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  Abstract

This paper describes PRIMA, an algorithm for generating
provably passive reduced order N-port models for RLC
interconnect circuits. It is demonstrated that, in addition to
requiring macromodel stability, macromodel passivity is
needed to guarantee the overall circuit stability once the
active and passive driver/load models are connected.
PRIMA extends the block Arnoldi technique to include guar-
anteed passivity. Moreover, it is empirically observed that
the accuracy is superior to existing block Arnoldi methods.
While the same passivity extension is not possible for MPVL,
we observed comparable accuracy in the frequency domain
for all examples considered. Additionally, a path tracing
algorithm is used to calculate the reduced order macromodel
with the utmost efficiency for generalized RLC interconnects.

1. Introduction
As integrated circuits and systems are designed with

smaller feature sizes and for faster operation, RLC intercon-
nect effects have a more dominant impact on signal propaga-
tion than ever before. In addition, parasitic coupling effects
and reduced power supply voltage levels make interconnect
modeling increasingly important. Since these interconnect
models can contain thousands of tightly coupled R-L-C com-
ponents, reduced order macromodels are imperative
[1][2][3][4]. Ideally, a simulator would isolate the large lin-
ear portions of the circuit from the nonlinear elements (e.g.,
transistor models) and preprocess them into reduced order
multiport macromodels.

It is well known that an N-port can be fully represented by
its admittance parameters in the Laplace domain, however,
the objective is to apply model order reduction to produce
low order rational approximations for each entry inY(s) (see
Fig.1). To findY(s), voltage sources are connected to the
ports and the currents into the ports are measured. The volt-
age sources are the inputs to the system and the port currents
are the outputs. A single-input single-output (SISO) N-port
model approach would perform model order reduction on
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each term Yij  individually. Both Asymptotic Waveform Eval-
uation (AWE) [1] and Padé via Lanczos (PVL) [2], which
are Padé approximations, can perform SISO reduction by

matching 2q moments for a qth order approximation of each
Yij  term. The Arnoldi Algorithm [4] can also be used to
obtain SISO approximations, however it matches only q

moments for a qth order approximation. MPVL (Matrix Padé
via Lanczos) [5] and Block Arnoldi [6] are multi-input
multi-output (MIMO) versions of PVL and Arnoldi respec-
tively. In the block techniques, the system Modified Nodal
Analysis (MNA) matrices are directly reduced by matrix
transformations.

Regardless of the reduction method used in all of the
approaches cited above, the reduced order model of an RLC
circuit can have unstable poles. It is always possible to
obtain an asymptotically stable model by simply discarding
the unstable poles, however, passivity is not guaranteed. In
addition, discarding unstable poles requires re-adjustment of
the residues to improve the quality of the approximation.
Passivity uncertainty is problematic since even the test for N-
port passivity can be very costly for a large number of ports
[7]. The coordinate transformed Arnoldi Algorithm [8] was
introduced as a remedy for the instability problem, but it
does not guarantee passivity. The passivity extension of this
stable Arnoldi algorithm was recently developed in [9], how-
ever its applicability is limited to RC circuits only. The
PACT algorithm [3] proposed a new direction for passive
reduced-order model for RC circuits based on congruence
transformations. The same authors proposed Split Congru-
ence Transformations [10] for passive reductions of RLC cir-
cuits, producing equivalent circuit realizations. In [10],
however, the extra steps required to split the transformation
matrix can result in a decrease in accuracy and efficiency.
Moreover, the passivity proof is somewhat controversial, and
we will consider a more complete proof in this paper.

Linear circuit with
N ports, defined by N
voltage-current
pairs (vk, ik)
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FIGURE 1: The multiport representation of a linear circuit.
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A passive system denotes a system that is incapable of
generating energy, and hence one that can only absorb
energy from the sources used to excite it [11]. As we will
show in Section 2.2., passivity is an important property to
satisfy because stable, but not passive macromodels can pro-
duce unstable systems when connected to other stable, even
passive, loads. A property in classical circuit theory states
that: interconnections of stable systems may not necessarily
be stable; but (strictly) passive circuits are (asymptotically)
stable; and arbitrary interconnections of (strictly) passive cir-
cuits are (strictly) passive, and, therefore, (asymptotically)
stable [12].

