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Abstract

In this paper, we address the problem of hardware interface
design in a Codesign approach for real time Digital Signal
Processing (DSP) applications. We focus on the allocation
problem of necessary storage components needed for data
communication between hardware-software components.
First, we present a modeling style for I/O data exchanged
between both components and we describe our generic
model of the hardware interface. Second, we describe a
formal technique to the necessary storage components
allocation. Our design strategy starts from the hardware I/O
transfer sequences computed by a high level synthesis tool,
like GAUT([3]. It incorporates some interface specification
(/O transfer order, timing constraints) obtained by any
cosynthesis tool such as [6]. The proposed allocation
procedure assigns for each I/O data a time interval at which
its transfer could occur. The results that we have presented
are based on FFTs algorithms implemented on Asics.

1. Introduction

In this paper, we address the problem of Hardware-
Software (H/S) interface synthesis task which is a key issue
in Codesign. It specifies how the software and hardware
components communicate. Interface synthesis can be
divided into two major subtasks, namely communication
synthesis and H/S synchronisation. Communication
synthesis consists in determining : (i) the communication
protocol used for data transfer between components
(blocking or non-blocking, master-slave, special
protocols[7]) (ii) timing requirements for each data transfer
(transfer delay estimation, date of transfer (iii) the transfer
mode between hardware and software (Memory mapped I/O
scheme, direct connection).

The H/S synchronization subtask refers to making data
transfer happen in a specified time order, or more especially,
coordinating the real time presentation of data and
maintaining the time-ordered relation among the Asic and
Processors. We present in this paper a design methodology
of a hardware interface that supports functional constraints
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description of /O data exchanged between hardware and
software.

We refer to the hardware component as Asics (Applied
Specific Integrated Circuits) and the software component as
processors. Qur work domain is the real time
implementation of Digital Signal Processing and Image
applications. These applications are characterized by a
parameter T, called the iteration period. All computations
are repeated every T, time. Real time implementation of
these applications on mixed H/S architecture should satisfy
the' following periodic constraints : (i) execution timing
constraints on each component (i) I/O data transfer
sequences between both components with their timing
specifications. Such constraints can be obtained by any
cosynthesis tool[6].

We consider the hardware interface synthesis task as a
part of the Asic generation process by means of a High
Level Synthesis (HLS) tool GAUT [3]. This tool involves
several techniques such as structural transformations or
hardware selection [4] that allows a large exploration of the
hardware design process. Our hardware design methodology
is based on the following points :

1.the Processing unit (PU) of the Asic is the first
functional unit- synthesised by GAUT because it
undergoes the most important constraints from the real
time execution constraints.

2.the hardware interface is synthesized after PU and
takes into account both /O PU constraints and
Processors /O constraints specified by any cosynthesis
tool used for system partitioning.

This paper is organized as follows: In section 2, we state
the assumptions we make about our system target
architecture and design methodology. In section 3, we
briefly describe the main steps of our hardware design by the
Gaut HLS and we give our formulation of the hardware
interface synthesis problem. In section 4, a generic
architecture of the interface is presented and discussed. In
section 5, we introduce a timing and communication model
for the I/O data transferred between the Asic and the
processors. In section 6, we present our design technique for
analysis and synthesis of the interface buffers under I/O



timing requirements. In section 7, we present some results
based on FFTs algorithms implemented on Asics.

2. Preliminaries

Our system target architecture (see figure 3.1) consists of
an Asic (hardware component) and a general purpose
processor (software component). We consider the design of
real time application that is described at the behavioral level
by some specification language[1] such as SDL, Statecharts
etc. We assume that a cosynthesis tool such as [6,8] is used
to partition the specification into three components:
Software, Hardware and Interface. The software partition is
composed of threads (T, ,..,T,) which are sets of
computations that execute in deterministic time and other
sets of computation that execute in non-deterministic time
(such as loops and synchronization tasks). A control-data
driven scheduler is used in the software that allows both
hardware and software to schedule threads over time and to
exchange I/O data [9). The hardware partition is specified
with VHDL at behavioral level and constitutes the entry
point to the high level synthesis tool GAUT. The hardware
design process is described in the next section.

