
0-89791-993-9/97 $10.00  1997 IEEE

Approximate Timing Analysis of Combinational Circuits under the XBD0 Model1

Yuji Kukimotoy Wilsin Gostiy Alexander Saldanhaz Robert K. Braytony

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720y

Cadence Berkeley Laboratories, Berkeley, CA 94704z

fkukimoto,wilsin,braytong@eecs.berkeley.edu saldanha@cadence.com

Abstract
This paper is concerned with approximate delay computation

algorithms for combinational circuits. As a result of intensive re-
search in the early 90’s [3, 8] efficient tools exist which can analyze
circuits of thousands of gates in a few minutes or even in seconds
for many cases. However, the computation time of these tools is
not so predictable since the internal engine of the analysis is either a
SAT solver [8] or a modified ATPG algorithm [3], both of which are
just heuristic algorithms for an NP-complete problem. Although
they are highly tuned for CAD applications, there exists a class of
problem instances which exhibits the worst-case exponential CPU
time behavior. In the context of timing analysis, circuits with a high
amount of reconvergence, e.g. C6288 of the ISCAS benchmark
suite, are known to be difficult to analyze under sophisticated delay
models even with state-of-the-art techniques. For example [8] could
not complete the analysis of C6288 under the mapped delay model.
To make timing analysis of such corner case circuits feasible we
propose an approximate computation scheme to the timing analy-
sis problem as an extension to the exact analysis method proposed
in [8]. Sensitization conditions are conservatively approximated in
a selective fashion so that the size of SAT problems solved during
analysis is controlled. Experimental results show that the approx-
imation technique is effective in reducing the total analysis time
without losing accuracy for the case where the exact approach takes
much time or cannot complete.

1 Introduction

During late 80’s and early 90’s significant progress [2, 8] was made
in the theory of exact gate-level timing analysis. In this, false
paths are correctly identified so that exact delays can be computed.
As the theory progressed, the efficiency and size limitation of ac-
tual implementations of timing analysis tools were dramatically
improved [3, 8]. Although state-of-the-art implementations can
handle circuits composed of thousands of gates under mapped de-
lay models, it is evident that the current size limitation is far from
satisfactory for analyzing industrial-strength circuits. Furthermore,
even if they can handle large circuits, the computation time is often
prohibitively large especially when delay models are elaborate.

To alleviate this problem several researchers have proposed ap-
proximate timing analysis algorithms. The goal is to compute a
conservative yet accurate enough approximation of true delays in
less computation time to make analysis of large circuits tractable.

Huang et al. [4, 6] proposed, as part of optimization techniques
used in exact analysis, a simple approximation heuristic, in which
a complex timed Boolean calculus expression at an internal node
is simplified to a new independent variable arriving at the latest

1This work was supported by SRC-97-DC-324.

time referred to in the original expression. This simplification is
applied only when the number of terms in the Boolean calculus
expression exceeds a certain limit, to control the computational
complexity. Accuracy loss comes from the fact that the original
functional relationship is completely lost by the substitution. They
also investigated a more powerful approximation technique in [5],
in which each timed Boolean calculus formula is under- and over-
approximated by sum of literals and products of literals respectively
so that each sensitizability check, which is a satisfiability problem in
the exact analysis, can be performed conservatively in polynomial
time. Since this approximation is fairly aggressive to guarantee the
polynomial time complexity, estimated delays do not seem accurate
enough to be useful. Unfortunately their results, shown in [5], are
not clear about the accuracy of approximate delays. They merely
showed ratios of internal nodes whose delays match the exact delays
at the nodes. No result was shown on the accuracy of circuit delays.