In this paper, we propose aPassiveReduced-orderInter-
connectMacromodelingAlgorithm, PRIMA, based on the
Block Arnoldi Algorithm but with congruence transforma-
tions that produce provably passive reduced order macro-
models for arbitrary RLC circuits. PRIMA has accuracy
comparable to MPVL and superior to Block Arnoldi. Fur-
thermore, the block Arnoldi vectors are generated with the
utmost efficiency following the algorithms in RICE [13] that
are used to calculate moments. This includes efficient han-
dling of interconnect trees and meshes, as in RICE, but with
renewed focus on efficient handling of large problems with a
huge number of mutual inductances.

2. Background
To obtain the admittance matrix of a multiport, voltage

sources are connected to the ports. The multiport, along with
these sources, constitutes the Modified Nodal Analysis
(MNA) equations:

(1)

Theip andup vectors denote the port currents and voltages re-
spectively and

(2)

wherev and i are the MNA variables corresponding to the
node voltages, inductor and voltage source currents respec-
tively. Then x n matricesG andC represent the conductance
and susceptance matrices (except that the rows corresponding
to the current variables are negated as in [7]).N, Q andH are
the matrices containing the stamps for resistors, capacitors
and inductors respectively.E consists of ones, minus ones
and zeros, which represent the current variables in KCL equa-
tions. Provided that the original N-port is composed of pas-
sive linear elements only,Q, H and N are symmetric
nonnegative definite matrices. This impliesC is also sym-
metric and nonnegative definite. Since this is an N-port for-
mulation, whereby the only sources are the voltage sources at
the N port nodes,B=L. But we maintain the separateB andL
notation for generality of the equations.

C xn
˙ G xn– B up+=

i p L T xn=

G
N E

ET
– 0

≡ C Q 0
0 H

≡ xn
v
i

≡

Returning to equation (1), following the notation in [2]
we define

 and . (3)

With unit voltages at the ports, taking the Laplace transfor-
mation of (1) and solving for the port current variables, the
y-parameter matrix is given as

(4)

whereIn is then x n identity matrix. It is apparent from (4)
that the eigenvalues ofA represent the inverses of the poles
of Y(s).

Using any of the aforementioned model-order reduction
techniques, we can find reduced order rational approxima-
tions to Yjk(s) terms, for all j, k ≤ N. The reduced-order
Y(s) can then be simulated along with other nonlinear and
linear portions of the complete circuit using a simulator that
employs either recursive convolution [14] or state-space
realization [7], both of which have linear complexity. If the
reduction is block, the reduced order multi-input multi-out-
put circuit can also be realized using linear circuit elements.

 2.1.Block Arnoldi Algorithm

The Block Arnoldi algorithm reduces the system matrix
A in (3) to a small block upper Hessenberg matrixHq. To
do so requires an orthonormal basis,X, for the correspond-
ing Krylov space which satisfies the following:*

(5)

where N is the number of ports andIq is aq x q identity ma-
trix. The Krylov space is defined as

. (6)

Finding the reduced order admittance matrix can be
explained by a change of variable,

. (7)

wherezq is now the reduced order system variable, which re-
duces the number of unknowns in the system (q is generally
much smaller thann). Substituting (7) into (1), then multi-

plying the first equation by  yields

(8)

Therefore, in the Laplace domain,

(9)

whereIq is aq x q identity matrix.
The reduced order system equations and admittance

matrix are given by (8) and (9) respectively. The poles of

*The  operator is the truncation to the nearest integer towards zero.
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XT X I q=
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the reduced order system are the reciprocal eigenvalues of
Hq. A complete pole/residue decomposition can be obtained
by eigendecomposingHq. Using the information in [6], it

can be shown that the first  moments of  in (9)

match those of  in (4).

