
DSP Address Optimization Using
A Minimum Cost Circulation Technique

Catherine Gebotys
Department of Electrical and Computer Engineering,

University of Waterloo, Waterloo, Ont N2L 3G1 Canada

This paper presents a new approach to solving the DSP
address assignment problem. A minimum cost circulation
approach is used to efficiently generate high performance
addressing code in polynomial time. Addressing code size
improvements of up to 7 times are obtained, accounting for
up to 1.6 times improvement in code size and performance
of compiler-generated DSP code. Results also show that
memory layout has a small effect on code size and perfor-
mance when optimal addressing is used. This research is
important for industry since this value-added technique can
improve code size, power dissipation and performance,
without increasing cost.

1. Introduction

As DSP applications are rapidly growing more complex,
some designers are moving from full custom digital circui-
try to programmable processors or in-house cores to obtain
lower risk solutions. The DSP core is a DSP processor that
can be reused and combined with program/data memory,
dedicated logic, plus ASICs, and incorporated onto a large
silicon chip, providing a cost efficient and flexible solution
for many typical embedded applications requiring low
power and high reliability. These systems demand small
code size and high performance. Due to increasing com-
plexities, high level compilation is a necessity. However
the biggest drawback to both DSP processors or DSP core
use is the code generation.

The use of conventional code generation techniques and
even compilers specifically designed for commercial DSP
processors produce very inefficient code [1,2]. There are
many more limitations placed upon code generation for the
DSP processor than for the general purpose processor. The
difficulty arises from non-homogeneous register sets, small
number of very specialized registers, very specialized func-
tional units, restricted connectivity, limited addressing, and
highly irregular datapaths[1].

Limited addressing modes and the use of address regis-
ters are also typical. For example many DSP processors
assume auto-increment/decrement addressing modes for
sequential accessing of data variables from memory will be
used heavily. In particular there are a number of index
registers which point to addresses in memory. The
addresses in the index registers can be incremented or
decremented at negligible cost. However adding or sub-
tracting offsets (not equal to zero or one) to these index
registers requires a specific instruction and therefore has a
performance, code size, and energy dissipation cost associ-
ated with it. The auto-increment/decrement addressing

subsumes address arithmetic instructions and requires
shorter instructions[2] than other forms of addressing.
Unfortunately it is assumed that efficient data memory lay-
out has been performed to support this type of addressing.
Given that these DSP processors must meet tight timing
requirements using very small code space (all on chip
ROM), the code generation problem is a very difficult
one[2]. Typically DSP processors are difficult to use
requiring long product development times (using a large
number of assembler programmers) even though the pro-
gram may be less than 1K program ROM. The need for
decreasing time to market, development costs, and mainte-
nance costs, demands the use of high level language compi-
lation. All of these factors imply several challenges in
writing efficient code generators for such DSP processors.
This is even more difficult for in-house core instruction set
architecture which requires retargetable compilation.

2. Problem Description and Related Work

The following problem, problem 1 given below, is an
important part of the code optimization problem that will
be studied in this paper. For simplicity let us assume that
an algorithm to implement the application has already been
assigned based upon accuracy required, low energy imple-
mentation, etc.. The algorithm is composed of basic
blocks, which are given as a partially ordered list of code
operations. For the problem definition below we assume
that there is one target DSP processor or core defined with
an instruction set architecture. The target processor sup-
ports indirect addressing, in particular there is one or more
index registers which point to an address in memory and
whose value can be incremented or decremented at negligi-
ble cost. Data layout is performed by using the approach
described in [2] for single offset assignment layout or by a
compiler or user.

Problem 1. Assume we are given initial code generated
for the target processor and a memory layout (or sequence)
of the data variables. Given the number of index registers
in the target processor and the costs of loading an index
register with a new value, and adding/subtracting a value
to/from the index registers, the problem is to generate
addressing code such that performance is maximized and
the code size and estimated energy cost is minimum.