More recently Yalcin et al. [11] proposed an approximation
technique, which utilizes user’s knowledge about primary inputs.
They categorize each primary input either as data or control and
label all the internal nodes either data or control using a certain
rule. The sensitization condition at each node is then simplified
conservatively so that it becomes independent of the data variables.
The intuition behind this is that the delay of a circuit is most likely
determined by control signals while data signals have only minor
effects in the final delay. [11] shows experimentally that a dramatic
speed-up is possible without losing much accuracy for unit-delay
timing analysis based on static sensitization. Unfortunately this
sensitization criterion is known to underapproximate true delays,
i.e. it is not a safe criterion, which defeats the whole purpose of tim-
ing analysis. More recently they confirmed that a similar speed-up
and accuracy can be achieved for a correct sensitization criterion
(the floating mode) under the unit-delay model [9]. Although an
application of the same technique to more sophisticated delay mod-
els is theoretically possible, it is not clear whether their algorithm
can handle large circuits under those delay models. Moreover, their
CPU times for exact analysis are much worse than state-of-the-
art implementations available, which cancels some of the speed-up
since their speed-up is reported relative to this slower algorithm1.

In this paper we apply their idea of using data/control separation
to a state-of-the-art timing analysis technique [8] to design an ap-
proximate algorithm. The sensitization criterion here is the XBD0
model [8], which is one of the well-accepted delay models shown
to be correct and accurate. In addition a novel technique to control
the complexity of the analysis is proposed. The combination of
these two ideas leads to a new approximation scheme, which for

1One of the reasons why their exact algorithm is slower is that they try to represent
in BDD all the input minterms that activate the longest sensitizable delay while most
of the state-of-the-art techniques determine the delay without representing those input
minterms explicitly.

some extreme cases shows a speed-up of 70x, while maintaining
accuracy within the noise range.

This paper is organized as follows. Section 2 summarizes false
path analysis, which forms a basis of this work. We specially
focus on the technique proposed in [8]. Section 3 proposes two
approximation schemes and discusses how they can be selectively
applied to trade off accuracy and speed-up. Experimental results
are given in Section 4. Section 5 concludes the paper.

2 Preliminaries

In this section, we review sensitization theory for the false path
problem. Specifically, the theory developed in [8] is detailed below
since the analysis following this section is heavily based on this
particular theory.

2.1 Functional Delay Analysis

Functional delay analysis, or false path analysis, seeks to determine
when all the primary output signals of a Boolean network become
stable at their final values given maximum delays of each gate
and arrival times at the primary inputs. Since some paths may
never be sensitized, the stable time computed by functional delay
analysis can be earlier than the time computed by topological delay
analysis, thereby capturing the timing characteristic of the network
more accurately. Those paths along which signals never propagate
are called false paths.

The extended bounded delay-0 model [8], the XBD0 model, is
the delay model most commonly used in false path analysis. It is the
underlying model for the floating mode analysis [1] and viability
analysis [7]. Under the XBD0 model, each gate in a network has
a maximum positive delay and a minimum delay which is zero.
Sensitization analysis is done under the assumption that each gate
can take any delay between its maximum value and zero.

The core idea of [8] is to characterize recursively the set of all
input vectors that make the signal value of a primary output stable
to a constant by a given required time. Once these sets are identified
both for constants 0 and 1, one can compare these against the on-
set and the off-set of the primary output respectively to see if the
output is indeed stable for all input vectors by the required time.
The overall scenario of computing true delay is to start by setting
the required time to the longest topological delay minus � > 0 and
gradually decrease it until some input vector cannotmake the output
stable by the required time. The next to the last required time gives
an approximation to the true arrival time at the output. This process
of guessing the next required time can be sped up and refined by
making use of a binary search.

Let us illustrate how we can compute these sets. Let n and dn
be a node (gate) in a Boolean network N and the maximum delay
of the node n respectively2. Let �tn;v be the characteristic function
of the set of input minterms under which the output of the node
n becomes stable to a constant v 2 f0; 1g by time t. Let fn be
the local functionality of the node n in terms of immediate fanins
m1; : : : ;mk of n. For ease of explanation, let fn = m1m2, i.e., n
is a two-input AND gate. It is clear from the functionality of the
AND gate that to set n to a constant 1 by time t, both of the fanins
of n,m1 andm2, are required to be stable at 1 by time t�dn. This
is equivalent to

�
t
n;1 = �

t�dn
m1;1

� �t�dnm2;1
:

Note that the two � functions for the fanins are AND’ed to take
the intersection of the two sets. Similarly, to set n to a constant 0

2It is possible to differentiate rise delays from fall delays. In this paper, however,
we do not distinguish between them to simplify exposition.

by time t, at least one of the fanins must be stabilized to 0 by time
t� dn.