The H/S interface specification is assumed to be further
annotated with detailed information. The following lists a
description style of such information:

1. The Asic-processor interconnection is realized by direct
links. Communications between both components are based
on the message passing model[8] and are buffered in order
to minimize synchronization delays.

The communication protocol is slave-master where the
software component (Processor) works as a master. The
hardware and software modules interacts with an interrupt
mechanism. The software running on processor is capable
of communicating with the Asic and performing an
interrupt-driven I/O.

The communication channels between threads and
hardware partition are mapped to I/O busses such as
in[10]. Therefore bus transactions and between the
processor and the Asic could be described at the lowest
level: /O data structure (scalar, vector) and their timing
constraints are known. In the rest of the paper, we will
refer to these constraints as IOCC (Input Output
Cosynthesis Constraints).

3. Hardware Design Overview

In this section, we briefly describe the main steps of our
hardware design by the Gaut compiler and we give our
formulation of the hardware interface synthesis problem.

3.1 Asic Design

Figure 3.1 illustrates the design procedure of both the
Asic and the hardware interface. The hardware partition
produced after patrtitionning is described in VHDL at
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Figure 3-2 Generic Architecture of the Asic

behavioral level. From this description, the timing
constraints (computation delays) imposed after partitioning,
and a technological driven library (standard cells, FPGA),
the hardware architecture will be synthesized by GAUT
HLS. This architecture is based on four functional units (see
figure 3.2): the Processing Unit (PU), the Control Unit
(CU) the Memory Unit (MU) and the Communication
Unit (UCOM) that implements the H/S interface in the
hardware side. The topology of the processing unit is based
on elementary cells including an operator, registers and
interconnecting components. The memory unit implements
registers, memory banks and their associated address
generators, as well as channel for data transfer [3].

After the PU synthesis step, GAUT produce a set of
functional constaints relative to the PU I/O sequence of
transfers : the production and consumption dates of the
I/Odata. This sequence thus constitutes the background and
the schedule of conditions for the Asic's interface synthesis
procedure.



PU

Processor

(a) System Target Architecture

X = [Xq X, X, X,] :Vector ofinput data for the FFT algorithm
Y= [y, Y, ¥ ¥l :Vector of real components of the FFT results
Y=y v, v, vl :Vector of imaginary components of the FFT results

Eo X R Yo gy

Y

Y

KoKy

¥
-

BriUEs yeliynlv

Te

(b) /O transactions and timing specifications

time

S = (X X\ X Xy Yo Vi ¥ Vs Vi ¥ ¥ YY)
S,= X, y0y') o
Si= (X X Vo Y VY ¥e YY)

Figure 3-3 Example: Hardware FFT implementation and Asic-processor data transfer sequences

3.2 Problem formulation

Let us consider a mixed implementation of a DSP
application where the hardware component consists in a FFT
implementation. For simplicity, we consider a four points
FFT. Figure 3.3 shows a target architecture composed by an
Asic (hardware component) and a processor (software
component). At each iteration, an /O sequence S is
transferred over the bus B between both components. Each
communication data may be described by different ways - (i)
transaction order (ii) timing constraints determined by some
communication synthesis process [10, 11]. These constraints
can include strict timing specifications (fixed dates of
transfers, transfer deadlines) [see section 5.1] or only just
I/O data transaction order. As mentioned previously our
architectural synthesis tool GAUT starts Asic design cycle
by the processing unit (PU) and gives the consumption and
gives the production and consumption dates of I/O data. S,
and S, are the fully specified I/O sequences transferred
respectively over B1 and B2 (internal busses of the PU). The
problem of the hardware interface generation can be
explained in the following way :

How to generate the smallest amount of hardware (datapath
and control logic) that still meets the I/O sequence constraints
(timing requirement, data transfer order) ?

The aims are the following:

1. mixing and demixing of data busses of processor
towards PU busses : it concerns to ensure all the
necessary link between the Processor and the PU
busses.

synthesis of 1/0 data storage under IOCC
constraints.

