis created directly from
the x network, and a SAT solver is called on it. The size of the
SAT formulais roughly proportional to the size of the x network.
The main difficulty in the analysis of large networksis that due to
apotentially large size of the y networks, the size of SAT formulas
generated can be too large for a SAT solver to solve even after the
optimization discussed in the previous section has been applied”.
In the following we discuss how to control the size of y networks
without losing much accuracy.

3.2 Reducing the Size of y Networksfor Effective
Approximation

The main reason why y networks become large in the exact ap-
proach is that y functions at many distinct arrival times must be
computed for internal nodes. This size increase occurs when there
are many distinct path delaysto internal nodes due to the reconver-
gence of the circuit. Therefore our goal is to control the number
of distinct arrival times considered at each internal node. More
specifically we only create a small number of x functions at each
internal node. This strategy avoids the creation of huge y networks
thereby controlling the size of SAT formulas generated.

Although thisideacertainly helpsreducethe size of x networks,
it must be done carefully so that the correctness of the analysisis

3The algorithmis CPU intensive rather than memory intensive since the core part
of thealgorithmis SAT.

“Theoretically it is not necessarily truethat asmaller SAT formulais easier to solve.
However we have observed that the size of SAT formulasis well correlated with the
time the solver takes.

guaranteed. We must never underapproximate true delays since
otherwise the timing analysis could miss timing violations when
used in the context of timing verification. Overapproximation is
acceptable as long as reasonable accuracy is maintained. We guar-
antee this property by selectively underapproximating stability of
signals. This underapproximation in turn overapproximates insta-
bility of signalsthereby guaranteeing that estimated delaysare never
underapproximated.

The key idea on approximation is to modify the mapping from
required timesto arrival times discussed in Section 2.2 so that only
asmall set of arrival times forms the image of the mapping. Given
the sorted set of required times R = (ry,...,r,) and the sorted
set of arrival times A = (a,...,aq) & an interna node n, the
mapping f : R — A usedin the exact analysisis defined as

. maxa; € Asuchthata; <r ifr > a1
fr)=9 % otherwise

Sincethe stability of the signal at the node increasesmonotonically
astime elapses by the definition of x functions, it is safe to change
the mapping so that it maps arequired time to atime earlier than the
time definedin the above. This correspondsto underapproximation
of the signal stability. Thus, by modifying the mapping under this
constraint so that only a small set of arrival times is required, one
can control the number of nodesto be introduced in the x network
without violating the correctness of the analysis. Depending on
how the original mapping in the exact analysis is changed several
conservative approximation schemes can be devised. Two such
approximation schemes are described next.

3.2.1 Topological Approximation

The most aggressive approximation, which we call topological ap-
proximation, isto map required times either to thetopological arrival
time (a,°) or to —co. More formally, the mapping f7 is defined as
follows.

T,] aq ifr>aq
frr)= { —oo otherwise

Itiseasy to seethat f7 isaconservative approximation of f. Since
XZ?l = n and XZ?o = n, there is no need to create a new node

for the y function in the x network®. Instead the node function
or its complement of the original network can be used for the x
function. For theother arrival time —oc, x,, 5" = Ofor Vv € {0, 1}.
Therefore it is sufficient to have a constant zero node in the y
network and use it for al the cases where the zero function is
needed. Since neither of the arrival times needs any additional
nodein the x network, this approximation never increasesthe size
of the x network. If this reduction is applied at all nodes, the
analysis simply becomes pure topological analysis. Therefore, this
approximation makessenseonly if it is selectively invoked on some
subset of nodes. A selection strategy is described later.

