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Abstract

We describe a system design methodology, well-suited for
telecom network applications. This methodology is being
developed into a compiler called Matisse. The entry point
for this methodology is a system specification model that is
first compiled into an abstract machine. The abstract ma-
chine is implementation-independent, which permits the ex-
ploration of different embedded hardware/software realiza-
tions. The proposed methodology and tools bridge the gap
between system specification and synthesis tools commer-
cially available. This yields several advantages over the de-
sign methodology currently used in industry.

1. Introduction

Modern telecom systems are rapidly increasing in design
complexity. Telecom network applications include system
components for broadband networks [11], wireless infras-
tructures, and interactive video-on-demand servers. These
and other emerging applications in similar areas are among
the fastest growing segments of the system industry today.

Currently the design of telecom network applicationsis a
collaborative effort taking place at multiple sites. Hardware
and software components are designed separately, which of-
ten introduces both specification and implementation mis-
matches that are only detected at the final design stages.
Currently, the system integration and test phases can take
nearly 50% of the complete system design cycle for typical
telecom network applications.

Each software component is usually specified using
SDL [17]. C or C++ code is then automatically generated
and compiled to machine instructions for the target proces-
sor. Run-time support is added for managing concurrency
and interprocess communication {21]. Each hardware com-
ponent is specified at the register transfer level, using VHDL
or Verilog, and a detailed implementation is produced using
logic synthesis. This level of specification is often hard to
read, modify, and reuse. The code is already refined with
detailed clock cycles, and specific architectural decisions
are already fixed. Small changes at the system level often
require very substantial changes in the specification of the
hardware or software components.
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Most system-level research and CAD innovations today
are focussed on Digital Signal Processing (DSP) applica-
tions (e.g. [3, 7, 12]), which are different in nature from tele-
com network applications. Telecom network applications
require complex manipulation of complex data structures
that are often dynamically created and destroyed at run time,
as opposed to the (multi-dimensional) atray signal streams
present in DSP applications that can be largely analyzed at
compile time. As compile-time analysis is not possible for
telecom network applications, the memory-oriented synthe-
sis techniques proposed for DSP applications may not be
used. Due to many differences in nature between these ap-
plication domains, system model and design tools should be
domain-specific.

DSP models tend to be data-flow oriented, which are
not well-suited for control-dominated data processing be-
haviors found in telecom network applications that heavily
rely on tight interactions between control-flow algorithms
and stored data structures. The hierarchical FSM model,
as exemplified in commercial systems like Statemate from
iLogix, is a powerful formalism for reactive control be-
haviors, but it does not support well programming con-
structs like abstract data structures and object-oriented fea-
tures. Heterogeneous design environments, like Ptolemy [3]
and CoWare [16], aim to provide an open environment to
smoothly integrate different models of computation together
with simulation and design tools. Distributed programming
languages have been proposed for programming general-
purpose multiprocessor systems or distributed networks of
workstations [1, 2, 4, 5, 14, 18]. While their underlying
models are strongly related to our Matisse model, their
implementation targets are different: they rely on elabo-
rate run-time environments and are intended for pure soft-
ware implementations. In contrast, our implementation tar-
get is intended for optimized embedded single-chip hard-
ware/software realizations.

In this paper, we first present a system specification
model, well-suited for telecom network applications, which
is independent from hardware/software realizations. We
then present a system design flow that permits extensive de-
sign exploration. The paper is organized as follows. In Sec-
tion 2, we present the requirements to be supported by our
Matisse model and by our system design flow. Then we de-
scribe the main concepts of the Matisse model in Section 3.
In Section 4, after having given an overview of the system
design flow, we focus on two of its major steps: the underly-
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ing abstract machine and the system architecture generation,
Finally in Section 5, conclusions are presented.

2. Requirements

The requirements that are supported by our system model
and design flow were obtained from actual designs [19] in
the telecom network domain.

System specification requirements

Telecom network applications are conceptually seen as
sets of concurrent tasks for accessing data. Therefore data
have to be considered as stored objects from the beginning.
Concurrency tends to be at the task level and is usually
coarse to medium scale.

Although the target implementation of a telecom network
application is often a mixture of software and hardware pro-
cessors, telecom network applications are best-suited to be
conceived at the top level from a software perspective, by
modeling the system as a set of concurrent processes, pos-
sibly accessing shared data structures. Control constructs,
such as if-then-else and for and while loops, are essential for
capturing algorithmic behavior of each process.