The performance and code size costs are exact measures
of how many extra cycles or instructions will be required.
By minimizing the number of instructions generated we are
also minimizing energy dissipation. However the problem
should also support instruction level power models[5].
Extensions to this problem also include supporting

0-89791-993-9/97 $10.00 1997 IEEE

addressing with fixed offset whose value is stored in a
index register in addition to the auto-increment/decrement
addressing.

Although many researchers have studied code genera-
tion for DSP processors or ASIPs [1], fewer have studied
address generation. Researchers in [2] defined the single
(and general) offset assignment problem and used a modifi-
cation of Kruskal’s algorithm[7] within a recursive algo-
rithm (later extended by [2]), to modify memory layout for
reduced code size. Researchers in [4] introduced a C code
transformation approach to make better use of address cal-
culation units. Address generation has been shown to
account for a large percent of energy dissipation in [3] and
researchers have studied instruction-level power models[5].

In this manuscript a new approach is presented to solve
problem 1, DSP address code generation. Unlike previous
research, we study the problem of given a data layout in
memory, generate optimal addressing code to minimize
code size, or maximize performance. This is a valued
added approach, that can be used to improve any compiler
generated DSP code by returning the code optimized for
addressing or it can be used in combination with a data
memory layout technique such as [2,9] to further optimize
code generation. It supports cases where the data memory
layout may be predefined at an interface with another pro-
cessor or external I/O in the system. A minimum cost cir-
culation technique is used to obtain optimal solutions in
polynomial time.

The following terminology will be used in this paper:
AR={AR1,..ARn} the set of n index registers. |AR |= the
number of index registers (n) in the processor. vt means
that data variable v is accessed at time t. This access may
be a read or write. d(v) is the memory address for variable
v. G=(V ,A) is a graph G composed of vertices V and arcs A.
xi→j is the flow from vertex i to vertex j, where i ,jεV and
i→jεA. ci→j is the capacity on arc i→j. ei→j is the cost of
flow on arc i→j. The next section will provide an introduc-
tion to minimum cost circulation. The following sections,
will show how the DSP addressing code generation is
mapped into a circulation problem and provide examples to
illustrate the technique. Finally examples will be presented
to explore the impact of data layout on addressing code
generation.

3. Introduction to Circulations

To introduce the circulation problem, we will first dis-
cuss network flow and it’s extension to circulations. The
network flow problem is defined on a directed acyclic
graph, G, composed of vertices and arcs, G=(V ,A), where
each arc has a capacity associated with it. The capacity is a
real valued quantity where arc i→j, i ,jεV , has an associated
capacity ci→j. Let the variable, xi→j, represent the flow in
arc i→j. We will call this the flow variable. For any vertex
in the graph the flow into the vertex is equal to the flow out
of the vertex (known as the conservation of flow [7]). The
flow along any arc (in the same direction as the arc) must

be positive valued (and also may be greater than or equal to
a positive lower bound placed on that arc) but less than or
equal to the capacity of that arc. There are two special ver-
tices in this graph called vertex S and vertex T. The flow
out of vertex S is equal to the flow into vertex T. Arcs
incident to S only leave vertex S and arcs incident to vertex
T only are directed into vertex T. The maximum flow prob-
lem [7] is to find the maximum amount of flow from vertex
S to vertex T through the network graph, such that the con-
servation of flow is maintained.

To study the minimum cost circulation problem[7] we
add an arc from vertex T to vertex S (that circulates the
flow in the graph). Each arc has a cost which is also a real
valued quantity where arc i→j has associated cost ei→j.
The problem is to find the flow through this graph with the
minimum cost such that the sum over all arcs of the multi-
plication of the flow in each arc and the cost of each arc is
minimum. The following equations represent the formula-
tion of the minimum cost circulation problem as a
mathematical programming problem.

Minimize
i→j
Σ ei→jxi→j Subject to

i |i→j
Σ xi→j −

k | j→k
Σ xj→k = 0, ∀j ,jεV.

0≤li→j ≤ xi→j ≤ ci→j , ∀(i→j)εA ,i ,jεV.