3.2.2 Semi-Topological Approximation

Thesecond approximation scheme, called semi-topol ogical approx-
imation, is slightly milder than the first in terms of the power of
simplifying x networks. In this, required times are mapped to two
arrival times again, but the times chosen are different. The times
to be picked are 1) the arrival time, say a., matched with r1 in the
exact mapping f and 2) the topological arrival time a,, whichisthe
same asin the first approximation. Thefirst approximation and this
one are different only if a. # —oo, in which case the second one

5Tobeprecise, a4 can beearlier than the topological arrival timeif an intermediate
satisfiability call hasalready verifiedthat by time a, thesignal is stabilized completely.
5Notice that the x network alwaysincludesthe original circuit.

gives a more accurate approximation. To be precise, the definition
of the new mapping function 7 is asfollows.

S,y) ae ifr<aq
£ _{ a, Otherwise

If a. # —o0, the x function for time a. is now computed explic-
itly, and the corresponding nodeis added to the x network. Similar
extensions which give tighter approximations are possible by al-
lowing more arrival times to remain after the mapping. A set of
various approximations gives a tradeoff between compactnessof x
networks and accuracy of analysis.

3.3 Control/DataDichotomyin Approximation Strate-

gies

In [11] Yalcin et al. proposed to use designer’s knowledge on
control-data separation of primary inputsfor effective approximate
timing analysis. They applied thisideato speed up their timing anal -
ysis technique using conditional delays [10] by simplifying signal
propagation conditions of data variables. We adapt their idea, of
using this knowledge, to the XBDO analysis to develop a selection
strategy of various approximation schemes.

3.3.1 Labeing Data/Control Types

Given data/control types of al primary inputs, each internal node
is labeled data or control based on the following procedure. All
the nodesin the network are visited from primary inputsto primary
outputsin atopological order. At each node the types of its fanins
are examined. If all of them are data, the node is labeled data;
otherwise it is labeled control. Hence nodes labeled data are pure
datavariableswith no dependency on control variables, while those
labeled control are al the other variables with some dependency
on control variables. This labeling policy is different from the one
used in [11], where a node is labeled data if at least one of its
fanins is labeled data. In their labeling, nodes labeled data are
variables with some dependency on data whereas nodes labeled
control are pure control variables. The difference between the two
labelings is whether pure data variables or pure control variables
are distinguished. Our labeling will lead to tighter approximations.

3.3.2 ApplyingDifferent Approximationsbased on
Data/Control Types

Onceall the nodesare labeled, different approximation schemesare
applied at nodes based on their types. The strategy is asfollows.

If anodeis a control variable, the semi-topological approxima-
tion £ is applied while if anodeis a datavariable, the topological
approximation f7 is applied. The intuition is to use a tighter
approximation for control variablesto preserve accuracy while per-
forming maximum simplification for data variables assuming they
have lessimpact on delays than control variables.

3.3.3 Extracting Control Circuitry for Further Ap-
proximation

If the approximation so far is not powerful enoughto makeanalysis
tractable, further approximation is possible by extracting only the
control-intensive portion of the circuit and performing timing anal-
ysison the subcircuit. The extraction of the control portion is done
by stripping off al pure datanodesfrom the original network under
analysis. Note that any circuit can be decomposed into a cascade
circuit wherethe nodesin the driving circuit are labeled as dataand

thosein the driven circuit control by the definition of datavariables.
Therefore, the primary inputs of the subcircuit are the boundary
variables which separate the subcircuit from the pure data portion.
We assume conservatively that delays of the pure data portion of
the circuit are the same as topological delays, which gives arrival
times at the primary inputs of the extracted circuit. Analysisisthen
performed on this subcircuit asif it were the circuit given. Notice
that this has a similar flavor to the approximation proposedin [4].
The difference between this approximation and the previous
method is that the subcircuit hasanew set of primary inputs, which
areassumedindependent. However, itispossiblethat in the original
circuit only a certain subset of signal combinations appears at the
boundary variables. Since this approximation assumesthat all sig-
nal combinations can show up, the analysis becomes pessimistic’.
For example, if asignal combination which does not appear on the
cut makesalong path sensitizable, it can make delay estimation un-
necessarily pessimistic. Although this method ismore conservative
than the one without subcircuit extraction, it reduces the size of a
circuit to be analyzed much more significantly than the other one.

