Scheduling with Confidence for Probabilistic Data-flow Graphs

Sissades Tongsima*

Chantana Chantrapornchai*

Edwin H.-M. Shat

Dept. of Computer Science and Engineering,
University of Notre Dame,
Notre Dame, IN 46556

Nelson L. Passos
Department of Computer Science,
Midwestern State University,
Wichita Falls, TX 76308

Abstract

One of the biggest problems in high-level synthesis is to obtain
a good schedule without the knowledge of exact computation time
of tasks. While the target applications in high-level synthesis are
becoming larger, a task in the applications such as artificial intelli-
gent systems or interface may have uncertain computation time. In
this paper, an algorithm to schedule these repetitive tasks and op-
timize the schedule is presented. A probabilistic data-flow graph
is employed to model the problem where each node represents a
task associated with the probabilistic computation time and a set
of edges represents the dependences between the tasks. A novel
polynomial-time probabilistic retiming algorithm for optimizing
the graph and an algorithm for computing the optimized sched-
ule, subject to the acceptable probability and resource constraint,
are presented. The optimization algorithm also guarantees to give
such a short schedule length with a given qualitatively provable,
confidence level. The experiments show that the resulting sched-
ule length for a given confidence probability can be significantly
reduced.

1 Introduction

During the initial design phase, the execution time of a task
may be assigned either a fixed “worst case” or “average case”
value. Nevertheless, in reality, the execution time of tasks may
vary due to a number of factors such as fabrication variation, mod-
ule selections, input-driven sensitivity, etc. Furthermore, in many
applications such as interface systems, fuzzy systems, and artifi-
cial intelligence systems, etc., some of the tasks normally have
varying execution times. Hence, after the system is implemented,
it usually does not give the actual maximum performance. In or-
der to correct the issue of varying timing characteristics, costly
and time consuming redesign cycles are often required. A repet-
itive refinement of the design is necessary to adjust the system

*was supported in part by the Royal Thai Government Scholarship
twas supported in part by the NSF CAREER grant MIP 95-01006

1066-1395/97 $10.00 © 1997 IEEE

150

to obtain the practical results after the low-level detailed design
are finished [12]. With the current design methodologies, more
than 40 redesign cycles may have to be performed. Therefore, it
is important to develop techniques that can produce a good initial
schedule so that the number of redesign cycles can be significantly
reduced. Furthermore, such a schedule should also be guaranteed
to achieve an expected performance within a given qualitatively
provable, confidence level.

In many iterative applications, the statistics of the computation
times of uncertain tasks are not difficult to be collected. By taking
advantage of these statistical data, the schedule which gives the
qualitatively provable performance can be constructed. To achieve
such a goal, the proposed algorithm applies a transformation called
probabilistic retiming which optimizes an input application with-
out considering resource constraints for given a confidence level.
The input application is modeled as a hierarchical data-flow graph
(DFG) where a node corresponds to a task, e.g., a collection of
statements, and a set of edges represents dependencies between
these tasks. The dependency distances or delays between tasks in
different iterations is represented by short bar lines on those edges.
The computation time of these nodes can be either fixed or varied.
To handle these cases, in this research, a probability model is em-
ployed to model the timing of these tasks. Then the probabilistic
task scheduling is applied to effectively schedules both certain and
uncertain tasks to multiple functional units. After that, the total
execution time of the application with a confidence probability is
calculated.

Considerable research has been conducted in the area of
scheduling nodes from directed-acyclic graphs (DAGs), obtained
by ignoring edges with delays. Many heuristics have been pro-
posed, e.g., list scheduling, and graph decomposition [6, 8], to
schedule such a graph. However, these techniques did not inves-
tigate the parallelism across iterations, i.e., overlapping the com-
putation of tasks by considering the edges delays. Loop transfor-
mations are also used to restructure loops in order to reduce the
total execution time of a problem [1, I 1, 14, 15]. However, these
techniques assume the systems have neither limited resources nor
probabilistic tasks. For the class of global scheduling, software
pipelining [9] is used to overlap instructions, exposing parallelism
across iterations. This technique, however, expands the graph
by unfolding it. Furthermore, such approach is limited to solve

problems without considering the uncertainty of the computation
time [4,9].