�
t
n;0 = �

t�dn
m1;0

+ �
t�dn
m2;0

Here the two � functions are OR’ed to take the union of the two
conditions. It is easy to see that the above computations can be
generalized to the case where the local functionality of n is given
as an arbitrary function in terms of its fanins as follows.

�
t
n;v =

X
p2Pv

n

[
Y
mi2p

�
t�dn
mi ;1

�
Y
mi2p

�
t�dn
mi;0

]

where P 1
n and P 0

n are the sets of all primes of fn and fn respec-
tively. One can easily verify that the recursive formulations for the
AND gate shown above are captured in this general formulation by
noticing P 1

n = fm1m2g; P
0
n = fm1;m2g for fn = m1m2. The

terminal cases are given when the node n is a primary input x.

�
t
x;1 = x if t � arr(x)

= 0 otherwise

�
t
x;0 = x if t � arr(x)

= 0 otherwise

where arr(x) denotes the arrival time of x. The above formulas
simply say that a primary input is stable only after its given arrival
time. The key observation of this formulation is that characteristic
functions can be computed recursively.

Once characteristic functions for constants 0 and 1 are com-
puted at a primary output, two comparisons are made: one for the
characteristic function for 1 against the on-set of the output, and the
other for the characteristic function for 0 against the off-set of the
output. Each comparison is done by creating a Boolean network
which computes the difference between two functions and using a
SAT solver to check whether the output of the network is satisfiable.
The Boolean network is called a �-network.

2.2 Optimal Construction of �-Networks

To argue the approximation algorithms presented in this paper, fur-
ther details on the construction of�-networks need to be understood.
We have mentioned that a�-network is constructed recursively from
a primary output. In [8] further optimization to reduce the size of
�-networks is discussed.

Given a required time at a primary output, assume that a back-
ward required-time propagation of N is done to primary inputs so
that the list of all required times at each internal node is computed.
The propagation is done so that all the potential required times are
computed at each node instead of the earliest required time. If the
�-network is constructed naively, for each internal node in N , a
distinct node is to be created for each required time in the list. This,
however, is not necessary since it is possible that different required
times exhibit the same stability behavior, in which case having a
single node in the �-network for the required times is enough. To
detect such a case a forward arrival-time propagation from primary
inputs to primary outputs is performed to compute the list of all
potential arrival times at each node. Note that each potential arrival
time corresponds to the topological delay of a path from a primary
input to the internal node. Therefore the stability of the node can
only change at those times. In other words between two adjacent
potential arrival times, one cannot see any change in the stability.

Consider an internal node n 2 N . Let R = (r1; : : : ; rp)

and A = (a1; : : : ; aq) denote the sorted list of required times and
that of arrival times respectively at node n. Consider � function
�
ri
n;v(v = 0; 1). Let aj 2 A be the maximum arrival time such that

aj � ri. Since there is no event happening between time aj and ri ,
�
ri
n;v = �

aj
n;v . Matchings from required times to arrival times are

performed in this fashion to identify the subset of A that is required
to compute the final � function. This optimization avoids creating
redundant nodes in the � network thereby reducing the size of the�
network without losing any accuracy in analysis. Only those arrival
times which have a match with required times yield nodes in the �
network.

Another type of optimization suggested in [8] is to generate the
list of arrival times more carefully. For each potential arrival time,
equivalence between the corresponding � function and the on-set
or the off-set (whichever suitable) is checked by a satisfiability call
and a new node is created in � network only if the two functions
are different. Otherwise, the original function or its complement
is used as it is. Although this requires additional CPU time spent
on satisfiability calls, it is experimentally confirmed that the size
reduction of the final � network is so significant that the the total
run-time decreases in most cases.