 2.2.Importance of Passivity

It is always possible to come up with stable reduced order
macromodels by utilizing a number of heuristics, however,
none of these tricks can be used to obtain provably passive
approximations. Moreover, in [7] it was shown that the test
for passivity of an AWE-reduced N-port macromodel is pro-
hibitive in terms of CPU run time cost. Fig.2 is a numerical
example generated in [7] that demonstrates the passivity
problem. Y1(s) in this figure represents a reduced order
transfer function which has all poles and zeros in the left half
plane. Ydr(s) represents a capacitor and resistor in parallel. If
we drive this circuit with a current source, it will oscillate at
2.5/π Hz. To show that it is also a practical problem, we took
a simple interconnect and connected the load and the nonlin-
ear driver as shown in the examples section in Fig.5. The
interconnect is represented by a fifth order approximation
obtained by PVL [2]. The figure clearly shows the growing
oscillations at the output (instability) although all of the
poles obtained from PVL were stable. A Thevenin equivalent
linear driver with a resistance of 2 ohms generates a similar
instability for this 2-port example.

3. PRIMA: Passive Reduced-order
Interconnect Macromodeling Algorithm

The Block Arnoldi Algorithm is employed in PRIMA to
generate the orthonormal basis for a congruence transforma-

tion matrix. After  (the extra step is not necessary

when  is an integer) iterations of PRIMA, then x q matrix

X is found such that:

(10)

q
N
---- Ŷ s( )

Y s( )

Y1 s( ) s 4+
s2 2s 5+ +
--------------------------=

Ydr s( ) 0.06 0.056s+=

Ydr(s) Y1(s)

Zc s( ) s2 2s 5+ +
0.056s3 0.172s2 1.4s 4.3+ + +
-------------------------------------------------------------------------- ⇒= Poles at: 3.074, 5 j±–

FIGURE 2: A non-passive system example demonstrating
potential instability.

q
N
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q
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In the classical Arnoldi approach [4], the reduced order
Y(s) is calculated using theqxq upper Hessenberg matrix in
(5) as shown in (9):

(11)

In our variation, the conductance and susceptance matrices
are directly reduced so that passivity is preserved during re-

duction. Applying the change of variable  in

(1), and multiplying the first row by  from (10) yields

(12)

The reduced order MNA matrices are, therefore,

(13)

❍ Connect voltage sources to the multiport & obtain the
MNA matrices as in (2).

❍ Set[ b1 | b2 | ... |bp ] = B and[ l1 | l2 | ... |lp ] = L

❍ Solve  forR

❍  ; qr factorization ofR

❍ Set

❍ For k=1, 2, ...,n

Set

Solve  for

For j=1, ..,k

 ; qr factorization of

❍ Set  and truncateX so that it has q

columns only.

❍ Compute ,

❍ Find eigendecomposition of : *

❍ To find poles and residues for :

Solve  forw*

Set  and

❍ Set

GR B=

X0 K,( ) qr R( )=

n int
q
N
---- 

  1+=
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=
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FIGURE 3: The Passive Reduction Algorithm
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These types of transformations are known as congruence
transformations. Congruence transformations were first in-
troduced by [3] for order reduction of circuits. From (12) and

(13), the reducedY(s), namely , is now

(14)

Since the size of  and  is typically very small, it is

easy to find the poles and zeros of  by eigendecomposi-
tion. The complete algorithm is given in Fig.3. It employs
the Block Arnoldi Algorithm using modified Gram-Schmidt
orthogonalization [6], which is mathematically equivalent to
ordinary Gram-Schmidt process, but behaves better numeri-
cally [15]. In addition, it is possible to avoid the inversion of

 to find the poles and residues by using a generalized

eigendecomposition. In this case, the computation of

can be avoided by using (31) and replacing it by . It is
observed that this scheme is numerically much better.