The traditional retiming [10] technique was adopted to reduce
the total computation time along the critical paths in a DFG for
nonresource-constrained problems. By applying retiming, the de-
pendencies across iterations are explored. The graph is trans-
formed in such a way that the parallelism is exposed but the behav-
ior of the graph is preserved. In [2,3], a methodology, called rota-
tion scheduling, was developed to address the problem of assign-
ing tasks under limited number of processing elements. Nonethe-
less, those techniques assumed tasks with exact computation time.
Recently, Karkowski and Otten introduced a model to handle the
imprecise propagation delay of events [7]. In their approach, the
fuzzy set theory [16] was employed to model imprecise computa-
tion time. This model is, however, restrict to a simple triangular
fuzzy distribution and does not consider probability values.

In this paper, we employ the idea of pipelining tasks by using
a probabilistic retiming algorithm. The computation time of the
tasks is represented by random variables which can be modeled as
a probability distribution. For example, one might say that for 20%
of the time, task X will take 2 time units to execute. The remain-
ing occurrences of X require 3 time units. Figure 1(a) illustrates
a DFG G, representing a set of tasks to be scheduled. The set
of vertices consists of the nodes A, B,C,D, E,F,G,H, and I.
Considering T, to be a random variable representing the compu-
tation time' for some node v, a possible probability distribution of
the execution time for those nodes, denoted by p(z) = P(T, = z)
where z represents the possible computation time, is presented in
Figure 1(b).

®
‘@*@\fi A
(a)
A B C D E F G H T
p(1) 03 0 [§] 0.9 0 0.5 0.9 0.5 0
p(2) 0.7 0.8 0 0.1 0.5 0 0 0 0.5
p3)| o oloes| o olos| ofo05]o0s
p)| o olos| oflos| ofo1| of o
p(5) | oflo2| of of of of of of o
(b)

Fig. 1. An example of a 9-node graph

Intuitively, such a graph can be probabilistically retimed in or-
der to enhance the parallelism of the graph. In other words, for ev-
ery cycle or iteration, the graph can finish computing in a shorter
time. The measurement of each cycle is also called cycle period,
denoted by ¥(G). By using probabilistic retiming, the placement
of the delays in the graph is rearranged in such a way that the
probability or confidence level of the desired computation time is

'Each value represents a possible computation time of a task

151

acceptable. Examining the example in Figure 1, if we consider the
worst case of each computation time of the nodes in the graph, the
cycle period of this graph will be 14. This result can be verified by
looking at the sum of the worst execution time of nodes E, G, H,
and I; however, this situation might rarely happen.

By using retiming, the cycle period of this graph can be re-
duced as presented in Figure 2(a). After observing the graph, we
found that with confidence level being higher than 90%, this graph
will have the cycle period smaller than or equal to 6. To verify this
fact, Figure 2(b) presents the probability of the sum of the compu-
tation time of the nodes in paths containing no delays. We know
that these paths cause the cycle period of the graph. We can com-
pute the set of possible maximum values out of these distributions
which is the set {4, 5,6, 7}. The probability associated with these
possible values are presented in the last row of Figure 2(b). Notice
that the probability of the possible maximum T' = 7 is less than
10%, P(T = 7) < 0.1, i.e., it is possible that, for more than 90%
of the iterations, this graph will have a computation time less than
7.

5‘;@ fj@

S

(a)
p(2) [p(3) | p(4) p(5) p(6) | p(7)
BA& D 0 072 | 008 0 018 | 002
chHDp 0 0| 045 0.5 0.05 0
F3%H | 025 0 05 0 0.25 0
G5 H | 045 o | o04s 0.05 o[o005
1% a 0] 015 0.5 0.35 0 0
[maxt)] 0[] 0 [0.158 | 0.3836 [0.3895 | 0.069]
(b)

