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Abstract each term Y individually. Both Asymptotic Waveform Eval-

This paper describes PRIMA, an algorithm for generatinguaﬂon (AfWE) (4 'and.Pade via Lanczos (PVL) [2], W.h'Ch
provably passive reduced order N-port models for RLcare Padé approximations, can perform SISO reduction by

interconnect circuits. It is demonstrated that, in addition tomatching 2q moments for &'grder approximation of each
requiring macromodel stability, macromodel passivity isYij term. The Arnoldi Algorithm [4] can also be used to
needed to guarantee the overall circuit stability once theobtain SISO approximations, however it matches only g
active and passive driver/load models are COﬂneCteCmomentS for ata order approximaﬂon_ MPVL (Matrix Padé
PRIMA extends the block Arnoldi technique to include guaryia Lanczos) [5] and Block Arnoldi [6] are multi-input
anteed passivity. Moreover, it is empirically observed thamulti-output (MIMO) versions of PVL and Arnoldi respec-
the accuracy is superior to existing block Arnoldi methodstjvely. In the block techniques, the system Modified Nodal
While the same passivity extension is not possible for MPV‘Ana|ysiS (MNA) maitrices are direcﬂy reduced by matrix
we observed comparable accuracy in the frequency domatransformations.
for all examples considered. Additionally, a path tracing Regardless of the reduction method used in all of the
algorithm is used to calculate the reduced order maCromOdGapproacheS cited above, the reduced order model of an RLC
with the utmost efficiency for generalized RLC interCOﬂnethcircuit can have unstable p0|e5_ It is a|WayS possib|e to
. obtain an asymptotically stable model by simply discarding
1. Introduction the unstable poles, however, passivity is hot guaranteed. In

As integrated circuits and systems are designed witaddition, discarding unstable poles requires re-adjustment of
smaller feature sizes and for faster operation, RLC intercorthe residues to improve the quality of the approximation.
nect effects have a more dominant impact on signal propagPassivity uncertainty is problematic since even the test for N-
tion than ever before. In addition, parasitic coupling effectport passivity can be very costly for a large number of ports
and reduced power supply voltage levels make interconne[7]. The coordinate transformed Arnoldi Algorithm [8] was
modeling increasingly important. Since these interconnedntroduced as a remedy for the instability problem, but it
models can contain thousands of tightly coupled R-L-C comdoes not guarantee passivity. The passivity extension of this
ponents, reduced order macromodels are imperativstable Arnoldi algorithm was recently developed in [9], how-
[11[2][3][4]. Ideally, a simulator would isolate the large lin- ever its applicability is limited to RC circuits only. The
ear portions of the circuit from the nonlinear elements (e.gPACT algorithm [3] proposed a new direction for passive
transistor models) and preprocess them into reduced ordreduced-order model for RC circuits based on congruence
multiport macromodels. transformations. The same authors proposed Split Congru-

It is well known that an N-port can be fully represented byence Transformations [10] for passive reductions of RLC cir-
its admittance parameters in the Laplace domain, howevecuits, producing equivalent circuit realizations. In [10],
the objective is to apply model order reduction to produchowever, the extra steps required to split the transformation
low order rational approximations for each entriis) (see matrix can result in a decrease in accuracy and efficiency.
Fig.1). To findY(s), voltage sources are connected to theMoreover, the passivity proof is somewhat controversial, and
ports and the currents into the ports are measured. The vcwe will consider a more complete proof in this paper.
age sources are the inputs to the system and the port curre
are the outputs. A single-input single-output (SISO) N-por i
model approach would perform model order reduction o1 [ (] [v,,(s) ... Y] [Vi(s) Vit

{ ] Lm(s) YNN(S)] LN(S)

1 Linear circuit with
: N ports, defined by NI
voltage-current

v | pairs (\, ix)

N
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A passive system denotes a system that is incapable "Returning to equation (1), following the notation in [2]
generating energy, and hence one that can only absowe define
energy from the sources used to excite it [11]. As we wil
show in Section 2.2., passivity is an important property tc
satisfy because stable, but not passive macromodels can p
duce unstable systems when connected to other stable, e\
passive, loads. A property in classical circuit theory state
that: interconnections of stable systems may not necessar Y(s) = LT(In—sA)_lR 4)

be stable; but (strictly) passive circuits are (asymptoticallyherel , is then x nidentity matrix. It is apparent from (4)

stable; and arbitrary interconnections of (strictly) passive Cirthat the eigenvalues & represent the inverses of the poles
cuits are (strictly) passive, and, therefore, (asymptoticaIIyOfY(S)

stable [12].