The complexity of the algorithm to produceq poles for an
N-port is slightly less than AWE, PVL and MPVL. It
requires 1 LU factorization (or path tracing equivalent as
explained in Section 4.) of theG (MNA conductance)
matrix, which dominates all the other computational costs
and is common in all reduction techniques. However, to find
q poles, onlyq backward-forward substitutions are needed,
whereas in MPVL, PVL and AWE, twice as many are
required. As in MPVL, there will be only one eigendecom-
position to find the poles and residues, whereas PVL requires

N2 eigendecompositions, since for each Yij(s), there will be a

different Tq. AWE will solve the N2 different Hankel matri-
ces to get to the poles.

 3.1.Preservation of Passivity

If the system described by (1) and (2) is reduced by the
transformations in (13), it can be shown that the reduced sys-
tem is always passive. In [16], necessary and sufficient con-

ditions for the system admittance matrix  (eqn. (14)) to
be passive are:

1. for all complex s, where*  is the complex
conjugate operator.

2.  is a positive matrix, that is

for all complex values of s satisfying Re(s) > 0 and for any
complex vectorz.

The second condition also implies the analyticity of  for

Re(s) > 0, since is a rational function of s (details in
[16]). Therefore, the test of analyticity is unnecessary.

Due to the fact that the reduced matrices, , ,  and
are all real since the transformation matrix,X, is real, condi-
tion 1 is automatically satisfied. To show that condition 2 is

Ŷ s( )

Ŷ s( ) L̃
T

G̃ sC̃+( )
1–
B̃=

G̃ C̃

Ŷ s( )

G̃

G̃
1–
B̃

XTR

Ŷ s( )

Ŷ s∗( ) Ŷ∗ s( )=

Ŷ s( ) z∗T Ŷ s( ) Ŷ∗T
s( )+( )z 0≥

Ŷ s( )

Ŷ s( )

G̃ C̃ B̃ L̃

satisfied, we first set  and use the

property  (sinceB=L  in our formulation when there

are no sources inside the N-port, ) and some
algebra to obtain,

(15)

Setting  and  yields,

(16)

Similarly, let  to get

(17)

SinceC is symmetric, .C is known to be non-
negative definite (since we negate the rows corresponding to
current variables as in (2)), so

(18)

for any complex vectory andσ=Re(s) > 0.N (the resistor
stamps) is a symmetric nonnegative definite matrix, there-
fore

(19)

is also nonnegative definite for any complex vectory. From
(17), (18) and (19), it follows that the second passivity con-
dition is satisfied.

 3.2.Preservation of Moments

The transformation in (13) preserves moments of the

original system, which is the same as the classical Block
Arnoldi reduction and half of that in MPVL. The proof is as
follows. The exact (block) moments,M i, of the circuit are
given as:

(20)

where ,  andG, C, B, L  are the system
matrices as defined in (1).

Likewise, the moments of the PRIMA reduced order sys-
tem are given by

(21)

where ,  and , , ,  are as de-
fined in (13). Substitution of (13) in (21) yields:

Yh s( ) Ŷ s( ) Ŷ
T

s∗( )+=

B̃ L̃=

XTB XTL=

z∗TYh s( )z z∗T B̃
T
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T
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T
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T

+( )+ +[ ]w=

w∗TXT G GT σ C CT
+( )+ +[ ]Xw=

y Xw=

z∗TYh s( )z y∗T G GT σ C CT
+( )+ +[ ]y=

CT C+ 2C=

y∗Tσ CT C+( )y 2σy∗TC y 0≥=

y∗T GT G+( )y y∗T N E

ET
– 0

T
N E

ET
– 0

+
 
 
 

y=

y∗T 2N 0
0 0

y 0≥=

q
N
----

M i L TA i R=

A G 1– C–≡ R G 1– B≡

M̂ i L̃
T
Ã

i
R̃=

Ã G̃
1–
C̃–≡ R̃ G̃
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(22)

It is shown in [6] that the Arnoldi algorithm yields

. (23)

Rearranging the terms and using the definitions from (13):

(24)

(25)

Inserting (23) in (25) results in:

(26)

where

. (27)

From (26), it can be shown by recursion that

(28)

Therefore, using (27) it follows that

(29)

Replacing  in (22) with

yields

(30)

Evaluating (26) when i=0 gives

(31)

Then from (30) and (31),

, (32)

Finally, combining (32) and (28) with (20), it follows that

(33)

Note that the number of poles in each entry ofY(s) is q,

and we have matched the first  moments at all N ports,

yielding a total of q moments. The number of moments
matched in PRIMA is, therefore, the same as that for the
Block Arnoldi algorithm and half as many as matched by
MPVL.