Fig. 2. The retimed graph and the distribution
of no-delay paths

By observing the retimed graph in Figure 2(a), we know that,
with no constraints on the number of processing elements (PEs),
we can assign the tasks to the PEs as presented in Figure 3(a).
Also, according to the new dependencies of the transformed graph,
we can compute a schedule table considering a limited number of
processing elements. Figure 3(b) shows a schedule for a system
with only 3 PEs. Such a schedule will be able to guarantee that
higher than 92% of the time, the entire set of tasks will be com-
puted in less than 11 time units. In order to explain how to sched-
ule the taskz according to a given confidence level of the execution
time, the remainder of this paper is organized as follows. Section 2
presents the graph model used in this work. Required terminology
and fundamental concepts are also presented in this section. The
probabilistic retiming is discussed in Section 3. Section 4 presents
the scheduling under resource constraints algorithm. Experimen-

PET | PEZ | PE3 |
PET | PEZ [PE3 | PE4 | PE5 | B T E
B o) T T e} F Pe; I
D E A H H D A
(a) (b)

Fig. 3. Scheduling with different number of
processing elements

tal results are discussed in Section 5. Finally, Section 6 concludes
the contributions of this research.

2 Preliminaries

We now introduce the graph model which is us d to represent
tasks that are characterized by the uncertainty of the computation
time.

Definition 2.1 A probabilistic graph (PG) is a vertex-weighted,
edge-weighted, directed graph G = (V, E,d,T), where V is the
set of vertices representing the tasks to be executed, E is the set
of edges representing the data dependencies between vertices, d is
a function from E to Z, the set of positive integers, representing
the dependency distance between two nodes connected by an edge,
and T, is a random variable representing the computation time a
nodev €V,

Note that an ordinary DFG is a special case of the PG. A prob-
ability distribution of T is assumed to be discrete in this paper.
The granularity of the resulting probability distribution, if neces-
sary, depends on the need of accuracy. The probability that the
random variable T' assumes the value z, denoted by P(T = z),
is used to represent each of the possible computation time of a
task. Each vertex v € V is weighted with a probability distribu-
tion of the computation time, P(T, = z), where T, is the discrete
random variable associated with the set of possible computation
times of the vertex v. For any vertex, the summation of the prob-
ability of all possible values is one, i.e., Y., P(T, = z) = 1.
In this paper, we assume that all random variables are independent
of each other. That is the basic random variable representing each
node’s computation time is independent and the resulting random
variable, obtained by computing the function of any two random
variables, are also independent. As an example, probability distri-
bution for the set of vertices V = {A, B, C, D, E'} in the graph
of Figure 4(a) are presented in Figure 4(b).

An edge e € E, from vertices u to v, is denoted by u —> v
and a path p starting from a node u and ending at a node v is
indicated by the notation u ~» v . The register count of a path

p=vo v . Y gis d(p) = Zi:ol d(e;). As an
example, Figure 1(a) has the set of edges E = A =% B, A =%
C,A=% D,B-4% EC % E D% E,and E-Z5 A. The
delays of the edges are d(e7) = 2, and d(e;) = 0,for 1 < i < 6.

The retiming method is known as a circuit optimization tech-
nique developed by Leiserson and Saxe [10]. The retiming of a
graph G = (V,E,d,t) where t is a function representing the

152

vEV Ty ==z () =PIv =12z)
z1 | @2 | t(z1) | t(za) | D t(z)

A 2 3 0.8 0.2 1

B 1 2 0.5 0.5 1

C 1 2 0.7 03 1

D 1 2 09 0.1 1

E 1 3 0.9 0.1 1

(b) probability distribution

(a) PG

Fig. 4. The probabilistic graph example

exact computation time of any node in V, is a transformation
function r : V' — Z. The optimization goal of that method-
ology is to reduce the clock period or cycle period ®(G) which
is defined by the equation ®(G) max{t(p) : d(p) = 0}
where p = v % v < -+ —=Y u, t(p) = ZLOt(vi),
and d(p) = 2:01 d(e;). That technique is also applicable in
the high-level synthesis area.The retiming function r tells us the
movement of delays with respect to a vertex so as to transform G
into a new graph G, = (V, E,d,,t) where d, is a new register
count function for G.