Processor

Figure 3-4 Hardware Interface synthesis problem
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4. Generic model of the Hardware Interface

The hardware interface model that we have adopted can
be seen in figure 4.1. It is composed of datapath and an FSM
based controller. The datapath of the interface includes 3
major components : buffers for storing I/O data, buses and
interconnection components such as multiplexers,
demultiplexers and tristate buffers. The storage buffers are
composed of FIFOs, LIFOs and registers. Busses included in
the interface have two types: external and internal. External
busses have two categories. The first one is I/O busses which
represent the physical links between ASIC and processor.
The second category is the Interface-Processing Unit busses.
Their number is determined by the synthesis step of the
processing unit. However , it should be greater or equal to
the maximum number of simultaneous data transfer between
the interface and PU. The FSM based controller implements
the communication protocol defined by the cosynthesis tool
and generates the adequate control signals for the datapath
components.

Hardware Interface PU

Internal
busses

Figure 4-1 Generic model of the hardware interface

5. Modeling and of I/O

sequences

specification

In this section, we will consider that processor and Asic
have the same reference of time. In the following sections,
we will describe the timing specification of the Asic-
processor I/O data transfer.



5.1 Asic-Processor I/O transfer sequences:

In our model (see figure 5.1) the processor has N, busses
connected to the Asic. As mentioned previously, the set
ordering of communication data is provided by a cosynthesis
tool and therefore known in advance. Let us have an ordered
set P of all /O data transferred over N, busses in one
iteration period T,. Some of the data item may be structured
(vectors).
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Figure 5-2 Timing specifications of I/O processor data

Let us define the set P as an ordered set of data subsets:
P Upepw where P denotes the ordered sets of
I1ShsNp
data subsets (vectors) transferred over the h-th bus.

P» =[P® . PP]

[}

e The single subset P is defined as a set of ordered scalar

transferred over the h-th bus. P® = [R",”..,PF’,”] =[Pi(5")
. b o ligyen

£ g T

Let ¢ be the common reference of time and let and
be respectively the start and the end of transfer of the i-th data
item P,-(") on the A-th bus (see figure 5.2). The communication

time for P transfer is defined as s =M _¢M Note

that our a-priori knowledge only concerns the mutual time
constraints of data, and not the time values themselves, i.e.
3 J( h) <M Vj < k. However, our model can be refined and

extended to cases where all data ordering and their timing
constraints are fully satisfied. Timing constraints are then
introduced to define upper and lower bounds between the start
times of two data transfers. The following equations express the
main (Min/Max) timing constraints that can be specified for
each pair of the exchanged data unit :
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tih @M < tfh) <t 4 o) where
t{¥) 4 g (kR g g (h)
e w™and o-(j"'deﬁne respectively the minimum and
maximum delays between two consecutive subset transfers
over the h-th bus.

g (k-> defines the minimum delay between transfer
by

starts of the data units P{") and P(Y)

5.2 Processing Unit I/O transfer

We have mentioned previously that all the PU I/O transfer
sequences are fully specified by GAUT HLS. The hardware
interface exchanges data with the PU over N internal busses
(see Figure 5.1).

Let B™ be the

XPUB = fe)iixa i} 1IN,

set of PU 1I/O busses and

an ordered I/O

sequence transferred over the i-th bus B,.

Each input data x (towards the Asic) that belongs to
X PU.B s described by the following information : (Label,
Receive step, First read step, Last read step, source,
destination). The label is basically an integer identifier. The
receive step (denoted as R(x)) is the control step (c-step) at
which x is received by the communication unit from the

processor. The first read step (denoted as T min (x)) is the
c-step of the first use of x by the PU. Similarly, the last read
step (denoted as 7 ,,, (x) ) is the c-step of the last use of x by

the PU. The source and destination are integer values to
represent the I/O ports of the UCOM or the PU that produces
and uses the data x.

Each output data x (towards the processor) that belongs to
X PU.B i3 described by the following information : (Label,
Production step, Emission step, source, destination). The
production step (denoted as Tp(x)) is the c-step at which x is
produced by the PU. The Emission step is the c-step at which x
is sent to the processor. The Other information of output data
have the same meaning of those of input data. All variable
descriptions presented above are resumed in Table 5.1