4 Experimental Results

We implemented the new approximation scheme on top of the
implementation of [8] under SIS environment. To evaluate the
effectiveness of the approximation, we focused on timing analysis
of mapped ISCA'S combinational circuits, which is generally much
more time-consuming than analysisbased on simpler delay models.
In Table 18 the results on three circuits whose exact analysis takes
more than 20 secondson a DEC Alpha Server 7000/610 are shown®,
Each circuit is technology-mappedfirst with the option specifiedin
the second column using the | i b2. genl i b library. The delay
of the circuit is then analyzed using three techniques. The first
one (exact) is the exact method presented in [8]. The remaining
two are approximate methods; the second, called approx(1), is the
techniquein Section 3.3.2 and thethird, called approx(2), istheone
in Section 3.3.3 which involves subcircuit extraction. Control/Data
specification for the primary inputs of these circuits are the same
asthosein [11]%. For each of the three analyses, estimated delay
and CPU time are shown in the last two columns. One can observe
that accuracy is preserved in the three examples in both of the
approximation methods while CPU time is reduced significantly.

Table 2 summarizes asimilar experiment for C6288, an integer
multiplier, which is known to be difficult for exact timing analysis
dueto ahuge amount of reconvergence. Sinceall the primary inputs
are data variables, the approximate techniques proposed are degen-
erated into topological analysis. To avoid this inaccuracy all the
primary inputswere set to control. Note that this setsall intermedi-
ate nodesto control. We then applied the first approximate method
under this labeling. Although the approximationis not so powerful
asthe original algorithms, this at |east enables usto reduce the size
of x networks without giving up accuracy completely. Since there
isno datavariablein the network, only approx(1) wastried. Signifi-
cant time saving was achieved with only aslight overapproximation
in terms of analysis quality. The exact analysisis not only more
CPU-time intensive but also much more memory-intensive than the
approximateanalysis. Infactwe could not completeany of thethree
exact analyseswithin 150MB of memory. They ran out of memory
in a couple of minutes. These exact analyses were possible after

7If the set of all possible signal combinationsat the boundary variables can be rep-
resented compactly, one can safely avoid this pessimism by multiplying the additional
congtraint to the SAT formulagenerated.

8Timing analysiswas donein the linear search mode[8] where the decrement time
step is 0.1 and the error toleranceis 0.01.

91 exact analysis is already efficient, approximation cannot make significant im-
provement in CPU time; in fact the overall performance can be degraded due to
additional tasksinvolved in approximation.

OMore precissly, C1908(1) and C3540(1) in [11] were used.

[circuit | tech.map | #gates | topological delay | type of approx. | estimated delay | CPU time |
exact 34.77 29.1
C1908 -m1| 536 39.25 approx(1) 34.77 8.9
approx(2) 34.77 54
exact 35.76 412
C1908 -mO0 | 602 40.76 approx(1) 35.76 12.0
approx(2) 35.76 52
exact 35.66 727.0
C3540 || -n 1 -AFG| 1113 35.88 approx(1) 35.66 559.5
approx(2) 35.66 502.9

Table 1: Exact analysisvs. Approximate analysis (CPU time in secondson DEC AlphaServer 7000/610)

[circuit]| tech.map | #gates | topological delay | type of approx. | estimated delay | CPU times |
-m1 2429 127.23 exact 123.87 7850.2
approx(1) 123.94 169.2
C6288 -mO 2371 12351 exact 119.16 18956.2
approx(1) 119.21 257.1
-n 1 -AFG 2911 114.62 exact 112.92 15610.5
approx(1) 112.86 1690.9