3 Retiming with Uncertain Time

In this paper, since the computation time of each node along
the path is a discrete random variable, the sum of computation
times of all nodes connected in a path » L v with no delays
establishes a varying clock period. As mentioned in the previous
section, the summation of the computation time along a path can
be obtained by adding each random variable, e.g., A = Ty + T3,
where T and 15 represent the computation time of two vertices
v and vz connected by an edge e. Furthermore, the maximum
among n random variables, A,..., Ay, can also be computed
in pairs, repeatedly. In other words, the clock period of the PG
becomes a random variable, called maximum reaching time (mrt).
mrt(u, v) represents the probabilistic clock period for the portion
of the graph between nodes u and v.

By considering the DAG portion of the PG, edges with non-
zero registers are omitted. The overall clock period of the graph,
denoted by mrt(G), is computed by mrt(v,, v4), where v; is the
source node connected to all root-nodes, nodes that have no in-
coming edges, of the DAG and vy is the sink node connected to all
leaf-nodes, nodes that have no outgoing edges, of the same graph.
Note that the requirements for a probabilistic graph are usually
described by an acceptable computation time for the final graph,
denoted by c, and a confidence level § = 1 — §, where 4 is the ac-
ceptable probability of not achieving the required performance. In
this paper, the requirement is expressed as P(mrt(G) < ¢) > 4,
or P(mrt(G) > ¢) > 4. The goal of probabilistic retiming is to
transform a PG such that the requirement can be satisfied.

The following presents an algorithm to calculate the mrt of a
graph. In order to simplify the calculation, two dummy vertices
with zero computation time, v, and vg, are added to the graph. A
set of zero delay edges is used to connect vertex v, to all root-
nodes, and to connect all leaf-nodes to vertex v4. Therefore, the
mrt(v,, vg) gives the overall maximum reaching time of the graph.
The timing constraint for the PG is that P(mrt(vs,vq) < ¢) >

8, where c is the desired clock period of the graph and @ is the
confidence probability. Such a requirement can be rewritten as
P(mrt(vs, vg) > ¢) < 4, where § is 1 — 6. Furthermore, because
the mrt is equal to the maximum of the total computation time of
any path routing through zero delays to the same destination node,
one can calculate the mrt by operating merely on the graph that
has zero delay edges, i.e., DAG.

Algorithm 3.1 (Maximum reaching time)
Input: PGG = (V, E,d, T)
Output: mrt(G) = temp,,, (vs, va)

Go = (Vo, Ey,d, T) suchthat Vo = V 4+ {‘U,,’Ud},
Eo=E—{e€ E|d(e) #0}+ {vs — v € Vs, u € Vi —> 14}
Y u € Vo, temp,,,(vs,u) = 0,7y, =Ty, =0, Queve = v,
while Queue # @ do

get(u, Queue)

tempm,‘(v.,, u') = tempmvt("m u) + Tu

€
foreach u — v do
indegree(v) = indegree(v) — 1
temp,,y (s, v) = max(tempy,, (v, , 1), tempy, (vs, v))
if indegree(v) = O then put(v, Queue) fi
od

od

Lines 1 and 2 produce DAG G, from G which contains only
edges e € E, where d(e) = 0. Additional zero delay edges con-
nect vs to every root node v € V,. of G and the other set of these
egdes connect every leaf node u € V; of G to v4. Line 3 initial-
izes the temp,,,, (vs, #) value for each vertex u in the new graph
and sets the computation time of Ty, and Ty, to zero. Lines 4-
13 traverse the graph in topological order and compute the mrt of
each node v with respect to vs. The temp,,, for node v is orig-
inally set to zero. When the first parent of v is dequeued, v has
its indegree reduced by one (Line 9) and also has its temp,,,, up-
dated (Line 10). Vertex v’s other parents are in turn dequeued,
and the process is repeated. Eventually, the last parent of node v
will be dequeued and maximized. At this point, node v will be
inserted into the queue since all parents have been considered, i.e.,
indegree of v equals zero (Line 11). Node v will be eventually de-
queued by Line 5. Line 6 will then add T, to the temp,,,, of node
v producing the final mrt with respect to all paths reaching node
v.