In this paper, we proposeRassiveReduced-ordeinter-
connectMacromodelingAlgorithm, PRIMA, based on the
Block Arnoldi Algorithm but with congruence transforma-
tions that produce provably passive reduced order macri
models for arbitrary RLC circuits. PRIMA has accuracy
comparable to MPVL and superior to Block Arnoldi. Fur-
thermore, the block Arnoldi vectors are generated with th
utmost efficiency following the algorithms in RICE [13] that
are used to calculate moments. This includes efficient hal
dling of interconnect trees and meshes, as in RICE, but wil 2.1.Block Arnoldi Algorithm
renewed focus on efficient handling of large problems with i
huge number of mutual inductances.

A=-G7'C andR=G™'B . ©)
With unit voltages at the ports, taking the Laplace transfor-
mation of (1) and solving for the port current variables, the
y-parameter matrix is given as

Using any of the aforementioned model-order reduction
techniques, we can find reduced order rational approxima-
tions to Yj(s) terms, for all j, k< N. The reduced-order

Y (s) can then be simulated along with other nonlinear and
linear portions of the complete circuit using a simulator that
employs either recursive convolution [14] or state-space
realization [7], both of which have linear complexity. If the
reduction is block, the reduced order multi-input multi-out-
put circuit can also be realized using linear circuit elements.

The Block Arnoldi algorithm reduces the system matrix
A in (3) to a small block upper Hessenberg matfix To
2. Background do so requires an orthonormal ba3isfor the correspond-

. . . . ing Krylov space which satisfies the following:*
To obtain the admittance matrix of a multiport, voltage g Ry P 9

sources are connected to the ports. The multiport, along wi colsp(X) = Kr%A, R, L%E
these sources, constitutes the Modified Nodal Analysi
(MNA) equations: XTAX = H . ®)
Cx,=-Gx,+Bu Ty -
n n p 1) - X X = Iq . .
i, = LT X, where N is the number of ports aiRds aq x gidentity ma-
Thei, anduy, vectors denote the port currents and voltages retrix. The Krylov space is defined as
spectively and Kr(A,R, k) = colsgR, AR, AR, ..., AXR] . (6)
Finding the reduced order admittance matrix can be
= N E = Q 0 = \ 1 1
G=| . C= Xp =, (2)  explained by a change of variable,
—E'0 OH i _
Xp = X{nxq} Zq : (7)

wherev andi are the MNA variables corresponding to theWherezq is now the reduced order system variable, which re-
node voltages, inductor and voltage source currents respe

tively. Then x nmatricesG andC represent the conductance ducehs the ﬂuml;er of gnl;)nqwn; n t7hg SySt‘I"B ?‘enerall?/'
and susceptance matrices (except that the rows correspond™ sma.ert an)._ ubstituting ( _) into (1), then mult-
to the current variables are negated as in fJ)Q andH are  Plying the first equation bxTG™*  yields

the matrices containing the stamps for resistors, capacito Hz =z _XTRu

and inductors respectivelfe consists of ones, minus ones 4 d P (8)
. . . . T

and zeros, which represent the current variables in KCL equ ip =L Xz,

tions. Provided that the original N-port is composed of pasTherefore, in the Laplace domain,
sive linear elements onlyQ, H and N are symmetric ST T
nonnegative definite matrices. This impli€sis also sym- Y(8) = L X(Ig=sHg) "X R ©)
metric and nonnegative definite. Since this is an N-port forwherelq is aq x gidentity matrix.

mulation, whereby the only sources are the voltage sources The reduced order system equations and admittance
the N port nodeB=L. But we maintain the separd@eandL ~ matrix are given by (8) and (9) respectively. The poles of
notation for generality of the equations.

*The | . | operator is the truncation to the nearest integer towards zero.