S=(x, x, ..x,)} an ordered PU I/0 data sequence
X /0 data x of the PU sequence §
Output TP (x) production date of the output data
by the processing unit (PU)
Asic | data | W(x ) emission date of the output data x
from the Asic to the processor
/0 (x) [{x):[TP()d,g,m(x)] lifetime for the output data x in
ucoMm
Input | R ( x ) reception time of the input data x
from the processor to Asic
data T pin (%) time of first read of data x by the
PU
(x) T ax (2) time of last read of data x by the
PU
r(x)j[fnh(x)’fm(x)] Z:rerval of life time for the input
ata x

Table 5-1 Asic I/O data Description



5.3 Definitions:

o Let T, be the execution time constraint of the hardware
module.

e Let D be a storage module (D may be a Register, FIFO or
LIFO)

® Let x, and x, be respectively an input and output data that
belong to the PU I/O data sequence S

Definition 1: the PU lifetime of I/O data is defined by
A% =[Tua(6), T (30)] JOr input data and A(xy)=Ty(x;) for output
data. To keep homogenous notations, we give an equivalent
notation to A(x2) as A(x)=[T,(x), T (x)]-

Definition 2: the UCOM lifetime of 1/O data is defined by
I'(x) =[R(x), Tua(x1)] for input data and T(x2) =[TKx2). W (x2)]
Sor output data. Note that A(x)cT(x) i=12.

Definition 3: the Data Test Function (DTF) of the ® module is
defined by the Boolean function ®@: § — (0,1} where ®x)=1
if the I/O data x can share the resource @ with all data of the S
sequence.

Definition 4: the Sequence Storage Function (SSF) of the @
module is defined by @ + 8 = [0, Tclyui, vy Where &' (x)
represents the time interval at which the transfer of data x,
assumed to be stored in @, can be occurred.

6. I/O data storage: Allocation Procedure

In this section, we are interested in allocation and
mapping of I/O data sequences to specific storage modules
which are queues (Fifo) stacks (Lifo) and registers.

The allocation problem of I/O data may be solved by

means of traditional techniques used for resources sharing
[2] if all I/O timing are fully specified. However a full /O
timing specification can hardly be obtained because H/S
communications synthesis is based on execution-time
estimations, and not guaranteed to be cycle-accurate. The
allocation procedure we propose here starts from the PU I/O
sequence timing (fully specified by GAUT HLS) and
incorporates the I/O constraints presented in section 5.1. Our
goal is to assign, for each /O data, a time interval at which
the transfer to/ftom the processor could occur. This approach
gives the designer a fine grain description of data transfer
timing and such information could be exploited to refine and
improve the granularity of system partitioning.
We have developed temporal transformations SSF (&’ o S€C
definition 4) based on functional properties of each storage
module @. Each function @s, takes into account conditions
that should be fulfilled by each pair of data to be allocated to
the same storage component @. For example, conditions
relative to data storage in the same register must have
disjoint lifetimes (the two intervals have empty intersection).
All data to be allocated to Fifo or Lifo buffers must have the
same type, e.g. all of them are input data or output data and

must have disjoint lifetimes.
Here are the main steps of our procedure:

1. First, given the PU I/O sequence S and its relative
constraints (I/O timing requirements and data
ordering), we determine which data that can be
grouped in the same storage module. Table 6.1 shows
PU conditions that should be fulfilled by each pair of
data to be allocated to the same storage component
(Register, Fifo, Lifo). This step produces a set C of
subsequences Sk that could be stored into the module
@ C={Sk}k , Sk = {xi € S/ Fy(xi) =1}, & is the
DTF function of the @, module.

2. Second, for each subsequences S, some accessing
constraints of the storage component @, are added.
These constraints (denoted as access conditions in
Table 6.1) express the relationship between input and
output sequence relative to each storage module. For
example, the input sequence of Register or Fifo must
be the same as the output sequence.

3. Third, we apply the SSF function on each data
subsequence S, This function takes into account all the
conditions discussed above and produce for each data
a time interval in which the data transfer could occur.
In Table 6.2, we describe the SSF transformation of
each storage module and its respective derived
constraints.