Note that the initial computation time are fixed point values
and the probabilities associated with the computation time being
greater than ¢ are accumulated as one value in the algorithm. Only
O(cn) values need to be stored for each vertex, where n is a con-
stant depending on the number of fixed points. Therefore, the time
complexity for calculating the summation (Line 6), or the maxi-
mum (Line 10) of two vertices is O((cn)?). Since the algorithm
computes the result in a breadth first fashion, the running time of
Algorithm 3.1 is @((cn)?|V||E|), while the space complexity is
bounded by O(c|V|n).

Algorithm 3.2 presents the probabilistic retiming algorithm.
The algorithm retimes vertices whose probability of computation
time being greater than c is larger than the acceptable probabil-
ity value. Initially, the retiming value for each node is set to zero
and non-zero delay edges are eliminated. Then, v, is connected
to the root-vertices of the resulting DAG and vy is connected by
the leaf-vertices of the DAG. Lines 21-31 traverse the DAG in a
breath-first search manner and update the temp,,,, for each node
asin Algorithm 3.1. After updating a vertex, the resulting temp,,,
is tested to see if the requirement, P(temp,_,,(G) > ¢) < 4, is
met. Line 28, then decreases the retiming value of any vertex v
that violates the requirement unless the vertex has previously been

153

retimed in a current iteration. The algorithm then repeats the above
process using the retimed graph obtained from the previous itera-
tion.

Intuitively, Line 28 pushes a delay onto all incoming edges of
a node that violates the timing constraint. Since all descendents of
this node will also be retimed, Line 28 in essence moves a delay
from below vy to above this node. In other words, r(u) = r(u)—1
for all nodes from » to vg. Hence only the incoming edges
of vertex u will have an additional delay. The algorithm stops
when there exists a retiming function satisfying the requirement
(modified_flag false). That is the probability of the mrt
from v, to every other vertices, including v4, being greater than
c is less than §. Otherwise, the algorithm repeats at most |V|
times. Since the computation of the maximum reaching time is
performed in every iteration, the time complexity of this algorithm
is O((cn)?|V|?| E|) while the space complexity remains the same
as in the maximum reaching time algorithm.

Algorithm 3.2 (Probabilistic retiming)
Input: PG G = (V, E, d, t), a desired clock period ¢, and a probability &.
Output: Retiming function r.

¥ vertex v € V, set r(v) =0
fori=1to|V]|do

G, = Retime(Q, r); modified_flag = false
Go = (Vo, Eo,d, T) where Vo = V + {vs,va},

Ey=E—{e € Eldle) #0} + {vs ~5 v e Vp,u€ Vi =2 v4}
Yu € Vo, temp,, (v, u) = 0, Quene = v,, Ty, =T, =0
while Queve # 0 do

get(u, Queue)

temp,,(vs, u) = temp (vs, u) + T

e
foreach u — v do
indegree(v) = indegree(v) — 1
tempp,(vs,v) = max(tempp (Vs , 1), tempga (vs, v))
if P(temp,,,(vs,v) > ¢) > & and u has not been retimed
then r(u) = r(u) — 1; modified_flag = true; f
if indegree (v) = O then put(v, Queue) fi
od

od
if modified_flag = false then Report r, break fi
od

Notice that the selected ¢ may not be either feasible for the
algorithm to find the retiming values or tight enough. Therefore,
one might need to increase or decrease the target clock period and
rerun Algorithm 3.2 to get a feasible or tighter solution.

4 Scheduling under Resource Constraints

The retimed graph, obtained from the previous section, par-
tially gives out some nice properties for scheduling the resulting
graph to the systems. In other words, with enough number of pro-
cessing elements, one can guarantee that the timing requirement
(cycle period) will be met. By investigating such a graph, a sched-
ule under resource constraints can be produced. Notice that the de-
lays in the graph are reallocated. Therefore, it reduces the chance
of having possible long paths. A DAG to be used in the scheduling
process, can be obtained by ignoring edges with non-zero delays
of the retimed graph, i.e., Faag = {e¢ € E : d(e) = 0}. The
following algorithm presents a graph scheduling under resource
constrained environment.