In the problem above, the capacities ci→j ,∀(i→j)εA and
costs ei→j ,∀(i→j)εA are given. The problem is to solve for
values of xi→j that represent the flows in the network graph,
G=(V ,A), such that the objective function is minimum. As
long as the capacities and the lower bounds on flow (li→j),
are integer, we can be guaranteed of obtaining integer flows
in the solution of this problem [7]. This problem can be
solved in polynomial time using linear programming or
more commonly by using faster and more efficient network
algorithms[7].

4. Methodology and Modeling

This section will briefly describe the methodology for
DSP address optimization, problem 1, and how the
minimum cost circulation formulation is used to solve
problem 1. First an algorithm or task flow graph is selected
for the application based upon cost, performance and
energy dissipation requirements and transformations are
performed. Initial code generation is performed and a
memory layout specified by the compiler or generated post
process similar to the technique in [2,10] is performed.
Finally the minimum cost circulation approach is applied to
generate addressing code. The two sections below will
describe in detail how the minimum cost network flow is
used to solve problem 1.

To model problem 1 as a circulation problem, we first
have to develop a graph, as shown in figure 1. The
memory layout (used as x-axis in figure 1b)) along with the
variable access sequence (the y-axis in figure 1b)) is used
to form the graph. For example the x-axis in figure 1b)
corresponds to storing data variables bi, br (shared with ci

), ar (shared with cr), and ai from left to right. The y-axis
(from top to bottom) represents the access of data variables
ar, br, bi, ai, ar, cr, ai, br, and ci, as defined in figure 1a)
code. Each vertex in the graph (placed in the appropriate
x-y coordinate in figure 1) represents a variable access in
the initial code sequence (figure 1a)), vtεV, tε{1,2,...x}. Ver-
tices S and T are added to the graph representing times 0
and x+1 respectively. Arcs from the S vertex to all vertices
in the graph (except vertex T) are added. Arcs from each
vertex vt to all other vertices accessed after time t (includ-
ing vertex T) are also added. All of these arcs are not
shown in figure 1b). Finally one more arc from vertex T to
vertex S is added. Next, capacities and costs are assigned
to each arc in the network flow graph and the minimum
cost flow problem is solved. The capacity of all arcs is one
except the arc from vertex T to S which has capacity equal
to the maximum number of index registers in the target pro-
cessor, |AR | .

The costs per arc can now be set up to reflect the actual
costs of code size, performance, or energy dissipation. The
path of each flow identifies a partition of accessed variables
that will be assigned to one index register. As each unit of
flow passes from T to S it accumulates a cost representing
the instruction for loading of an initial value into the index
register (lark in the C2x[6]). As each unit of flow passes
through the vertices between S to T it accumulates any
costs associated with adding or subtracting of offsets. For
example if an offset is required, for example |d(i)−d(j)|=
offset >1 for arc i→j, a cost of one would be required
representing a separate instruction (for example adrk or sbrk
in the C2x[6], see figure 1e)). In figure 1b), flows in the
solution of the minimum cost circulation problem, provid-
ing optimal address generation for code in figure 1a), are
shown. Only the arcs with non-zero flow in the solution
appear for illustration purposes. The total flow from vertex
S to T and vica versa is two, thus the solution requires two
index registers in figure 1b) (at0,ar1). Figure 1c) provides
the actual code corresponding to the solution shown in the
graph in figure 1b). There is always an additional cost of
one for the C2x processor in any solution of the minimum
cost circulation problem, representing the instruction larp0
which identifies the current index register[6].

The formulation of the address generation problem as a
minimum cost circulation problem is shown below. For
illustration purposes the costs for the auto-
increment/decrement addressing problem will be formu-
lated below using the TMS320C2x DSP processor[6]
(C2x). However in general other auto-increment/decrement
addressing modes used in other DSP processors can also be
supported. The cost for using an offset whose value is
greater than one is one instruction in the C2x instruction set
evt→ut2

