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Abstract

Automatic test pattern generation yielding high fault cover-
age for CMOS circuits has received a wide attention in in-
dustry and academic for a long time. Since ATPG is an NP
complete problem with complexity exponential to the num-
ber of circuit elements, the parallelization of ATPG is an at-
tractive of research.

In this paper we describe a parallel sequential ATPG ap-
proach which is either running on a standard network of
UNIX workstations and also, without any changing of the
source code, on one of the most powerful high performance
parallel computers, the IBM SP2.

The test pattern generation is performed in three phases,
two for easy-to-detect faults, using fault parallelism with an
adapting limit for the number of backtracks and a third
phase for hard-to-detect faults, using search tree parallel-
ism.

The main advantage over existing approaches is a dynamic
solution for partitioning the fault list and the search tree re-
sulting in a very small overhead for communication without
the need of any broadcasts and an optimal load balancing
without idle times for the test pattern generators.

Experimental results are shown in comparison with existing
approaches and are promising with respect to small over-
head and utilization of resources.

1. Introduction

Automatic test pattern generation for combinational log-
ic based on the FAN algorithm [FuSh83] has reached a high
level of maturity. FAN has also been modified for test gen-

eration in synchronous sequential circuits presented in
[ChBAS88], [SuAu89], [ChCh89], [GoKa9l], [NiPa9l},
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[GIVi95], [GIVi96]. Although good experimental results
have been shown for all those approaches, they are still no
solution to the sequential ATPG problem, since they do not
provide good results for complex real-life circuits.

The main objective of our present work is to develop a
distributed algorithm for test pattern generation with the
following features:

» reducing the run times for test generation for large
circuits from days to hours

+ executable on any network of workstations (including
heterogeneous networks) and on the high performance
parallel computer IBM SP2

« minimal overhead for communication

« optimal load balancing without idle times for the test
pattern generators

To meet these features, we designed a communication
scheme with “active servers” for test pattern generation and
a “passive client” to organize the fault list and one server to
handle fault simulation. In contrast to standard client server
models, our “active servers” for test pattern generation send
messages to the fault list handler client, requesting a fault to
be treated. In this way there is no need for any broadcasting
to synchronize the test pattern generators, synchronization
is done by the fault list handler, distributing fault by fault
after every request from one “active server”.

This communication scheme with a dynamic dividing of
the fault list and of the search tree is in contrast to the exist-
ing approaches with mostly a static dividing of the fault list
and of the decision tree. Since the communication overhead
need in our approach is quit low, we can use any standard
network of UNIX workstations for test pattern generation
even with slow connections between, the workstations. For
even faster test pattern generation we can use the IBM SP2



high performance parallel system (or any other parallel
computer with UNIX nodes).

The test pattern generation in each node is based on the
FOGBUSTER-algorithm [G1Vi95] and [GIViY6]. In con-
trast to the BACK-algorithm [ChBA&8] FOGBUSTER
uses a forward propagation and backward justification
technique, which is in general more efficient than the ex-
clusive reverse time processing that BACK uses.

2. Related Work

Parallel ATPG approaches have been proposed recently.
Similar approaches for combinational ATPG are described
in [AgTo93], [KIKa93} and [KIKa93]. A similar algorithm
with full partitioning of the fault list over the test genera-
tion processes is presented in [AgAg93]. Another approach
distributing the search space is shown in [RaBa92] and
[Krau94]. In [BuAg95] an approach with an adaptive time
limit is shown, also using fault list and search tree parallel-
ism.

The aim of this paper is to compare our parallel ap-
proach with the existing approaches in order to show the
advantages of our dynamic communication scheme over
the existing approaches.

Our approach is dynamic since during the first two phas-
es, the fault list is dynamically divided by a fault list han-
dler process, and during a third phase the decision tree is
dynamically distributed between the TPG-nodes. This is in
contrast to most of the existing approaches, which divide
the fault list or the decision tree statically, resulting in an
increasing amount of communication at the end of the
ATPG, when the process of dividing must be re-done sever-
al times to ensure a good load balance.