Algorithm 4.1 (Probabilistic Task Scheduling)

Input : PG G = (V, Egag, d, T, number of resources numP
Output: Schedule S

foreachv € V do
if indegree(v) = O then put(v, Queue) fi od
for i = 1 to numP do count(i) = 0 od
Vin =0; Em =
while Queue # 0 do
get(u, Queve); Vi = Vi U {u}
EszmU{v—etu:vEVm,eEEd.g}
Gsav =G = (meEm,d‘T)3 Tp = 003
for i = 1 to numP do
if count (i) # O then E,,, = En, U {node(count(i)) —» u} fi
Y (Gm) = mrt(Gm)
if mrt_less(¥(Gm), Tp)
then Gfinal = Gm; Resource(u) = ¢ Tp = ¥(Gm) fi
Gm =G
od

- e
foreachu — v do
indegree (v) = indegree(v) — 1
if indegree(v) = O then put(v, Queue) fi

sav

count(Resource(u)) = u
Gm = Gfinal
od

Algorithm 4.1 assigns nodes from the retimed graph to the exist-
ing resources. It operates on the graph in a fopological order by
attempting to map nodes in the same topological level to the tar-
get processors. Lines 40-41 construct a graph of scheduled nodes
by inserting a tentative node u to. V;, and adding an edge coming
from the previous node count(z) inside the same partition to the
node u as well as preserving its dependency edges coming from
already scheduled predecessors of the node u. count(z) stores the
last node scheduled in resource 7. By doing that, we can compute
the probabilistic schedule length of those scheduled nodes by us-
ing the concept of the mrt. Algorithm 4.1, now, can use the mrt
to compare whether or not a node should be assigned to a proces-
sor. Lines 43—49 in Algorithm 4.1 present the processor selection
part in which, in each iteration of the algorithm, it selects the re-
source which yields the shortest mrt among all possible resources.
A function called mrt_less is introduced to handle this comparison.
The following defines such a function.

Definition 4.1 Given two random variables T,, and T}, with their
probability distributions p(z;) = P(T, = z;), where x; < Ti41 :
i=1...m,andp(y;) = P(To = y:), where y; < yiq1 : 1 =
1...n, T, is less than T}, under an acceptable probability é if ,for
some integer a and B, Ta < yg such that (37" . p(zi) <
§ < Y pE@)) N ip p(yi) <6 < 7 p(wi)), on,
forza = yg and 37" pla:) < 300 5 p(yi)-

For example, if T, has P(To = z1 = 1) = 0.7, P(T,, = z2

2) = 018,P(T, = 23 = 3) = 0.1, and P(T, = z4 =
4) = 002, and T, has P(Ty, = y» = 2) = 0.7,P(Tp =
y2 = 4) = 015, and P(Tp = y3 = 5) = 0.1. If 6 = 0.2,

then 0 P(T = 1) < 6 < Yo ,P(Ty =) and
Y2 P(Th =) <8< N1, P = yi), with zp = 2
and y2 = 4. According to Definition 4.1, therefore, T, < T}.

Note that a schedule produced by Algorithm 4.1 is an execution
order in which nodes in each partition or resource are ordered.
This complies with the fact that each node in the schedule does not
have an exact computation time, i.e., the notion of global clock tick
or control step is not feasible. Therefore, an asynchronous model
can be applied in this case.

154

5 Experimental Results

In this section we presents the experimental results obtained
from using our algorithm to schedule some well-known bench-
marks where the tasks are atomic operations that may present dif-
ferent execution time due to the fabrication process of a functional
unit. The benchmarks which include the biquadratic IIR filter, 3-
stage IR filter, 4*"-order Jaunmann wave digital filter, 5*"-elliptic
filter, all-pole lattice filter, and volterra filter are scheduled to two
system configurations: 2 adders/1 multiplier and 2 adders/2 multi-
pliers. The distributions of the execution time for the basic compo-
nents (adder and multiplier) were obtained from [5]). Such a timing
information consists of the minimum, typical and maximum val-
ues. For the experiment purpose, these values are broken down
and generalized to fit in the normal probability distribution. In
practice, probabilistic task scheduling algorithm can be applied to
any one-dimensional loop body. The information about computa-
tion time of a task can simply be obtained by either using direct
examination of the code or the use of profile information collected
by the earlier runs of the program [13].