4. Integration of PRIMA within RICE
For all of the model order reduction schemes, the LU

decomposition of the MNA conductance matrix (G in (2))
dominates the run time. In [13], RICE (Rapid Interconnect
Circuit Evaluation) was described as a general path tracing

M̂ i L TX X TG X( )–
1–

XTC X( )[ ]
i

XTG X( )
1–
XTB=

A iR X H q
i XT R= , 0 i q

N
----<≤

A A i 1– R X H q
i XT R=

G–
1– C A i 1– R X H q

i XT R=

C– A i 1– R G X H q
i XT R=

XT
– C A i 1– R XTG X H q

i XT R=

X X TG X( )
1–
XTC A i 1– R– X H q

i XT R=

K A i 1– R A iR,= 0 i q
N
----<≤

K X X TG X( )
1–
XTC–=

K iR A iR,= 0 i q
N
----<≤

X X TG X( )–
1–

XTC X( )[ ]
i

K i X=

X X TG X( )–
1–

XTC X( )[ ]
i

K i X

M̂ i L TK i X X TG X( )
1–
XTB=

X X TG X( )
1–
XTB R=

M̂ i L TK i R= , 0 i q
N
----<≤

M̂ i M i ,= 0 i q
N
----<≤

q
N
----

algorithm to obtain moments with optimal efficiency for
interconnect trees and mesh structures. Using RICE to cal-
culate moments, the explicit construction and inversion of
G is avoided, and the moments are more accurate than those
obtained via matrix factorization.

The moments of the circuit can be obtained recursively
from:

(34)

where the matricesG, C andB are as defined in (2). As
shown in [1], this can be viewed as recursive dc circuit solu-
tions, when capacitors and inductors are replaced by current
and voltage sources respectively, with the values derived
from the columns of . The Krylov vectors, which

can be viewed as well conditioned moments, can be obtained
from a very similar recursive scheme:

The “orth” operator can be implemented as a simple Gram-
Schmidt orthonormalization procedure. The space spanned
by the block Krylov terms  is called the

Krylov space. Therefore, the Krylov vectors can be obtained
via a path tracing procedure using RICE-like routines to
solve for equations (35) and (37).

The Krylov space constitutes the congruence transforma-

tion matrix,X in PRIMA. The reduced MNA matrices

and  are

. (40)

Note, however, that the matrices  and  are obtained
using RICE without explicitly constructingG andC. The
columns of  are the values of current and voltage sourc-
es that are used to replace capacitors and inductors at each
moment computation stage. This information is easily ob-

tained during a path trace [13]. The kth block of  (i.e.

) is a function of previous blocks of  and

since from (38),

(41)

and using ,

M 0 G 1– B=

M k G 1– CM k 1–= k 0>

CM k 1–

1. Obtain zeroth moment and orthonormalize it:

Solve  from (35)

(36)

2. Recursively obtain higher order Krylov vectors:

Solve  from (37)

(38)

(39)

M 0 G M 0 B=

X0 orth M 0( )=

M k G M k CXk 1–=

Xk
ζ M k Xk 1– Xk 1–

T M k( )– …– X0 X0
TM k( )–=

Xk orth Xk
ζ( )=

Xk Xk 1– … X0, , ,( )

G̃

C̃

C̃ XTC X= G̃ XTG X=

C X G X

C X

G X

GXk G X CXk 1–

GXk
ζ GM k GXk 1– Xk 1–

T M k( )– …– GX0 X0
TM k( )–=

G M k CXk 1–=
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. (42)