The rest of the paper is organized as follows: In section
3 we provide details of the parallel sequential ATPG ap-
proach. In section 4 some implementation details are pre-
sented. Experimental results and comparison with the
existing approaches are shown in section 5, followed by
conclusions.

3. The Parallel ATPG Approach

In the following, our PARSET algorithm (Parallel Test
Generation for Synchronous Sequential Circuits) is de-
scribed in detail.

3.1

PARSET aims at parallel test generation with each test
generator handling a different fault at the same time (paral-
lelization via the fault list) during the first two phases, dur-
ing the third phase each test generator handles the same
fault but a different part of the decision tree (parallelization
via the search tree). Whenever a test generator finds a test
sequence for a fault or a fault is proved to be redundant,
this is reported to the fault list handler. In case a test se-
quence is found, this sequence is simulated by the fault
simulator. In case of redundancy the fault list is updated
(during the third phase only if all the test pattern generators
report redundancy), and the fault simulation updates also
its own fault list for redundant and covered faults.

The algorithm overview
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We found out that in general it does not make sense to
parallelize the fault simulator because this paralielization
will not increase the efficiency of the approach significant-
ly. The reason is the different complexity of test pattern
generation (> NP complete) and fault simulation (€ P).

3.2

PARSET consists of four different processes:

The processes

« The master-process (MS): A single top level process

handling subprocess incarpation and subprocess
starvation.
e The fault-list-handler (FLH): A single process

handling the fault list, a “passive client”.

» The fault-simulator (FS): A single process handling
fault simulation, a “normal server”.

s The test-pattern-gencrators (TPG): A number of
processes handling test generation for different faults
and different parts of the decision-tree, “active
servers”.
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The master process starts all the other processes and
watches for termination. In big intervals it checks all the
processes for being alive, thus allowing to handle abnormal
termination of the TPG. In case of abnormal termination of
one TPG it sends a message to the FLH to reset the fault
the terminated TPG was working on.

The FLH, the FS and the TPG are based on the same ex-
ecutable program. The MS sets them up to do their right
work.

The FLH organize the fault list and gives the faults to
the TPG and receives the results from the TPG and from
the FS to update the fault list.

The FS receives test patterns from the TPG, simulates
these patterns and sends the covered faults to the FLH.

The TPG work on one fault per time, during the third
phase only on a part of the search tree. Results are reported
to the FLH and in case of success to the FS.

3.3. The message types

The message passing scheme of PARSET is shown in
figure 1 and is nearly the same during the three phases of
test generation. There are cight different messages sent be-
tween the processes:

 Incarnation messages sent by the master to any
subprocess and termination messages received from
any subprocess by the master.

+ A “fault message” is sent from the fault list handler to
any test generator after a request from the test
generator.

» The “pattern sequence message” is sent from a test
generator to the fault simulator in case of success.

« The “test gencration result message” is sent from any
test generator to the fault list handler after finishing
with one fault, thus also asking for the next fault.

« The “fault covered message” sent from the fault
simulator to the fault list handler.
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+ A kill signal is sent from the fault list handler to any
test generator if the fault which the test generator is
actually dealing with is found to be covered by the
pattern currently investigated by the fault simulator.

The kill signal is used to avoid redundant work in the
test pattern generation process on one hand and to reduce
the number of test patterns on the other hand. Although a
test sequence for a covered fault is sometimes useful to
cover some other faults, we decided to stop test generation
in this case for reduced test generation time.

The following messages occur only during the phase for
handling the search tree parallelism:

e The “split search tree signal™ is send to a test generator
from the fault list handler to start a splitting of the
decision tree

e A “part of the search tree” is send from one test
generator to another test generator after receiving the
“split search tree signal”

3.4. Process algorithms

In the following, the main process algorithms are de-
scribed with pseudo code.

fault_list_handler() {
do {
if fault-covered-message received { (1)
mark fault covered;
remove fault from fault-list;
if' a test-generator is working on this fault
send kill signal to test generator;
b

else if test-generation-message received { (2)
analyze result of test generation;
mark fault with result
take detected fault from fault list;
send next fault to test generator;
if phase =3



send split signal to selected test generator
b
Ywhile fault list is not empty;

}

The fault list handler receives two different types of
messages. The first message type (1) is received from the
fault-simulator whenever a fault is found to be covered.
The fault list is updated after this message. If a test genera-
tor is currently working on this fault, a kill signal is sent to
the test generator.