In each experiment, for a given confidence level § and a PG,
Algorithm 3.2 is used to search for the best clock period of the
graph. In order to do this, the current desired clock period is
varied based on whether or not a feasible solution is found. For
instance, if the current desired clock period c is too small, the al-
gorithm will report that no feasible solution exists. In this case,
¢ will be increased and Algorithm 3.2 will be re-applied. Until a
feasible ¢ is found, this process is repeated. Table | shows the re-
sults obtained from running traditional retiming using worst-case
computation time assumptions and the probabilistic model with
varying confidence levels. In particular, Column worst in the table
presents the optimized clock period obtained from applying tra-
ditional retiming using the worst-case computation time of each
adder (24ns) and each multiplier (30ns). Columns 4-9 show the
best clock period ¢ for the confidence levels 0.9 down to 0.7 and
percent reduction (%) over the clock periods of the benchmarks
considering worst-case scenario.

Pimri{v,,vg) <c) > T =0 =

num. c d=0.9 9 =0.8 9 =0.7
Benchmark nodes worst C % c % c %
1. Biquad IIR 8 78 60 | 23 57T | 26 56 | 28
2. 3-stage IIR 12 54 44 19 41 24 40 | 26
3. WDF 17 156 116 | 26 112 | 28 109 | 30
4. Lattice 15 157 120 | 24 H7 | 25 s | 27
5. Volterra 27 276 216 | 22 | 212 | 23 | 208 | 25
6. Elliptic 34 330 240 | 28 | 236 | 29 | 233 | 30

Tab. 1. Probabilistic retiming versus worst
case traditional retiming

Tables 2 and 3 compare the resulting schedule length obtained
from running list scheduling algorithm on the original graph and
the retimed graph using the information from Table 1 while con-
sidering the exact values (largest one) for the computation time
and the probabilistic computation time. Assume that the synchro-
nization cost, occurring when two dependent nodes are assigned to
different functional units, is negligible. Column “worst” shows the
schedule length of the benchmarks under the worst-case scenario.
Column “Bef™ presents the schedule length obtained by applying
list scheduling for varying confidence level to those benchmarks.

Column “Aft” illustrates the optimized schedule length after prob-
abilistic task scheduling is applied. In order to quantify the im-
provement of the probabilistic retiming algorithm, each of column
“%” in the tables lists the percent reduction of the schedule length
reduction compared with the schedule length obtained without ap-
plying probabilistic retiming.

Schedule Tength given @, (2 adds. T mult)
=09 0 =08 7 =0.7
Ben wst Bel Aft % Bef Aflt % Bel Aft %
1. 144 125 91 27 121 90 26 118 102 26
2. 204 188 151 20 184 147 20 181 143 21
3. 186 157 142 10 154 138 10 151 136 10
4, 312 229 176 23 225 172 24 222 169 24
5. 750 526 509 3 519 502 3 514 | 497 3
6. 414 318 298 6 314 294 6 310 | 290 6
Tab. 2. Scheduling to the systems with 2
adders

We have also tested some benchmarks by running the tradi-
tional retiming algorithm using the average case computation time,
although these results are not shown here. Most of the result re-
timed graphs induce the longer schedule length than using our ap-
proach. For example, in the biquadratic IIR filter; with § = 0.7, its
schedule length is 105 while considering the probability during the
retiming results in the schedule with length 90 in the 2-adder and
1-multiplier system. Likewise, in the 5 _elliptic filter, the sched-
ule length considering the average-case value is 304 with § = 0.9
while our approach gives the schedule with the length 298 for the
same system.

By using our method, the obtained schedule length [is ensured
with a confidence level greater than 90%. For example, in the
system with two adders and one multiplier, after running the prob-
abilistic task scheduling algorithm on the Biquad IIR filter, the
obtained result guarantees that, if the confidence level is 0.1, the
schedule length will be less than 91, which is 27% shorter than
the result obtained from considering the worst case scenario. With
such a high confidence probability, the results show that, using our
approach, the schedule length of these benchmarks can be much
less than the schedule length obtained when considering worst-
case scenario.