5. Time-domain simulation of the macromodels
For a complete circuit simulation, the nonlinear elements

should be simulated along with the reduced order macro-
models. There are two ways to include the PRIMA macro-
models into circuit simulators such as SPICE [17]. One
approach is in terms of the frequency domain y-parameters.
Combining the nonlinear time domain analysis in SPICE
with the frequency dependent y-parameters requires convo-

lution of O(T2) complexity, where T is the number of simu-
lation time-points. For this reason, recursive convolution
[14] and time-domain y-parameter macromodels [7] were
developed, where the complexity is linear with the number
of time-points. The second method is the direct stamping
(i.e. circuit model realization). Since the reduction method
we use is block, the reduced matrices can be directly
stamped into the SPICE MNA matrices. Noticing that the
reduced orderq-variable system has the equation shown in
(12) and (13), and recognizing that it is possible to introduce

 as a circuit variable into the MNA matrix, the direct

stamps for the macromodel can be generated as below:

(43)

In (43), xNL denotes the other variables of the circuit (other
node voltages and currents)up and ip are port voltages and

currents respectively, and  denotes the extra variables that

are introduced from the inclusion of realized macromodel

into the circuit. Since  is a symmetric and real matrix, it can
be diagonalized using singular value decomposition. In this
case, all the capacitance values will be real and positive, since

they will be the singular values of . Note that it is also pos-
sible to come up with a realization scheme similar to (43)

starting from .

6. Results
In this section, PRIMA is demonstrated and compared

with other approaches. All reductions are done using RICE
v5.0, a program which integrates the PRIMA algorithm with
the RICE moment calculation routines. For the frequency
domain examples, the y-parameters are compared with the
reduced order models from different reduction methods.
Time domain results via recursive convolution are obtained
using a modified version of SPICE3f4 [18]. For all the exam-

GXk
ζ CXk 1– GXk 1– Xk 1–

T M k( )– …– GX0 X0
TM k( )–=

x̃q

x x 0 0
x x I N 0

0 0 IN L̃ T–

0 B̃– 0 G̃ C̃
td

d
+ 

 

xNL

up

i p

x̃q

vNL

vp

0
0

=

Stamps for

f(xNL,up)

x̃q

C̃

C̃

Ŷ s( )

ples, the poles obtained via PRIMA were observed to be
stable.

 6.1.Mesh ground plane

With the ability to calculate a large number of poles
accurately, PRIMA can be applied to analysis problems
which include complex, high frequency responses. One
such application is the R-L mesh plane encountered in
MCM and packaging problems. Since such a problem is
strongly coupled, the L-matrix is dense and thereby
destroys the matrix sparsity in a classical SPICE simulation.
In this example, the ground plane is modeled by a 20x20
mesh, and each square is modeled as a resistor and an
inductor. The coupling can be adjusted to make the induc-
tance matrix sparse as described in [19]. There is an RL line
over the ground plane that is terminated with a capacitor
load, as shown in Fig.4. Also shown in the figure are time
domain results from PRIMA and HSPICE for various levels

FIGURE 4: Mesh ground plane example

Circuit complexity

Circuit name # of R # of L # of K

plane_0 859 858 0

plane_4 859 858 17,892

plane_full 859 858 183,693

Run time comparisons

Circuit name HSPICE PRIMA RecConv

plane_0 39.97 secs 0.25 secs 0.03 secs

plane_4 17,343 secs 1.23 secs 0.05 secs

plane_full can not run 11.73 secs 0.05 secs
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of L-matrix sparsity. The full matrix response is also shown
for PRIMA, but the HSPICE simulation would not complete
its run due to memory and run-time limits.

This circuit is a worst-case interconnect topology for a
path tracing algorithm [13] (all loops), however, RICE v5,
our path tracing implementation of PRIMA, showed excel-
lent speed-up over HSPICE, a commercial circuit simulation
tool. The table in this figure also includes the time required
for recursive convolution of the reduced-order model in
SPICE3f, denoted by RecConv.

 6.2.Nonlinear driver driving a transmission line

Fig.5 shows a lossy transmission line represented by 40
lumped RLC sections and reduced to 5 poles using both PVL
and PRIMA. Although all of the poles from PVL were stable
(i.e. negative real parts), the overall PVL response was

clearly unstable as shown in Fig.5. The 5th order approxima-
tion from PRIMA is indistinguishable from the exact
response, which was obtained by an HSPICE simulation for
this example.