=1, ∀t≤t2, vt ,ut2εV , |d(v)−d(u)|>1. The cost for using

each index register is the cost to load each index register
with an initial value which again is one instruction in the
C2x instruction set (eT→S=1). Equation (1) represents the

lt ar
mpy br
ltp bi
mpy ai

mpya ar
sacl cr
ltp ai
mpy br
apac
sacl ci

bi br ar ai

S

T

lark ar1,3h
lark ar0,4h
larp 0
lt *+,1
mpy *-
ltp *+,0
mpy *-

mpya *
sacl *+
ltp *,1
mpy *
apac
sacl *

(c)

bi br ar ai

S

T

lark ar1,3h
lark ar0,2h
larp 1
lt *-
mpy *-
ltp *
adrk 3
mpy *-
mpya *
sacl *+
ltp *0-
mpy *
apac
sacl *

(e)(d)(b)(a)

Figure 1. The code in a) is transformed into a flow graph with
optimal min cost circulation in b) and C2x code in c). A circula-
tion in d) with code in e) using offset register ar0 and adrk .

conservation of flow equation (including vertices S ,T).
Equation (2) ensure that the flow into and out of each data
access variable, is equal to one. Finally equation (3) sets
the arc capacities and lower bounds. Alternatively, equa-
tion (2) can be transformed into a pure circulation problem
as presented in section 3. In this case each data access ver-
tex in the graph is replaced by an arc whose lower bound is
set to one (which has the same effect as equation (2)). This
lower bound along with the conservation of flow inequality
(1) is used along with inequality (3) to formulate the circu-
lation problem.

Minimize
i→j
Σ ei→jxi→j

Subject to
i |i→j
Σ xi→j −

i | j→i
Σ xj→i = 0, ∀jεV. (1)

i |i→vt

Σ xi→vt
= 1,

j |vt→j
Σ xvt→j = 1, ∀vt≠S ,T ,vtεV. (2)

1≤ xT→S ≤ |AR | , 0≤ xi→j ≤ 1, ∀(i→j)εA ,(i→j)≠(T→S). (3)

This model can easily be extended to generate address-
ing code that additionally supports a fixed non-zero offset
(offset>1) that is loaded into a index register and used to
increment the address stored in any other index register by
the offset amount (such as that capability provided in C2x
processor with the AR0 register[6], ARi+=AR0, see figure
1e) *0+). In this case we extend the cost formulation as
follows, for offset: evt→ut2

=0, ∀t≤t2, vt ,ut2εV , |d(v)−d(u)|≤1,

or |d(v)−d(u)|=offset. evt→ut2
=1, ∀t≤t2, vt ,ut2εV , otherwise.

Application to different types of data structures (arrays,
pointers, etc) can also be supported. Although the exten-
sion of this circulation technique to loops and conditionals
in general is NP-complete (ie. the multicommodity flow
problem), an iterative application of the circulation tech-
niques can be performed to handle these cases and achieve
locally optimal solutions.

5. Experimental Results

Several DSP applications are used to illustrate this
methodology. Code was generated using the Texas
Instrument’s (TI) C compiler[6] for the TMS320C2x and
C3x DSP processors (which have very different addressing
capabilities). The minimum cost circulation was solved on
a Sun using a LP solver[8], although faster cpu times are
possible using network solvers[7].

Table 1 illustrates the optimized results compared to the
TI compiler generated addressing. Optimal addressing
code (#instr) was generated for compiler generated DSP
code using the same memory layout as the compiler.
Results were compared with the initial code generated from
TI compiler (CS, code size) which included the addressing
code (#instr). Therefore the improvement (Impr) in perfor-
mance and code size shown in table 1 is only due to
optimal address generation. The cpu run times were all
under 3 seconds. The last two rows in table 1 provided 1.5
times improvement in code size for the C3x processor
where the optimized use of indirect addressing provided
greater opportunity for implementation of parallel instruc-
tions.