FIGURE 3: The Passive Reduction Algorithm

e+ d [0 Connect voltage sources to the multiport & obtain the
, Y1(s) Yi(S) = 550 MNA matrices as in (2).
Y,/(5) = 0.06+ 0.056 O Set[by|by]...|by]=Band[ly|ly] .. [I[,]=L
0 SolveGR =B forR
O (XeK) = qr(R) ;grfactorization oR
_ s2+2s+5 . .
29 = Gosesr017ar + Lastas [ OleS Al-3074, 5] O Setn = int{H+1
0 Fork=1,2,..n
FIGURE 2: A non-passive system example demonstrating SetV = CX
potential instability. k-1
. . Solve 6 X = v for x(?
the reduced order system are the reciprocal eigenvalues Forict ‘;( K
; o . orj=1, .,
Hg- A complete pole/residue decomposition can be obtaine : .
. . . . L . H =X, xJ=
by eigendecomposinly. Using the information in [6], it _ !
. ~ . X(k” = X(kj_l)—xk-jH
can be shown that the flrfﬂj moments Yfs) in (9)
N (X K) = qr(x®¥) ; gr factorization ofx®
match those ofv (s) in (4). O Setx = [Xo X, ... Xk—]] and truncatk so that it has q
2.2.Importance of Passivity columns only.

. . . ~ - T ~ _ T
It is always possible to come up with stable reduced orde | [ ComputeC = X'CX G = X'GX

macromodels by utilizing a number of heuristics, however | O Find eigendecompositon @ 'C G 'C = sSAs™  *
none of these tricks can be used to obtain provably passi A = diag(Ay Ay ..., Ag)

approximations. Moreover, in [7] it was shown that the tes
for passivity of an AWE-reduced N-port macromodel is pro-
hibitive in terms of CPU run time cost. Fig.2 is a numerical

O To find poles and residues fiy(s)

SolveGw = X"b; forw”

example generated in [7] that demonstrates the passivi Setp = s'X"I; andv = Slw
problem. Y;(s) in this figure represents a reduced orde by
transfer function which has all poles and zeros in the left ha Yii® = 3 1+ns>\n

n=1

plane. Yy (s) represents a capacitor and resistor in parallel. |

we drive this circuit with a current source, it will oscillate at
2.5/t Hz. To show that it is also a practical problem, we took | [} gety(s) =
a simple interconnect and connected the load and the nonli Yot Voo
ear driver as shown in the examples section in Fig.5. Th
interconnect is represented by a fifth order approximatio
obtained by PVL [2]. The figure clearly shows the growing
oscillations at the output (instability) although all of the
poles obtained from PVL were stable. A Thevenin equivaler In the classical Arnoldi approach [4], the reduced order
linear driver with a resistance of 2 ohms generates a simil:Y (S) is calculated using thgxqupper Hessenberg matrix in
instability for this 2-port example. (5) as shown in (9):

v T -1,,T
, Y(s) = L X(I —=sH)"X'R 11
3. PRIMA: Passive Reduced-order Y@ (I =sH) an
. . In our variation, the conductance and susceptance matrices
Interconnect Macromodeling Algorithm

are directly reduced so that passivity is preserved during re-
The Block Arnoldi Algorlthm is employed in PRIMA to  4,ction. Applying the change of variabig = X{nxq};(q in

generate the orthonormal basis for a congruence transform

y(l), and multiplying the first row byT from (10) yields

91‘1 ?l.p

*Inversion of G can be avoided.

tion matrix. AfterL%J +1 (the extra step is not necessar _
x'c X)X, = ~(X'G X)xg + (X"B)u,

when% is an integer) iterations of PRIMA, thex gmatrix L (12)
i =(L X
X' is found such that: 'p = ( )'Xq
O The reduced order MNA matrices are, therefore,
colsp(X) = KraA,R, LQJD . T . T
N (10) C~=XCX CE=X G X (13)
x"'x =1 B=XB L=xX'L

q



These types of transformations are known as congruent
transformations. Congruence transformations were first in

troduced by [3] for order reduction of circuits. From (12) ancpropertyé =L (sinceB=L in our formulation when there