Table 2: Exact analysisvs. Approximate analysison C6288 (CPU time in secondson DEC AlphaServer 7000/610)

the memory limit was expanded to 1GB. The |ast example needsan
additional explanation. In this example the estimated delay by the
approximate algorithm is smaller than that by the exact algorithm
although in Section 3 we claimed that the approximation algorithm
never underapproximates exact delay. The reason for this is that
the SAT solver is not perfect. Given a very hard SAT problem,
the solver may not be able to determine the result under a given
resource, in which case the solver simply returns Unknown. Thisis
conservatively interpreted asbeing satisfiablein thetiming analysis.
In this particular examplethe SAT solver returned Unknown during
the exact timing analysis, which resulted in an overapproximation
of the estimated delay, while in the approximate analysis the SAT
solver never aborted because of the simplification of y networks
and gave a better overapproximation. This example showsthat the
approximate analysis gives not only computational efficiency but
also better accuracy in some cases.

To compare the exact and the approximate methods further, we
examined the total CPU time of the exact analysisto see how it can
be broken down. For the first example of C6288 the exact analysis
took 714.7 secondsto conclude that any path of length 123.93 is
false, which is about four timeslonger for the approximate analysis
to conclude that the delay of the circuit is 123.94. The situation is
much worse in the second example, where the exact analysis took
18390.8 secondsto concludethat any path of length 119.21 isfalse
while the approximate method took only about 1.4% of thistime to
finish off the entire analysis.

5 Conclusions

We have proposed new approximation algorithms asan extensionto
the XBDO timing analysis[8]. The coreidea of the algorithmsisto
control the size of sensitization networksto prevent the size of SAT
formulas to be solved from getting large. The use of knowledge
on data/control separation of primary inputs originally proposed
in[11] was adapted to choose an appropriate approximation at each
node. We showed experimentally that the technique hel ps simplify
the analysis while maintaining accuracy well within the accuracy
of the delay model.

Acknowledgments

Hakan Yalcin kindly offered detailed data on ISCAS benchmark
circuits.

References

[1] H.-C. Chen and D. H.-C. Du. Path sensitization in critical
path problem. |EEE Transactionson Computer-Aided Design,
12(2):196-207, February 1993.

[2] S.Devadas, K. Keutzer,and S. Malik. Computation of floating
modedelay in combinational circuits: Theory and algorithms.
|EEE Transactionson Computer-Aided Design, 12(12):1913—
1923, December 1993.

[3] S.Devadas, K. Keutzer, S. Malik, and A. Wang. Computation
of floating mode delay in combinational circuits: Practice
and implementation. |EEE Transactions on Computer-Aided
Design, 12(12):1924-1936, December 1993.

[4] S.-T.Huang, T.-M. Parng, and J.-M. Shyu. A new approachto
solving false path problem in timing analysis. In Proceedings
of IEEE Inter national Conferenceon Computer-Aided Design,
pages 216219, November 1991.

[5] S.-T. Huang, T.-M. Parng, and J-M. Shyu. A polynomial-
time heuristic approach to approximate a solution to the false
path problem. In Proceedings of 30th ACM/IEEE Design
Automation Conference, pages 118-122, June 1993.

[6] S.-T. Huang, T.-M. Parng, and J.-M. Shyu. Timed boolean
calculus and its applicationsin timing analysis. |EEE Trans-
actions on Computer-Aided Design, 13(3):318-337, March
1994.

[7] P. C. McGeer and R. K. Brayton. Integrating Functional
and Temporal Domains in Logic Design. Kluwer Academic
Publishers, 1991.

[8] P C. McGeer, A. Sadanha, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Delay models and exact timing

(9]
[10]

[11]

analysis. In T. Sasao, editor, Logic Synthesis and Optimiza-
tion, pages 167—-189. Kluwer Academic Publishers, 1993.

H. Yalcin. Private communication, March 1997.

H. Yalcin and J. P. Hayes. Hierarchical timing analysis using
conditional delays. In Proceedings of IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 371—
377, November 1995.

H. Yalcin, J. P. Hayes, and K. A. Sakallah. An approximate
timing analysis method for datapath circuits. In Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design, pages 114118, November 1996.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