These derived constraints can be merged with some user
constraints and therefore the allocation procedure carries out,
by means of some recursive heuristics we have developed,
the following tasks:

(i) Constraints analysis and checking
(ii) I/O buffer sizing
(iii) determination for each /0 data a time

interval.
Storage PU timing Access
components | conditions conditions
)
Register AMME)=@ | T(x)NT(x,)=2
Input | Nx)NAx) =D *Ax)NA(x;) =D
data ® T (X) =< T (X)) = R(x ) < R(x7)
Fifo | ouput | Ax)NACy)=D e A(x ) NA(x)) =D
data o Tp(x:) < Tp(x; ) = W(x )< W(x;)
Inpat | M)A} =D | oAx)NAGx) =D
data *Tua (%) =< Toin (47) = R(x) > R(xy)
Lifo | oupw | Xx)Wx)=@ [ e A(x)NA(x)=0
data o Ip(x) < Tp(x;) = W(x) > W(x;)

Table 6-1 Timing conditions relative to storage
module allocation
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Table 6-2 SSF functions: transformations and derived
constraints

7. Example: FFT implementation on Asic

Table 8.1 shows the sets of timing intervals (R(x) and
W(x)) resulting from our allocation procedure on the
example presented in section 3. In this case we assumed that
the IOCC constraints are represented by an ordered
transaction over the Asic-Processor bus. The hardware
architectures of both the processing unit (PU) and the
hardware interface (UCOM) are presented in Table 8.2. The
necessary storage components of the hardware interface are
composed of two registers and a two points FIFO.

8. Conclusion:

We presented in this paper the problem of hardware
interface synthesis taking into account two types of design
constraints. The first one consists in some interface
specifications produced by a Cosynthesis tool. The second
one is represented by I/O transfer sequence constraints
resulting from the Asic's processing unit design by a high
level synthesis tool GAUT. Our hardware interface design
ensures : (i) real time execution of DSP applications (ii) I/O
data coherence, by means of formal transformations we
have developed, between Processor and PU I/O transfer
sequences.

We described a global modeling of data transactions
between the software (Processor) and hardware (Asic)
modules and we presented a generic model of on-chip
hardware interface. The necessary storage components of the
interface are composed of queues, stacks and registers. The
allocation procedure we described is based on timing
transformation relative to each storage component. Each I/O
data is assigned to a time interval at which the transfer
to/from the processor could occur. As future work, we intend
to fully automate the design process. We also intend to
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Storage | Data SSF: @, *(x,) extend the hardware interface synthesis under cost
odules | Type constraints (surface and power consumption).
@ x,) | Transformation Derived Constraints
Input - T
LT ad < <T.. anxd /O |Data| Data | Receive step | First use | Production | Emission
WRegister data ]T”‘“(x‘“' ’) T x“)] K qu_,) )(x,‘) T""(x" data | type | transfer Rix) step step step
a’ﬂx,):]r,m(x")—Tc,r,,,-,, x,)] % xn) -L *R’Cx)“ i xz) order Tl Tp(x) Wx )
output x0 In 1 10, 80] 80 . N
daa | [P (52 ) T (¥ [ [mdsln<afn) T Y O
i P x3 In 4 [120,180] 180 . -
ifo nput Yo Qut 5 . . 180 [180, 260 ]
data ]Tm(x,,-) -7 ,Tm(x;,)] R (x k-1 )'< R (x K ) ¥ gu: g& [260.380]
¥ u 1380,460]
output W( )< W( ) ¥ Out 460 1460,540] |
- . Xi_ X, o Qut 260 260,360
data ]Tm(xm) L"T“'“(x")] + ) o Out |10 260 [[360 4so]]
Lifo Input y:: Out 11 - 540 540.620
data ]T"""(x"' ) T T"""(xl ) ] R(x"—') s R(x,, ) ¥ Qut 12 - : 620 620,1000]
— Table 8-1 FFT Example: timing interval sets ( R{x) and
data [Tp(xm),Tp (x1)+Tc[ W(xk_ ,)> W(xk) W(x) ) resulting from the allocation procedure

Processing Unit Hardware Interface
Architecture Architecture
(PU) (UCOM)
Hardware - Tadder,
" - 1 substractor - 1 FIFO (2 points)
Partition: FFT - 1 multiplier - 2 registers
(N=4) - 8 registers - 1 multiplexor
T, =1000 ns - 4 multiplexers - 1 demultiplexor
- 3 demultiplexers
- 21/0 busses

Table 8-2 Hardware design results: PU and
Interface architectures
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