(13), the reducell (s), namelyY(s) , is now are no sources inside the N-poxffB = XTL ) and some
algebra to obtain,

satisfied, we first sety,(s) = Y(s) + v'(s)  and use the

Y(s) = L(G+sC)'B (14)
Since the size o and i:s typically very small, it is ATY (97 = ZDT(éT(é +sO) 1B + éT(é +50)TB)z
easy to find the poles and zerosYuf) by eigendecompos ST e - . - ~(1?~
tion. The complete algorithm is given in Fig.3. It employs = ZH'B (G +sC)"[(G +sC) + (G +sIC) '](G +sC) " Bz
the Block Arnoldi Algorithm using modified Gram-Schmidt Settingw = (G +sC) "Bz and = jo+o vyields,
orthogonalization [6], which is mathematically equivalent to - - . -
ordinary Gram-Schmidt process, but behaves better nume 27 Yn()Z = WIT[(G + (0 + jw)C) + (G + (0 - jw)C) T]w
cally [15]. In addition, it is possible to avoid the inversion of

: WG +G' +o(C+Chlw (16)
G to find the poles and residues by using a generalize

WX [G+G' +0(C+CN)]Xw

eigendecomposition. In this case, the computatioé_éé Similarly, lety = xw to get

can be avoided by using (31) and replacing itxByR s
observed that this scheme is numerically much better.

The complexity of the algorithm to produggoles for an  SinceC is symmetricCT+C = 2C C is known to be non-
N-port is slightly less than AWE, PVL and MPVL. It negative definite (since we negate the rows corresponding to
requires 1 LU factorization (or path tracing equivalent ascurrent variables as in (2)), so
explgmed in Sect!on 4) of th& (MNA conduptance) yTG(CT+C)y = 20y(TCy=0 (18)
matrix, which dominates all the other computational cost:]cor any complex vectoy anda=Re(s) > ON (the resistor

and is common in all reduction technlqgeg. However, to f'n'stamps) is a symmetric nonnegative definite matrix, there-
g poles, onlyq backward-forward substitutions are needed,]core

whereas in MPVL, PVL and AWE, twice as many are

Y, (s)z = yII[G + G'+ o(C+ CT)]y 17

T
required. As in MPVL, there will be only one eigendecom- Tt _ T4 N E N EO

position to find the poles and residues, whereas PVL requirt y=(GT+G)y =y £ o * £ o %V

N2 eigendecompositions, since for eagifsy, there will be a (19)
different T,. AWE will solve the N different Hankel matri- = ytr h’)\l jyz 0

ces to get to the poles. . . -
is also nonnegative definite for any complex vegtdfrom

3.1.Preservation of Passivity (17), (18) and (19), it follows that the second passivity con-

If the system described by (1) and (2) is reduced by thdition is satisfied.
trans_formations in (_13), it can be shown that the ret_iqced Sy 3.2 Preservation of Moments
tem is always passive. In [16], necessary and sufficient col

ditions for the system admittance matiixs)  (eqn. (14)) tc | ne transformation in (13) preser\{eﬁj moments of the

be passive are: original system, which is the same as the classical Block

Arnoldi reduction and half of that in MPVL. The proof is as

LY = YD(S) for all complex s, whereis the complex follows. The exact (block) momentsl;, of the circuit are

conjugate operator.

given as:
- . . . P ~ T
2. Y(s) is a positive matrix, that BT (Y (s) +Y" (s))z=0 M; =L AR (20)
for all complex values of s satisfying Re(s) > 0 and for any 1 1
complex vectoe. whereA=-G C LR=G "B an(ﬁ, C,B,L are the SyStem
The second condition also implies the analyticityat) formatrices as defined in (1).

. ) . . ~ Likewise, the moments of the PRIMA reduced order sys-
Re(s) > 0, sinceY(s) is a rational function of s (details item are given by

[16]). Therefore, the test of analyticity is unnecessary.
Due to the fact that the reduced matricgs,C B , land

are all real since the transformation matkx,is real, condi- where A z—é_lé ,fz zé_lé andG ,E: é 1: are as de-
tion 1 is automatically satisfied. To show that condition 2 isfined in (13). Substitution of (13) in (21) yields:

T~i

Mi=L AR 1)

4



Mi = LTX-xTe ) e )1 e x)xTB (22)
It is shown in [6] that the Arnoldi algorithm yields
A'R=X H X' R, Osi<L%J. (23)

Rearranging the terms and using the definitions from (13):