 6.3.Coupled noise for a two-bit bus

Next consider the two-bit bus driven by CMOS inverters
in Fig.6. One of the drivers is switching while the other is
quiet. The interconnect, consisting of 40 coupled RLC sec-
tions, is modeled as a 4-port and reduced by PRIMA. Tran-
sient analysis is done using recursive convolution. The time
domain waveforms at the load end are compared for various
order of approximations. Since this is a 4-port, an 8 pole
approximation corresponds to matching only m0 and m1

generated by four different sources. The plot shows that in
the time domain, even the coupled noise can be accurately
simulated using the 8 poles from PRIMA. Although the
interconnect inductance was exaggerated in this example to
make the approximation more difficult, it is observed that an

8th order approximation is sufficient to capture the coupled
noise from the active driver to the quiet load end.

3 4 5
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PVL, 5 poles,
all stable

exact
PRIMA
5 poles

21

1 2
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Ctotal=15pF

1pF

interconnect is modeled by
40 lumped RLC sections.

FIGURE 5: Instability in the time domain for non-passive model

To compare the difference between direct realization and
y-parameter based simulation (i.e. recursive convolution
here), the reduced order circuit (via PRIMA) is simulated

using both techniques. In the direct realization,  is diago-
nalized to increase the speed. The run times are given in
Table 1. Although the circuit is relatively small (i.e.G is
only 300x300), the gain in using a PRIMA reduced macro-
model and y-parameter based simulation is about 50x over
direct realization. For larger circuits such as the mesh plane
example, this gain is expected to be much larger. Direct
realization is inferior when the order of approximation gets

bigger, mainly because the dense  matrix gets larger.

 6.4.Six coupled transmission lines

The second example is a 12-port containing six coupled
transmission lines modeled by 40 coupled RLC sections.
The input admittance (Y11(s)), reduced by Block Arnoldi,
MPVL and PRIMA are compared with the exact input

admittance in Fig.7 using 48th order approximations in all
cases. Block Arnoldi captures the exact response up to 16
GHz, while MPVL and PRIMA match up to 28 GHz. When
the order of approximation is increased to 72 poles, it is
observed that the frequency spectrum is captured up to 60
GHz by MPVL and PRIMA.

TABLE 1: Run time comparisons

Exact Reduced

Full
simulation

Simulated after
Direct Realization

Simulated by
Y-parameter based

17.78 sec

0.6 with 8 poles 0.18 s. with 8 poles

3.98 s. with 16 poles 0.28 s. with 16 poles

10.29 s. with 24 poles 0.32 s. with 24 poles

FIGURE 6: Waveform comparisons for a four port.
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 6.5.Large Coupled RLC Circuit

The third example in Fig.8 displays the responses for a 3-
port composed of densely coupled RLC circuits. Approxi-
mations are done using 25 poles for the three methods. As
can be observed from the figure, both PRIMA and MPVL
capture the entire frequency spectrum.

7. Conclusions
This paper presented a novel algorithm for producing

provably passive macromodels for arbitrary RLC circuits.
The method uses a Block Arnoldi algorithm to generate the
vectors needed for applying a transformation to the macro-
model MNA matrices. Empirical results show that PRIMA
produces comparable or superior results in terms of accuracy
with respect to all other known reduction techniques, but
superior in that it guarantees the passivity that is critical for
time domain analyses. The implementation of PRIMA with
path tracing algorithms from RICE enables extremely accu-
rate high frequency response approximations of enormous,
complex, RLC circuits with excellent efficiency.

The PRIMA algorithm presented in this paper can be eas-
ily extended to implement a number of heuristics such as
moment shifting [13] and frequency shifting [20]. However,
these heuristics are unnecessary and merely increase the
complexity.

FIGURE 7: Y11(s) in frequency domain for six coupled TR. lines.
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FIGURE 8: 3-Port consisting of a large lumped RLC circuit.
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