Table 1. Optimized vs. Compiler-Generated Addressing Code
Ex TI Compiler Optimized Impr

CS #instr CS #inst
hp1 87 39 54 6 1.6
hp2 78 30 54 6 1.4
lms 79 36 49 6 1.6
fft 183 69 123 9 1.4
dct 210 72 149 11 1.4
fft/3x 93 34 60 10 1.5
dct/3x 69 34 46 15 1.5

Table 2. Different Memory layouts vs Address Generation
of Index Regs 1 2 3 4

#instr for TI-mem 24 13 8 7
#instr for Krusk-mem 9 6 5 5

Table 2 presents the results of using different memory
layouts (TI-generated, TI-mem, and as in [2], Krusk-mem)
on the address generation problem for a variation of the
least means square algorithm. For a fixed number of index
registers, the optimal size of addressing code (#instr) is
shown. To further analyze the impact of memory layout on
optimal address code generation, the complement of the
data access graph was used to obtain a poor memory lay-
out. The optimal address generation technique was applied
and the results for several examples (taken from table 1)
were an additional cost of at most two instructions.

6. Discussions and Conclusions

In summary code size and performance savings from 1.3
to 1.6 (see table 1) were attained by optimizing the address
generation code across several DSP examples. The tech-
nique presented in this paper performs optimal address
code generation for a given memory layout. Since fewer
instructions are used, a reduction in energy dissipated will
also be obtained with this technique. Since there may be

more than one solution which provides optimal perfor-
mance and code size, the methodology would then solve for
minimum energy using instruction-level models of
estimated energy dissipation, as researched for general pur-
pose processors in [5]. This problem can be solved in poly-
nomial time using efficient network flow solvers. Since
this address generation is dependent upon the memory lay-
out, this could be used in conjunction with a search tech-
nique to find optimal memory layout and address genera-
tion. In combination with optimized code generation
tools[10], larger savings in code size and improvements in
performance are attainable.

In contrast to previous research[2,9,4] which examined
the general offset assignment problem or other addressing
techniques, we have presented a optimal polynomial tech-
nique which can work in conjunction with any data
memory layout technique such as in[2] or with memory
layout generated by a compiler. Results show that memory
layout has a small effect on code size and performance
when optimal addressing code is used. This may also be
advantageous when memory layout is constrained by inter-
facing with external systems or when it is performed by an
algorithm the user has selected and does not wish to
change. It also allows a decomposition approach, or task
by task approach to code generation since one can fix
memory layout at the beginning of a task according to what
was used in previous tasks in contrast to [2] which cannot
support a fixed memory layout. This provides a value-
added advantage where code can be quickly generated by a
compiler and optimized for addressing without changing
the memory layout. We have introduced a methodology for
optimal address generation given memory layout that has
provided significant improvements in performance and
code size across several DSP applications. The author
would like to thank Craig Ranta for his work. This
research is supported in part by grants from NSERC and
ITRC.

References
[1] P.Marwedel, G.Goossens Eds. Code Generation for Embed-

ded Processors, Kluwer Acad Pub, 1995.
[2] S.Liao et al. "Storage Assignment to Decrease Code Size"

ACM SIGPLAN Conf Prog. Lang Des and Impl, 1995.
[3] S.Wuytack et al. "Power Exploration for Data Dominated

Video Applications", ISLPED, p359-364, 1996.
[4] C.Liem, P.Paulin, A.Jerraya "Address Calculation for Retar-

getable Compilation and Exploration of Instruction-Set Architec-
tures" DAC, 1996.
[5] V.Tiwari, S.Malik,A.Wolfe, "Power Analysis of Embedded

Software ;A First Step Towards Software Power Minimization,
IEEE Trans on VLSI, Vol. 2, No. 4, Dec 1994, p437-445,
[6] TMS320C2x User’s Guide, Texas Instruments Inc., 1993.
[7] E.Lawler Combinatorial Optimization: Networks and

Matroids Holt, Rinehart and Winston, 1976.
[8] Brooke, Kendrick, Meeraus, "GAMS", Scientific Press, 1988.
[9] R.Leupers, P.Marwedel, "Algorithms for Address Assign-

ment in DSP Code Generation", ICCAD 1996, 109-112.
[10] C.Gebotys, "An Efficient Model for DSP Code Generation:

Performance, Code Size, Estimated Energy", Proc of Int’l Symp
on Sys Synth, Sept 1997.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