The example illustrated in Figure 1 abstracts the require-
ments encountered in specifying telecom network applica-
tions and fulfilled by the proposed Matisse model. It con-
sists of a shared linked list of records, a producer that sends
data to be stored in the shared list, and a consumer that reads
data from the shared list, one at a time. Once a record is read
by the consumer, it is destroyed from the shared list.

While an object-oriented model is not necessary, it has
been proven successful in the software design commu-
nity, and it also plays a central role in large scale hard-
ware/software system design. Object-oriented languages
concentrate on the real-world entities identified in the appli-
cation, which are tasks for accessing data, in telecom net-
work applications. Object-oriented languages support data
abstraction, encapsulation, polymorphism, function over-
loading, and inheritance, which are invaluable features in
any large scale development. With these abstraction facil-
ities, implementation decisions and low-level specification
details can be hidden. This also allows easy and fast design
exploration. Although the object-oriented paradigm may
incur design overhead, by restricting the specification lan-
guage and by automating the system design flow, these in-
efficiencies are minimized.

Concurrent object-oriented models are well-suited for
telecom network applications, since they are intended for
concurrent computations to be executed on more than one
processor. Objects can encapsulate processes as well as
(shared) data structures. Remote procedure calls can encap-
sulate interprocess communications.

Consequently, a system specification language that sup-
ports a concurrent object-oriented model is well-suited for
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specifying telecom network applications. Such a system
specification language should also have the following char-
acteristics: reflect the conceptual partitioning of the system,
seen as a set of concurrent tasks for accessing data, be inde-
pendent from the final implementation, be manipulatable to
permit efficient design exploration and easily retargetable to
different embedded hardware/software realizations. This is
in contrast to current system specifications, which are using
VHDL for specifying the hardware processors, and C/C++
for specifying the software processors.

System design flow requirements

Starting from a system specification language conform-
ing the requirements mentioned above, the system design
flow needs to be automated in order to avoid specification
and implementation mismatches, to accommodate changes
in the system specification, and to allow design exploration.
The functional specification should be validated already at
the system level, without executing both hardware and soft-
ware low-level specifications, that are too time-consuming,

Also the system design flow should be optimized for tele-
com network applications and provide support for: refine-
ment of abstract data types into complex data structures,
such as heaps, hash tables, tress and linked lists, refinement
of the virtual memory management, memory access opti-
mization and memory synthesis. HW/SW interprocessor
communication synthesis should also be provided. Such a
system design flow bridges the gap between system specifi-
cation and commercial tools.

3. System Model

The Matisse model, supporting the requirements pre-
sented in Section 2, is a simplified model of the one under-
lying Compositional C++ (CC++) [5]. CC++ is a concur-
rent object-oriented language extended from C++ that is in-
tended for specifying concurrent programs to run on a net-
work of workstations over an elaborated Operating System
(0S). However, Matisse is intended for specifying concur-
rent processes to run on a mixture of embedded software and
hardware processors over an ultra-light OS.

In the Matisse model, a system is considered as a set
of concurrent tasks for accessing data. Tasks are created
at the initialization of the Matisse program only, and ex-
ecute concurrently. A task encapsulates both a sequential
program and local data, on which the sequential program
operates. Tasks communicate with each other without ex-
plicit specification of communication channels. Tasks can
be mapped on physical (hardware or software) processors in
various ways: in particular, multiple tasks can be mapped on
a single physical processor. However, because tasks com-
municate with each other using the same mechanism regard-
less of task mapping, a Matisse program does not depend on
where tasks are executed. Hence algorithms can be designed
without concern for the physical processors on which they
will execute.

Specifying shared data structures is also possible. With
the power of Matisse to its disposal, a library of com-
mon and explicit communication concepts, like channels
and buffers, can also be developed.



3.1. Concepts

Now the different concepts that are used in the Matisse
model are explained in more detail.

Passive and active classes In Matisse, two types of
classes are distinguished: active and passive. A passive
class is identical to a C++ class. Passive objects, which are
instances of a passive class, may be created and destroyed
either at compile time or at run time. An active class differs
from a passive class by having its own local virtual memory
space and default thread of control. This thread is initiated
at the creation of the active object, and it is specified by the
special member function body. Active objects may only be
created at compile time, to avoid creation of new threads at
run time that may be difficult to implement on a hardware
processor.