3 Approximation Algorithms

3.1 Limitation of the Exact Algorithm
Although the exact algorithm proposed in [8] can handle many
circuits of thousands of gates, it still has a size limitation. If a large
network is given and timing analysis is requested under a detailed
delay model like the technology mapped delay model, it is likely
that the algorithm runs practically forever3. Even if timing analysis
is tractable, the computation time can be too large to be practical.

As seen in the previous section, the exact timing analysis con-
sists of repeated SAT solver calls. More precisely, for each time
tested at a primary output, a �-network is constructed such that
the network computes the difference between the on-set (off-set)
of the primary output and the set of input vectors which make the
primary output stable to value 1 (0) by the given time. If the output
never becomes 1 for any input assignment, i.e. it is not satisfiable,
we know that the output becomes stable completely by the time
tested. To test whether this condition holds, a SAT formula which
is satisfiable only if the output is satisfiable is created directly from
the � network, and a SAT solver is called on it. The size of the
SAT formula is roughly proportional to the size of the � network.
The main difficulty in the analysis of large networks is that due to
a potentially large size of the � networks, the size of SAT formulas
generated can be too large for a SAT solver to solve even after the
optimization discussed in the previous section has been applied4.
In the following we discuss how to control the size of � networks
without losing much accuracy.

3.2 Reducing the Size of � Networks for Effective
Approximation

The main reason why � networks become large in the exact ap-
proach is that � functions at many distinct arrival times must be
computed for internal nodes. This size increase occurs when there
are many distinct path delays to internal nodes due to the reconver-
gence of the circuit. Therefore our goal is to control the number
of distinct arrival times considered at each internal node. More
specifically we only create a small number of � functions at each
internal node. This strategy avoids the creation of huge� networks
thereby controlling the size of SAT formulas generated.

Although this idea certainly helps reduce the size of� networks,
it must be done carefully so that the correctness of the analysis is

3The algorithm is CPU intensive rather than memory intensive since the core part
of the algorithm is SAT.

4Theoretically it is not necessarily true that a smaller SAT formula is easier to solve.
However we have observed that the size of SAT formulas is well correlated with the
time the solver takes.

guaranteed. We must never underapproximate true delays since
otherwise the timing analysis could miss timing violations when
used in the context of timing verification. Overapproximation is
acceptable as long as reasonable accuracy is maintained. We guar-
antee this property by selectively underapproximating stability of
signals. This underapproximation in turn overapproximates insta-
bility of signals thereby guaranteeing that estimated delays are never
underapproximated.

The key idea on approximation is to modify the mapping from
required times to arrival times discussed in Section 2.2 so that only
a small set of arrival times forms the image of the mapping. Given
the sorted set of required times R = (r1; : : : ; rp) and the sorted
set of arrival times A = (a1; : : : ; aq) at an internal node n, the
mapping f : R 7! A used in the exact analysis is defined as

f(r) =

�
max ai 2 A such that ai � r if r � a1

�1 otherwise

Since the stability of the signal at the node increases monotonically
as time elapses by the definition of � functions, it is safe to change
the mapping so that it maps a required time to a time earlier than the
time defined in the above. This corresponds to underapproximation
of the signal stability. Thus, by modifying the mapping under this
constraint so that only a small set of arrival times is required, one
can control the number of nodes to be introduced in the � network
without violating the correctness of the analysis. Depending on
how the original mapping in the exact analysis is changed several
conservative approximation schemes can be devised. Two such
approximation schemes are described next.

3.2.1 Topological Approximation

The most aggressive approximation, which we call topological ap-
proximation, is to map required times either to the topological arrival
time (aq 5) or to�1. More formally, the mapping fT is defined as
follows.

f
T
(r) =

�
aq if r � aq
�1 otherwise

It is easy to see that fT is a conservative approximation of f . Since
�
aq

n;1 = n and �
aq

n;0 = n, there is no need to create a new node
for the � function in the � network6. Instead the node function
or its complement of the original network can be used for the �

function. For the other arrival time�1, ��1n;v = 0 for 8v 2 f0; 1g.
Therefore it is sufficient to have a constant zero node in the �

network and use it for all the cases where the zero function is
needed. Since neither of the arrival times needs any additional
node in the � network, this approximation never increases the size
of the � network. If this reduction is applied at all nodes, the
analysis simply becomes pure topological analysis. Therefore, this
approximation makes sense only if it is selectively invoked on some
subset of nodes. A selection strategy is described later.