AA IR = X H;XTR

G lcaA"lR=x HinT R

- L (24)
-CATR=GX H X R
X'cAT'R =x"GX H xR
X xTex) 'x"cA IR = x HyX' R (25)
Inserting (23) in (25) results in:
KA'""R = A'R, Osi<L%J (26)
where
_ T 1,7
K=XXGX) X' C. (27)
From (26), it can be shown by recursion that
K'R = A'R, 0<i <L%J (28)
Therefore, using (27) it follows that
X[—xTe x) " (xTe )] = K' X (29)

Replacing X[-(x "6 x) '(x"cx)]  in (22) withk' x

yields
M= Lk xxTe x) "x"B (30)
Evaluating (26) when i=0 gives
T 1.7
X(X'GX) X' B=R (31)
Then from (30) and (31),
Mi=L'K'R, 0si<mJ, (32)
Finally, combining (32) and (28) with (20), it follows that
Mi = M, Osi<L%J (33)

Note that the number of poles in each entryf () is q,
and we have matched the fiﬁ”

algorithm to obtain moments with optimal efficiency for
interconnect trees and mesh structures. Using RICE to cal-
culate moments, the explicit construction and inversion of
G is avoided, and the moments are more accurate than those
obtained via matrix factorization.
The moments of the circuit can be obtained recursively

from:

M, = G'B

B (34)

M, =G CM,_, k>0
where the matrice&, C andB are as defined in (2). As
shown in [1], this can be viewed as recursive dc circuit solu-
tions, when capacitors and inductors are replaced by current
and voltage sources respectively, with the values derived
from the columns ofCM,_, . The Krylov vectors, which

can be viewed as well conditioned moments, can be obtained
from a very similar recursive scheme:

1. Obtain zer) moment and orthonormalize it:

SolveM, fromG M, = B (35)
Xy = orth(My) (36)
2. Recursively obtain higher order Krylov vectors:
SolveM, fromG M, = CX,_, (37)
T _ T T
Xg = M =X, _1(Xp M) — . = X(XpMy) - (38)
X, = orth(Xy) (39)

The “orth” operator can be implemented as a simple Gram-
Schmidt orthonormalization procedure. The space spanned
by the block Krylov terms(X,, X, _;, ..., X) is called the
Krylov space. Therefore, the Krylov vectors can be obtained
via a path tracing procedure using RICE-like routines to
solve for equations (35) and (37).

The Krylov space constitutes the congruence transforma-
tion matrix, X in PRIMA. The reduced MNA matriceS

andC are

c=x'cx G=X'GX. (40)
Note, however, that the matricesx aB are obtained

moments at all N portusing RICE without explicitly constructing andC. The

columns ofC X are the values of current and voltage sourc-

yielding a total of g moments. The number of momentg that are used to replace capacitors and inductors at each

matched in PRIMA is, therefore, the same as that for th
Block Arnoldi algorithm and half as many as matched by

moment computation stage. This information is easily ob-
tained during a path trace [13]. ThE klock of G X (i.e.

MPVL. _ _ _
GX,) is a function of previous blocks & X  am@k, _,
4. Integration of PRIMA within RICE since from (38),
For all of the model order reduction schemes, the LU Gxﬁ = GMK_GXk—l(XI—lM k)_"'_GXO(Xng) (41)

decomposition of the MNA conductance matriX in (2))

dominates the run time. In [13], RICE (Rapid Interconnec

and usingG M, = CX,_, ,

Circuit Evaluation) was described as a general path tracir



T T
GXi = CXp_1=GX (X gMy) — ... =GX(XgM,) . (42) Re

5. Time-domain simulation of the macromodels (%) 7 Lo,

For a complete circuit simulation, the nonlinear element:
should be simulated along with the reduced order macrc
models. There are two ways to include the PRIMA macro
models into circuit simulators such as SPICE [17]. One plane_0, 2poles plane_4, 6poles

approach is in terms of the frequency domain y-parameter N 7\ o 4 N
Combining the nonlinear time domain analysis in SPICE §3 5’3 P\

with the frequency dependent y-parameters requires conv > i \HSP,CE s 2/ HSPICE
lution of O(T%) complexity, where T is the number of simu- PRIMA t PRIMA
lation time-points. For this reason, recursive convolutior % tme(ns) ° 0 2 time{ns) °
[14] and time-domain y-parameter macromodels [7] were plane._full, 8 poles

developed, where the complexity is linear with the numbe 4

of time-points. The second method is the direct stampin 23

(i.e. circuit model realization). Since the reduction methoc £, \

we use is block, the reduced matrices can be directl > PRIMA

stamped into the SPICE MNA matrices. Noticing that the 0

reduced ordeg-variable system has the equation shown ir  ime (ﬁs)