Concurrency at the task level In a typical Matisse pro-
gram, the number of active objects is small, compared to
the number of passive objects. The passive objects exist as
data elements of active objects. Active objects are created
in the main function, which yields the concurrent initiation
of their bodies. Hence the main function provides the task-
level concurrent structure of the Matisse program.

Communication Accessing data elements within an ac-
tive object is done by using C++ pointers. It is regarded as
local and hence as cheap. Active objects can be accessed by
each other using global pointers. Intuitively a global pointer
indicates both the address of the active object and the ad-
dress of some data element in its local virtual memory space.
Except for their potentially higher cost of use, global point-
ers are used just like C++ pointers.

Inside a thread, computation can be executed in another
active object via a Remote Procedure Call (RPC) and data
can be communicated between both active objects, by using
global pointers.

Synchronization Due to concurrent computations, sev-
eral accesses to data elements or member functions in an ac-
tive object can occur simultaneously. Matisse provides one
method for controlling the order in which things happen, by
using atomic functions. Whenever several threads are call-
ing an atomic function, this atomic function is executed the
required number of times in a sequential order. Also the ex-
ecution of an atornic function never interleaves with the ex-
ecution of another atomic function of the same active object.
This concept of atomic function is based on the monitor con-
cept introduced by Hoare in [10]. Since there are no condi-
tion variables, some rules for defining atomic functions must
be followed in order to avoid deadlocks.

Shared Data structures FEach active object represents
one local virtual memory space, with a default thread exe-
cuting in it. Passive objects are never shared between active
objects. If it appears that a passive object needs to be shared
by several active objects, the designer has several options.
He can, for example, specify typical active objects with an
empty body function and whose data elements are those pas-
sive objects to be shared. The protection of the passive ob-
jects, using atomic functions, is the responsibility of the ac-
tive object itself [22].
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Figure 2. Example in Matisse

3.2. Example

The simple example, introduced in Figure 1, can be spec-
ified, using Matisse, as follows.

class record {

public:
int
record*
void*
void

Yi

item;
next;
operator new(size_t);

operator delete(void*, size_t);

active class consumer {
public:
body (shared list* global gp) {
int i;
i = gp->get();
cout << i << endl;
}
Y

active class producer {
int i;
public:
producer () { i = 0; }
body (shared list* global gp) {
int i;
gp->put (i} ;
i++;
}
¥i

active class shared list {

record *head, *tail;
public:
shared_list () {
head = 0;
tail = 0;
}
atomic int get () (

// return first record of the list and then delete it

}
atomic void put {int i) {
// store i at the end of the list
}
}i

int main ()} {
shared_list* global rec_list;
producer* global prod;
consumer* global cons;

rec_list = new shared_list();
prod = new producer(rec_list);
cons = new consumer (rec_list);

This is illustrated in Figure 2. The shared linked list of
records is specified by the object rec_1ist of the active
class shared_list, the producer is specified by the object
prod of the active class producer, and the consumer is
specified by the object cons of the active class consumer.

Through the definition of the new and delete opera-
tors, the memory management can be defined precisely, for
instance to limit the number of records and the maximum
size of the shared list.



The tasks executed by producer and consumer are spec-
ified by their body member functions. Insertion and dele-
tion of records in the linked list are specified by the member
functions get { ) and put () of shared.list, whichare
called as remote procedures by the producer and consumer
objects. In this way, neither the producer nor the consumer
have to worry about the management and the access control
of the shared memory.

4. System Design Flow

A systematic approach to design a system consist-
ing of concurrent processes accessing shared data
must provide mechanisms to evaluate alternatives and
to reduce the cost of backtracking from bad choices.
Implementation-independent issues must be considered
early and implementation-dependent aspects, such as
system and memory architecture, must be delayed until late
in the system design flow. Before being specified using
Matisse, the system to be designed must be first analyzed,
then shared data must be identified, in order to partition
the system into a set of concurrent processes for accessing
these data.

We propose the system design flow depicted in Figure 3,
starting from an initial concurrent object-oriented specifi-
cation within the Matisse model, and targeting a hetero-
geneous implementation of software and hardware proces-
sors. This refines the general design methodology for tele-
com network applications introduced in [13].

The Matisse program, using abstract data types, as sets
and association tables, specifies the system to be described.
The example, shown in Section 3.2, is such a Matisse pro-
gram. The abstract machine consists of an internal rep-
resentation, which characterizes the Matisse program as a
network of communicating virtual processing objects.