3.2.2 Semi-Topological Approximation

The second approximation scheme,called semi-topologicalapprox-
imation, is slightly milder than the first in terms of the power of
simplifying � networks. In this, required times are mapped to two
arrival times again, but the times chosen are different. The times
to be picked are 1) the arrival time, say ae, matched with r1 in the
exact mapping f and 2) the topological arrival time aq , which is the
same as in the first approximation. The first approximation and this
one are different only if ae 6= �1, in which case the second one

5To be precise, aq can be earlier than the topological arrival time if an intermediate
satisfiability call has already verified that by timeaq the signal is stabilized completely.

6Notice that the � network always includes the original circuit.

gives a more accurate approximation. To be precise, the definition
of the new mapping function fS is as follows.

f
S
(r) =

�
ae if r < aq
aq otherwise

If ae 6= �1, the � function for time ae is now computed explic-
itly, and the corresponding node is added to the � network. Similar
extensions which give tighter approximations are possible by al-
lowing more arrival times to remain after the mapping. A set of
various approximations gives a tradeoff between compactness of �
networks and accuracy of analysis.

3.3 Control/Data Dichotomy in Approximation Strate-
gies

In [11] Yalcin et al. proposed to use designer’s knowledge on
control-data separation of primary inputs for effective approximate
timing analysis. They applied this idea to speed up their timing anal-
ysis technique using conditional delays [10] by simplifying signal
propagation conditions of data variables. We adapt their idea, of
using this knowledge, to the XBD0 analysis to develop a selection
strategy of various approximation schemes.

3.3.1 Labeling Data/Control Types

Given data/control types of all primary inputs, each internal node
is labeled data or control based on the following procedure. All
the nodes in the network are visited from primary inputs to primary
outputs in a topological order. At each node the types of its fanins
are examined. If all of them are data, the node is labeled data;
otherwise it is labeled control. Hence nodes labeled data are pure
data variables with no dependency on control variables, while those
labeled control are all the other variables with some dependency
on control variables. This labeling policy is different from the one
used in [11], where a node is labeled data if at least one of its
fanins is labeled data. In their labeling, nodes labeled data are
variables with some dependency on data whereas nodes labeled
control are pure control variables. The difference between the two
labelings is whether pure data variables or pure control variables
are distinguished. Our labeling will lead to tighter approximations.

3.3.2 Applying Different Approximations based on
Data/Control Types

Once all the nodes are labeled, different approximation schemes are
applied at nodes based on their types. The strategy is as follows.

If a node is a control variable, the semi-topological approxima-
tion fS is applied while if a node is a data variable, the topological
approximation fT is applied. The intuition is to use a tighter
approximation for control variables to preserve accuracy while per-
forming maximum simplification for data variables assuming they
have less impact on delays than control variables.

3.3.3 Extracting Control Circuitry for Further Ap-
proximation

If the approximation so far is not powerful enough to make analysis
tractable, further approximation is possible by extracting only the
control-intensive portion of the circuit and performing timing anal-
ysis on the subcircuit. The extraction of the control portion is done
by stripping off all pure data nodes from the original network under
analysis. Note that any circuit can be decomposed into a cascade
circuit where the nodes in the driving circuit are labeled as data and

those in the driven circuit control by the definition of data variables.
Therefore, the primary inputs of the subcircuit are the boundary
variables which separate the subcircuit from the pure data portion.
We assume conservatively that delays of the pure data portion of
the circuit are the same as topological delays, which gives arrival
times at the primary inputs of the extracted circuit. Analysis is then
performed on this subcircuit as if it were the circuit given. Notice
that this has a similar flavor to the approximation proposed in [4].