The second type of message is the test generation result
for a fault received from a test generator (2). Due to the re-
sult of the test generation, the fault is mark tested, aban-
doned or redundant, respectively. Then a new fault of the
fault list, which is not marked yet, is sent to the test genera-
tor. During the third phase another test generator is chosen
to split his search tree and therefore the split signal is send
to this test generator.

fault_simulator() {
while test sequence is received {
fault simulate test sequence;
for all faults covered in the fault simulation
send fault-covered-message to fault-list-handler;

The fault simulator waits for a test sequence from a test
generator. When a test sequence message is received, the
test sequence is fault simulated, and all the faults, which
are covered by this pattern sequence, are sent to the fault
list handler by a fault covered message in order to update
the status of the fault list handler.

test_generator() {
send begin message to fault list handler;
while a fault to test is received {
if fault list parallelism
receive decision tree
test generation for fault with signal handling;
send test-generation-message;,
if test-generation was successful
send pattern sequence;

b

After sending a begin message to the fault list handler a
test generator receives a fault and the test generation func-
tion is called to generate a test sequence for the fault or to
proof the fault untestable. The result of the test generation
is returned to the fault list handler, thus asking for the next
fault. If the test generaticn was successful, the test se-
quence is sent to the fault simulator. When a kill signal is
received by a test generator, test generation is immediately
stopped.

During the third phase the test generator waits for a part
of the search tree after receiving a new fault from the fault
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list handler. During the test generation procedure a signal
handling is performed to send a part of his own search tree
to another test generator. This is done by scanning the deci-
sion tree from the root to the first optional decision, mark-
ing this decision as non-optional and sending this part of
the decision tree to another test generator.

3.5. Adaptive backtrack limit

For limitation of the run time for one fault we use a limit
for the number of allowed backtracks. This limit is very
important for the result of the test pattern generation (used
time and received fault coverage).

After a certain amount of non-successful ATPG-at-
tempts, the backtrack limit is increased by factor.

The limits for multiplying the number of backtracks are
based on experimental results.

3.6. Communication and memory management

The communication overhead is very low in our ap-
proach. Each process works on its own data structure copy.
The message sizes for the communication are fixed to some
few bytes with two exceptions: the pattern sequence and
the parts of the search tree. For the pattern sequence, the
message size depends on the length of the sequence, for the
decision tree the message size depends on the position of
the first optional decision, which is normally located near
the root of the tree. We make use of the message packing in
PVM [GeBe94] to keep the message size low. Thus the size
of a test sequence or part of the decision tree package is
usually not larger than a few hundred bytes.

One limitation of this approach is that every process has
to store the data structure of the circuit and thus there is re-
dundancy in the main memory management. This redun-
dancy cannot be avoided when working on a network of
workstations with low communication overhead.

A typical communication diagram is shown in figure 3.
Each black line between the processes indicates a commu-
nication message between them. The starting point and the
end point of the lines also indicate the times when the mes-
sage is sent and received. It is visible that the fault list han-
dler (FLH) and the fault simulator (FS) have the highest
communication effort, while the communication effort of
the test generators (TPG) is relatively low.

3.7. ldle times

The master (MS) has only little work to do and is thus
idle most of the time. For this reason we normally start this
process on the same physically machine as the fault list
handler.