Schedule Tength given 7, (2 adds. 2 mults.)
9=0.9 7=0.38 7 =0.7
Ben | wst [Bel T Aflt % | Bel T Alt % | Bel T Aft %o
1. 108 85 66 | 22 83 62 [25 80 63 | 21
2. 162 | 124 87 | 30 | 120 82 | 32 | 118 82 | 31
3. 180 | 137 | 135 1 133 | 132 1 131 | 130 1
4. 312 | 229 | 153 | 33] 225 | 149 | 34 [222 | 143 | 36
5. 510 | 359 | 342 51 353 | 336 5| 349 | 332 5
6. 372 | 288 | 272 6 | 284 | 268 6 | 282 | 265 6

Tab. 3. Scheduling to the system with 2
adders and 2 multipliers

6 Conclusion

In some applications in high-level synthesis area, a task may
have uncertain computation time. Such tasks normally occur due
to hardware manufacturing process or the estimation during sys-
tem design process. A probability distribution can be used to mir-

155

ror these uncertainties. We have presented the theoretical foun-
dation and experimental results for a new scheduling framework,
called probabilistic task scheduling, which reduces the chance that
the system will take a long time to finish computing all iterations.
Considering the realistic case, our algorithm can effectively sched-
ule those tasks while utilizing the task probability information and
the designer confidence probability §. Based on the framework
presented in the paper, it is likely that the probabilistic optimiza-
tion algorithms may have a great impact to various problems in
high-level synthesis.

References

[1] U.Banerjee. Unimodular transformations of double loops. In
Proc. of the Workshop on Advances in Languages and Com-
pilers for Parallel Processing, pages 192-219, 1990.

L. Chao, A. LaPaugh, and E. Sha. Rotation scheduling: A

loop pipelining algorithm. In Proc. of the 30th DAC, pages

566-572.

L.-F. Chao and E. H.-M. Sha. Static scheduling for synthe-

sis of DSP algorithms on various models. J. of VLSI Signal

Processing, pages 207-223, October 1995.

E. M. Girczyc. Loop winding—a data flow approach to func-

tional pipeline. In Proc. of the ISCAS, pages 382-385, May

1987.

Texas Instruments. The TTL data book, volume 2. Texas

Instruments Incorporation, 1985.

R. A. Kamin, G. B. Adams, and P. K. Dubey. Dynamic list-

scheduling with finite resources. In Proc. of the 1994 ICCD,

pages 140-144.

I. Karkowski and R. H. J. M. Otten. Retiming synchronous

circuitry with imprecise delays. In Proc. of the 32nd DAC,

pages 322-326. -

A. A. Khan, C. L. McCreary, and M. S. Jones. A com-

parison of multiprocessor scheduling heuristics. In Proc. of

the 1994 ICPP, pages 243-250.

M. Lam. Software pipelining. In Proc. of the ACM SIG-

PLAN’88 Conf. on Programming Language Design and Im-

plementation, pages 318-328. '

[10] C. E. Leiserson and J. B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6:5-35, 1991.

[11] W.Liand K. Pingali. A singular loop transformation frame-
work based on non-singular matrices. Technical Report TR
92-1294, Cornell University, Ithaca, NY, July 1992.

[12] P. Mozumder and A. Strojwas. Statistical control for VLSI
fabrication processes. In W. Moore, W. Maly, and A. Stro-
jwas, editors, Yield Modeling and Defect Tolerance in VLSI.
Adam Hilger, Bristol and Philadelphia, 1987.

[13] D. A. Patterson and J. L. Hennessy. Computer architecture:
A Quantitative approach. Morgan-Kaufman, 1996.

[14] M.E. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, Redwood City, CA, 1996.

[15] M. E. Wolfe and M. S. Lam. A loop transformation the-
ory and an algorithm to maximize parallelism. IEEE Trans.
on Parallel and Distributed Systems, 2(4):452-471, October
1991.

[16] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility.
Fuzzy Sets and Systems, 1:3-28, 1978.

[2]

[31

[4]

(3]
(6]

(71

(8]

(91

	Main Page
	GLSVLSI97
	Front Matter
	Table of Contents
	Author Index