System architecture generation consists in allocating a
number of hardware and software physical processors and
mapping the abstract machine to this target architecture of
physical processors.

Software processor synthesis consists in generating the
complete specification of each software processor, so that
synthesis is made possible by using traditional software de-
sign tools for code generation. Hardware processor synthe-
sis consists of memory synthesis and VHDL code genera-
tion, so that synthesis is made possible by using traditional
hardware/behavioral synthesis tools. Interprocess commu-
nication is also refined in each HW/SW processor synthesis,
into intraprocessor communication and interprocessor com-
munication, which then can be synthesized, using the system
integration tool-box CoWare [16].

In this paper we focus only on the abstract machine and
system architecture generation. Both steps are described in
the following subsections.

4.1. Abstract machine generation

The goal of this step is to generate an abstract machine,
from the initial Matisse program, to be used as internal rep-
resentation through the whole system design flow. This ab-
stract machine allows efficient system design exploration in-
teractively with the designer and it is still independent from
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the final HW/SW realization. For telecom network applica-
tions, system design exploration is needed for the following
purposes: implementation of abstract data types into effi-
cient complex data structures [24}, memory management of
these complex data structures, which are dynamically allo-
cated and deallocated by concurrent processes [6], memory
access optimization yielding ordering of concurrent threads
[23], and exploration of different embedded HW/SW real-
izations, based on interprocess communication costs.

In the Matisse compiler, the abstract machine is charac-
terized as a network of communicating Virtual Processing
Objects (VPOs), managed by an ultra-light OS. Each VPO
is in a one-to-one correspondence with an active object of
the Matisse program. This is illustrated in Figure 4. A VPO
consists of threads mapped on it and of a Virtual Local Mem-
ory (VLM) to store the data elements and member functions
mapped on it. The threads mapped on a VPO are: (1) the
default thread, specified by the body function of its associ-

MATISSE program

VPOt vPO2 vPO3
Threads Threads Threads
on prod on rec_fist on cons
VLM2 VLM3
Abstract machine VMt
I os |

Figure 4. Abstract machine of the Matisse pro-
gram example



ated active object, and (2) other threads, initiated by body
functions of other active objects.

For our previous example, the abstract machine consists
of three VPOs. The VPO associated with rec_list
executes threads specified by i = gp->get() and
gp->put (1), whereas the VPOs associated with prod
and cons execute threads specified by the corresponding
body functions.

This abstract machine is simulatable, so as to help the de-
signer in efficiently driving the system design exploration,
and to functionally validate any refinement in the Matisse
specification.

With the abstract machine, a control dominated flow
graph (extended from the model defined in [9]) is also as-
sociated in view of memory access optimization.

Abstract machine specification The abstract machine is
specified as one C++ program with calls to basic functions
defined in the available multi-thread library [20]. Such a
C++ program is derived from the Matisse specification,
as follows: consider each specified active class as
a derived class of one base class active; consider all
global pointers as classical C++ pointers; de-
fine a semaphore in each active class containing atomic
functions; expand all atomic functions, to lock and un-
lock the corresponding semaphore; dynamically schedule
all concurrent threads on the queue of the OS; expand the
Matisse main function, to concurrently initiate the body
function of each created active object.

This C++ program can then be compiled using any C++
compiler and the resulting executable permits to simulate
the abstract machine on any available computer.

Refinement As previously explained, refinements of the
initial specification are needed and related to abstract data
types, bit true behavior and virtual memory management.
Abstract data types are refined by implementing derived
classes, based on cost functions for area and power, as func-
tions of the size and access number. Virtual memory man-
agement is refined by implementing optimized virtual mem-
ory managers and operators new and delete as follows.
All data structures to be mapped on a VLM, are assigned to
Virtual Memory Segments (VMS). A VMS is a collection of
frames, each frame being a chunk of storage large enough
to store one instance of a specific data structure. A virtual
memory manager is associated to each VMS, to create or
delete data structures at run time and in a concurrent way,
and to keep track of the used and freed frames of the VMS.

Optimization Run-time interprocessor communication
conflicts may lead to significant decrease in real-time
performance. Therefore it is necessary to impose minimal
ordering constraints between the behaviors associated to
each physical processor so that the real-time requirements
of the overall system are met.