The difference between this approximation and the previous
method is that the subcircuit has a new set of primary inputs, which
are assumed independent. However, it is possible that in the original
circuit only a certain subset of signal combinations appears at the
boundary variables. Since this approximation assumes that all sig-
nal combinations can show up, the analysis becomes pessimistic7.
For example, if a signal combination which does not appear on the
cut makes a long path sensitizable, it can make delay estimation un-
necessarily pessimistic. Although this method is more conservative
than the one without subcircuit extraction, it reduces the size of a
circuit to be analyzed much more significantly than the other one.

4 Experimental Results

We implemented the new approximation scheme on top of the
implementation of [8] under SIS environment. To evaluate the
effectiveness of the approximation, we focused on timing analysis
of mapped ISCAS combinational circuits, which is generally much
more time-consuming than analysis based on simpler delay models.
In Table 18 the results on three circuits whose exact analysis takes
more than 20 secondson a DEC Alpha Server 7000/610 are shown9.
Each circuit is technology-mapped first with the option specified in
the second column using the lib2.genlib library. The delay
of the circuit is then analyzed using three techniques. The first
one (exact) is the exact method presented in [8]. The remaining
two are approximate methods; the second, called approx(1), is the
technique in Section 3.3.2 and the third, called approx(2), is the one
in Section 3.3.3 which involves subcircuit extraction. Control/Data
specification for the primary inputs of these circuits are the same
as those in [11]10. For each of the three analyses, estimated delay
and CPU time are shown in the last two columns. One can observe
that accuracy is preserved in the three examples in both of the
approximation methods while CPU time is reduced significantly.

Table 2 summarizes a similar experiment for C6288, an integer
multiplier, which is known to be difficult for exact timing analysis
due to a huge amountof reconvergence. Since all the primary inputs
are data variables, the approximate techniques proposed are degen-
erated into topological analysis. To avoid this inaccuracy all the
primary inputs were set to control. Note that this sets all intermedi-
ate nodes to control. We then applied the first approximate method
under this labeling. Although the approximation is not so powerful
as the original algorithms, this at least enables us to reduce the size
of � networks without giving up accuracy completely. Since there
is no data variable in the network, only approx(1) was tried. Signifi-
cant time saving was achieved with only a slight overapproximation
in terms of analysis quality. The exact analysis is not only more
CPU-time intensive but also much more memory-intensive than the
approximate analysis. In fact we could not complete any of the three
exact analyses within 150MB of memory. They ran out of memory
in a couple of minutes. These exact analyses were possible after

7If the set of all possible signal combinations at the boundary variables can be rep-
resented compactly, one can safely avoid this pessimism by multiplying the additional
constraint to the SAT formula generated.

8Timing analysis was done in the linear search mode [8] where the decrement time
step is 0.1 and the error tolerance is 0.01.

9If exact analysis is already efficient, approximation cannot make significant im-
provement in CPU time; in fact the overall performance can be degraded due to
additional tasks involved in approximation.

10More precisely, C1908(1) and C3540(1) in [11] were used.

circuit tech.map #gates topological delay type of approx. estimated delay CPU time
exact 34.77 29.1

C1908 -m 1 536 39.25 approx(1) 34.77 8.9
approx(2) 34.77 5.4

exact 35.76 41.2
C1908 -m 0 602 40.76 approx(1) 35.76 12.0

approx(2) 35.76 5.2
exact 35.66 727.0

C3540 -n 1 -AFG 1113 35.88 approx(1) 35.66 559.5
approx(2) 35.66 502.9

Table 1: Exact analysis vs. Approximate analysis (CPU time in seconds on DEC AlphaServer 7000/610)

circuit tech.map #gates topological delay type of approx. estimated delay CPU times