Due to the dynamic handling of the fault list and the
splitting of the search tree, the idle times of the test genera-
tors are very low. The amount of idle time depends on the
time the process is waiting for a fault from the fault list
handler and, in phase three, on the time the process is wait-
ing for a part of the search tree. If the fault list handler is
idle at the time, a test generator finished its work, a new
fault is immediately returned to the test-generator and there
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circuit with 8 TPGs

is no idle time. In some cases, when the fault list handler is
communicating with the fault simulator, there is some
small amount of idle time for the test generator, since the
communication of the fault list handler with the fault simu-
fator has higher priority than the communication with a test
generator. This priority is given to the communication with
the FS to avoid sending one fault to a TPG and then receiv-
ing a covered fault message from the FS for this fault re-
sulting in a kill message to the TPG. The time to wait for a
part of the search tree is also very short, because the signal
handling is performed immediately by the test generator
that should send the part of the decision tree. We found in
experiments that the idle times of the test generators are
usually less than 1% of the overall time of a test generator.

4. Implementation issues

PARSET is implemented in C++ language with about
20.000 lines of code. For parallelization we use PVM soft-
ware (Parallel Virtual Machine) [GeBe94] and UNIX sig-
nals [Brow94]. The PVM library is available as public
domain software for most of the existing UNIX Hardware
and also from IBM with the same functional interface for
the SP2.

5. Experimental results

We tested the software on the ISCAS *89 benchmark
[BrBr89] circuits using the stuck-at fault model with the re-
set option. For the test generation processes we used SUN
IPC and SUN Sparc 1 workstations plugged to the GMD
Ethernet network and the IBM SP2 at GMD with 34 nodes,
using standard Ethernet communication between the nodes.

Due to user restrictions in using the SP2 we can not
show at this moments results for all circuits on the SP2. We
present results for most of the circuits up to the s526 and
also one result for the s1423. The wall clock time for test
pattern generation for the s1423 was externally limited to
25 hours, resulting in the missing of the time for FS, the
killed time and the communication time.

In our final paper we will present more results on the
SP2, including results for different numbers of processors
on the same circuit to show the received speed up. From
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our current experiments we can report normally a linear
speed up and sometimes a super-lincar speed up like re-
ported in other approaches.

In table 1 we show complete results for a number of cir-
cuits received on the SP2.

The “Time for TPG’ is the maximum of the times used
in every TPG for test pattern generation. The ‘Killed Time’
is the sum of all times in test pattern generation which are
aborted by a kill signal. ‘PVM Time for Commun.’ is the
maximum of time used in the TPG for sending / receiving
messages.

The small amount of communication time shows the ef-
ficiency of our communication scheme.

Table 1: ISCAS ‘89 BENCHMARK RESULTS FOR

. . PVM
N - - Redun- Max <1 Sumof | .. -
Clircuit Fault Efti- ) Aborted | . No of ] Time for
Name | Coverage | ciency dant Faults Time for CPU’s Killed Commun
§ Faults T TPGiIns | T Time in s ins .
$29% 89.73 95.27 16 14 18 4 <} <l
5344 97.00) 100.00 10 O 7 4 <1 <!
5349 97.08 99.42 ¥ 2 4 4 < <1
5382 96.16 97.95 7 8 481 20) 138 2
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s444 86.70) 98,50 55 7 227 20 2,745 2
$526 30.04 84,10 22 86 12,967 8 5,184 12
s1423 43.23 44.72 25 862{ 90000 20 17312 415

In table 2 we show a comparison with other approaches.
Note the following when comparing the run times:

» different hardware as listed in the table
« sometimes a higher efficiency by longer run times

= by some approaches can be found a big amount of idle
and / or communication time not included in the TPG
time.

The results for GENTEST par where taken from
[AgAg93], for GENTEST adapt from [SiAg95], for ES-
SENTIAL / SCOAP from [Krau94] and for ProperTEST /
SCOAP from [RaBa92.]



Table 2: ISCAS ‘89 BENCHMARK RESULTS FOR PARSET IN COMPARISON WITH OTHER APPROACHES

PARSET SUN/Ethernet PARSET IBM SP2 ESSENTIAL / SCOAP ProperTEST / SCOAP GENTEST adaptive
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