Whenever possible, threads running on a single processor
should be statically scheduled and interleaved to minimize
the run-time overhead and to guarantee the required per-
formance, mainly in terms of available memory bandwidth.
Communication overhead can be enormous but can be re-
duced to its absolute minimum by scheduling the different
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threads in a global way. Thread interleaving happens dur-
ing data flow analysis, on the control dominated flow graph,
derived in the abstract machine.

The default threads, corresponding to bodies of active ob-
jects, mapped on hardware physical processors must be de-
terministically ordered. This is necessary to ensure correct
dependence order between threads. Due to the resulting se-
quential behavior of the hardware physical processors, all
conflicting memory accesses can also be predicted at com-
pile time, and a synthesis methodology can be developed
to properly order them within a given cycle budget, and to
trade-off the memory bandwidth against minimal area and
power [24], yielding an optimized distributed memory. This
is done in the physical memory managemient, in the hard-
ware processor synthesis.

4.2. System architecture generation

The goal of this step is to generate the system architec-
ture, by allocating a number of hardware and software physi-
cal processors and by assigning the VPOs of the abstract ma-
chine to the target physical processors.

System architecture skeleton The skeleton of the sys-
tem architecture is defined as a network of a number of
hardware and software physical processors and possibly of
shared memories. This skeleton is defined interactively by
the designer. In many telecomn network applications, many
concurrent tasks have to operate on the same data and to
communicate with each other. In order to yield a feasible so-
lution, a possibly distributed shared memory architecture is
required. In our target architecture model shared memories
are assigned to a physical processor which mainly consists
of a local memory, and almost no behavior.

Virtual processing object assignment The VPOs from
the abstract machine are currently interactively assigned to
the target hardware/software physical processors and shared
memories by the designer, for the following reasons. First,
the number of VPOs is usually rather limited. Also, re-
search on automatic partitioning is still under investigation
(see [8, 15]) and it is not yet known whether it will offer op-
timal solutions. Finally, VPO assignment can have a large
impact in the overall communication cost and the system
performance due to run-time interprocessor communication
conflicts.

Physical processor skeleton Each physical processor
consists of a core that executes all concurrent threads from
the VPOs assigned to the physical processor; a memory
that stores data structures and implementations of all needed
member functions and an //0 unit that is responsible for in-
terprocessor communication, based on sending and receiv-
ing data via an abstract communication channel. This archi-
tecture is illustrated in Figure 5.

The virtual memory of a physical processor is character-
ized in terms of VMSs, resulting from the virtual local mem-
ories of the VPQs, assigned to the physical processor. The
implementation of the different parts of the physical proces-
sor depends on whether it is software, hardware or shared
memory. This is dealt within the software and hardware pro-
cessor synthesis steps of the design flow of Figure 3.



Intraprocessor
communication
PHYSICAL PROCESSOR /
RE '/ MEMORY
co L} Member  Local data Local data /O ports
function  memory for memory for
Threads memory  aclive object  active object
inyl y1 y2
, -
Threads t g interprocessor
iny2 v !
/O UNIT T >
| f—
B

Figure 5. General architecture of a physical
processor

Processor communication refinement After the assign-
ment of the VPOs, communications between VPOs assigned
to the same physical processors are refined into intraproces-
sor communications. This means for example that for VPOs
mapped on the same software physical processor, accesses
by global pointers behave as simple C++ pointers. Com-
munications between VPOs assigned to different physical
processors are refined into interprocessor communications.
Three types of interprocessor communications are possible:
read remote data, write data into a remote processor and
ask a remote processor to execute a piece of computation,
where data can be either a simple data type or acomplex data
structure. Interprocessor communication is specified, using
CoWare communication operations and the channel layout
derived from the initial Matisse program.

After abstract machine and system architecture genera-
tion, the synthesis of hardware and software processors can
proceed, as depicted in Figure 3.

5. Conclusions

First we presented the requirements that must be sup-
ported by a system compiler to design telecom network ap-
plications. Those requirements were obtained from actual
designs [19]. Then, we introduced the main features in the
Matisse model that satisfy the requirements for capturing
telecom network applications. Finally, we proposed a sys-
tem design flow, suitable for this kind of applications. We
focussed on two major steps, the abstract machine gener-
ation, implementation-independent, and the system archi-
tecture generation, implementation-dependent. The advan-
tages of Matisse over the design methodology currently
used in industry and the missing aspects in commercially
available tools were also presented.

In the future, we want to validate our design flow on other
different examples and possibly in different fields of appli-
cation. We also intend to investigate on how to include tim-
ing constraints in the system specification.
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