-m 1 2429 127.23 exact 123.87 7850.2
approx(1) 123.94 169.2

C6288 -m 0 2371 123.51 exact 119.16 18956.2
approx(1) 119.21 257.1

-n 1 -AFG 2911 114.62 exact 112.92 15610.5
approx(1) 112.86 1690.9

Table 2: Exact analysis vs. Approximate analysis on C6288 (CPU time in seconds on DEC AlphaServer 7000/610)

the memory limit was expanded to 1GB. The last example needs an
additional explanation. In this example the estimated delay by the
approximate algorithm is smaller than that by the exact algorithm
although in Section 3 we claimed that the approximation algorithm
never underapproximates exact delay. The reason for this is that
the SAT solver is not perfect. Given a very hard SAT problem,
the solver may not be able to determine the result under a given
resource, in which case the solver simply returns Unknown. This is
conservatively interpreted as being satisfiable in the timing analysis.
In this particular example the SAT solver returned Unknown during
the exact timing analysis, which resulted in an overapproximation
of the estimated delay, while in the approximate analysis the SAT
solver never aborted because of the simplification of � networks
and gave a better overapproximation. This example shows that the
approximate analysis gives not only computational efficiency but
also better accuracy in some cases.

To compare the exact and the approximate methods further, we
examined the total CPU time of the exact analysis to see how it can
be broken down. For the first example of C6288 the exact analysis
took 714.7 seconds to conclude that any path of length 123.93 is
false, which is about four times longer for the approximate analysis
to conclude that the delay of the circuit is 123.94. The situation is
much worse in the second example, where the exact analysis took
18390.8 seconds to conclude that any path of length 119.21 is false
while the approximate method took only about 1.4% of this time to
finish off the entire analysis.

5 Conclusions

We have proposed new approximation algorithms as an extension to
the XBD0 timing analysis [8]. The core idea of the algorithms is to
control the size of sensitization networks to prevent the size of SAT
formulas to be solved from getting large. The use of knowledge
on data/control separation of primary inputs originally proposed
in [11] was adapted to choose an appropriate approximation at each
node. We showed experimentally that the technique helps simplify
the analysis while maintaining accuracy well within the accuracy
of the delay model.

Acknowledgments

Hakan Yalcin kindly offered detailed data on ISCAS benchmark
circuits.

References

[1] H.-C. Chen and D. H.-C. Du. Path sensitization in critical
path problem. IEEE Transactionson Computer-Aided Design,
12(2):196–207, February 1993.

[2] S. Devadas,K. Keutzer, and S. Malik. Computation of floating
mode delay in combinational circuits: Theory and algorithms.
IEEE Transactions on Computer-Aided Design, 12(12):1913–
1923, December 1993.

[3] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Computation
of floating mode delay in combinational circuits: Practice
and implementation. IEEE Transactions on Computer-Aided
Design, 12(12):1924–1936, December 1993.

[4] S.-T. Huang, T.-M. Parng, and J.-M. Shyu. A new approach to
solving false path problem in timing analysis. In Proceedings
of IEEE International Conference on Computer-Aided Design,
pages 216–219, November 1991.

[5] S.-T. Huang, T.-M. Parng, and J.-M. Shyu. A polynomial-
time heuristic approach to approximate a solution to the false
path problem. In Proceedings of 30th ACM/IEEE Design
Automation Conference, pages 118–122, June 1993.

[6] S.-T. Huang, T.-M. Parng, and J.-M. Shyu. Timed boolean
calculus and its applications in timing analysis. IEEE Trans-
actions on Computer-Aided Design, 13(3):318–337, March
1994.

[7] P. C. McGeer and R. K. Brayton. Integrating Functional
and Temporal Domains in Logic Design. Kluwer Academic
Publishers, 1991.

[8] P. C. McGeer, A. Saldanha, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Delay models and exact timing

analysis. In T. Sasao, editor, Logic Synthesis and Optimiza-
tion, pages 167–189. Kluwer Academic Publishers, 1993.

[9] H. Yalcin. Private communication, March 1997.

[10] H. Yalcin and J. P. Hayes. Hierarchical timing analysis using
conditional delays. In Proceedings of IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 371–
377, November 1995.

[11] H. Yalcin, J. P. Hayes, and K. A. Sakallah. An approximate
timing analysis method for datapath circuits. In Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design, pages 114–118, November 1996.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