(~12) and (13), and recognizing that it is possible to introduc Circuit complexity

X, as a circuit variable into the MNA matrix, the direct
stamps for the macromodel can be generated as below: Circuitname | #0fR #ofL # of K
r q plane_0 859 858 0
Stamps for 0 0
| 0 XNL VL plane_4 859 858 17,892
fone ) TN N up v plane_full 859 858 183,693
0 0 Iy -LT R (43)
p 0 R . .
. . . un time comparisons
o -B 05+ cdol % 0
dtf L "a o
L R ) ] ) Circuit name HSPICE PRIMA RecConv
In (43), xy. denotes the other var_lables of the circuit (othel plane_0 3997 secs 0.25 sech 0.03 sdes
node voltages and currents) andi,, are port voltages and Dlane._4 17.343 secs 123 sech 0.05 sdcs
currents respectively, ang,  denotes the extra variables th plane_full can not run 11.73 sec 0.05 seg¢s

are introduced from the inclusion of realized macromode
FIGURE 4: Mesh ground plane example

into the circuit. Sinc€  is a symmetric and real matrix, it car . _
be diagonalized using singular value decomposition. In thiPleS, the poles obtained via PRIMA were observed to be

case, all the capacitance values will be real and positive, sinstable
they will be the singular values af . Note that it is also pos 6.1.Mesh ground plane
sible to come up with a realization scheme similar to (43 jth the ability to calculate a large number of poles

starting fromY (s) . accurately, PRIMA can be applied to analysis problems
which include complex, high frequency responses. One
6. Results such application is the R-L mesh plane encountered in

In this section, PRIMA is demonstrated and compareMCM and packaging problems. Since such a problem is

with other approaches. All reductions are done using RICStrongly coupled, the L-matrix is dense and thereby
V5.0, a program which integrates the PRIMA algorithm Withdestrpys the matrix sparsity in a cla§S|caI SPICE simulation.
the RICE moment calculation routines. For the frequenc! this example, the ground plane is modeled by a 20x20
domain examples, the y-parameters are compared with tim€sh, and each square is modeled as a resistor and an
reduced order models from different reduction methodsinductor. The coupling can be adjusted to make the induc-
Time domain results via recursive convolution are obtaine{@NC€ matrix sparse as described in [19]. There is an RL line

using a modified version of SPICE3f4 [18]. For all the exam©Ve' the ground plane that is terminated with a capacitor
load, as shown in Fig.4. Also shown in the figure are time

domain results from PRIMA and HSPICE for various levels



of L-matrix sparsity. The full matrix response is also showr 1 T T T

for PRIMA, but the HSPICE simulation would not complete ?epggelzsio
its run due to memory and run-time limits. original 3.0

This circuit is a worst-case interconnect topology for ¢ | (indistinguishable) ]
path tracing algorithm [13] (all loops), however, RICE v5, %° 10

our path tracing implementation of PRIMA, showed excel%
lent speed-up over HSPICE, a commercial circuit simulatiog
tool. The table in this figure also includes the time require® o.0
for recursive convolution of the reduced-order model in
SPICESf, denoted by RecConv.

6.2.Nonlinear driver driving a transmission line -0.5

Fig.5 shows a lossy transmission line represented by 4
lumped RLC sections and reduced to 5 poles using both PV
and PRIMA. Although all of the poles from PVL were stable .10
(i.e. negative real parts), the overall PVL response wa

clearly unstable as shown in Fig.5. TRt &der approxima- ) ] o
tion from PRIMA is indistinguishable from the exact To compare the difference between direct realization and

response, which was obtained by an HSPICE simulation f¢Y-Parameter based simula.tion. (i.g. recursive_ co.nvolution
this example. here), the reduced order circuit (via PRIMA) is simulated
using both techniques. In the direct realization, s diago-
nalized to increase the speed. The run times are given in
Next consider the two-bit bus driven by CMOS inverterstaple 1. Although the circuit is relatively small (i®.is
in Fig.6. One of the drivers is switching while the other iSonIy 300x300), the gain in using a PRIMA reduced macro-
quiet. The interconnect, consisting of 40 coupled RLC setmodel and y-parameter based simulation is about 50x over
tions, is modeled as a 4-port and reduced by PRIMA. Trargdirect realization. For larger circuits such as the mesh plane
sient analysis is done using recursive convolution. The timexample, this gain is expected to be much larger. Direct

domain waveforms at the load end are compared for variolrealization is inferior when the order of approximation gets
order of approximations. Since this is a 4-port, an 8 pol

approximation corresponds to matching only end m
generated by four different sources. The plot shows that i
the time domain, even the coupled noise can be accurate

0.1 0.2 time(ns) 0.3
FIGURE 6: Waveform comparisons for a four port.

0.4

6.3.Coupled noise for a two-bit bus

bigger, mainly because the derGe  matrix gets larger.

TABLE 1: Run time comparisons

simulated using the 8 poles from PRIMA. Although the Exact Reduced

interconnect inductance was exaggerated in this example Eul Simulated after Simulated by

make the approximation more difficult, it is observed that al | gimuation Direct Realization Y-parameter based

8" order approximation is sufficient to capture the couple 0.6 with 8 poles 0.18 s. with 8 poled

noise from the active driver to the quiet load end. 17.78 sec 3.98 s. with 16 poles 0.28 s. with 16 polds
10.29 s. with 24 poles 0.32 s. with 24 poles

PVL:5poIes,
L all stable
5 Vin \ /\ /\ /\'
o N N
:, \//(v izl / \/
o
>1r7 b
v
exact PRIMA U
Vin Vout 5 poles ]
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FIGURE 5: Instability in the time domain for non-passive model

6.4.Six coupled transmission lines

The second example is a 12-port containing six coupled
transmission lines modeled by 40 coupled RLC sections.
The input admittance (Y(s)), reduced by Block Arnoldi,
MPVL and PRIMA are compared with the exact input

admittance in Fig.7 using H8order approximations in all
cases. Block Arnoldi captures the exact response up to 16
GHz, while MPVL and PRIMA match up to 28 GHz. When
the order of approximation is increased to 72 poles, it is
observed that the frequency spectrum is captured up to 60
GHz by MPVL and PRIMA.



Block Arnoldi, 48 poles MPVL, 48 poles

0.20

0.15

o
=
o

[Y11(H] (1/Q)

0.05

0.00g |

PRIMA, 48 poles

10 20 30
freq. (GHz)

FIGURE 7: Yq4(s) in frequency domain for six coupled TR. lines.

6.5.Large Coupled RLC Circuit

The third example in Fig.8 displays the responses for a {
port composed of densely coupled RLC circuits. Approxi-
mations are done using 25 poles for the three methods. ¢
can be observed from the figure, both PRIMA and MPVL
capture the entire frequency spectrum.

101
Block Arnoldi, 25 poles
@0-2 4
\u
S
(‘::Lo-S <4
el
104 exac 3
indistinguishabi% PRIMA, 25 poles
MPVL, 25 poles
10° ' /
2 freq. (GHz) 4

FIGURE 8: 3-Port consisting of a large lumped RLC circuit.

7. Conclusions

This paper presented a novel algorithm for producing
provably passive macromodels for arbitrary RLC circuits.
The method uses a Block Arnoldi algorithm to generate th
vectors needed for applying a transformation to the macrc
model MNA matrices. Empirical results show that PRIMA
produces comparable or superior results in terms of accura
with respect to all other known reduction techniques, bu
superior in that it guarantees the passivity that is critical fo
time domain analyses. The implementation of PRIMA with
path tracing algorithms from RICE enables extremely accu
rate high frequency response approximations of enormou
complex, RLC circuits with excellent efficiency.

The PRIMA algorithm presented in this paper can be ea:s
ily extended to implement a number of heuristics such a
moment shifting [13] and frequency shifting [20]. However,
these heuristics are unnecessary and merely increase -
complexity.
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