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Abstract

The problem of computing signal probabilities of
digital circuits arises in the context of random testing,
pseudorandom testing, and testability analysis. However, it
has been known that computing signal probabilities is
#P-complete [3]. This implies that the problem might be
intractable even if P = NP. Thus, any practical method
will estimate such probabilities instead of computing the
exact values.

This paper presents a simple but effective algorithm for
estimating signal probabilities. It provides significantly
better estimates of signal probabilities than the weighted
averaging algorithm and most importantly is linear in the
product of circuit size and the number of primary inputs.
Based on this algorithm, the detection probabilities of
stuck-at faults are estimated.

Experimental results using ISCAS benchmark circuits
show the effectiveness and the improvement of this
technique over the simple algorithm as well as the weight
averaging algorithm. The correlation coefficients of the
results are extremely good and the algorithm is very fast.

I. Introduction

With the advent of VLSI technology, test pattern
generation (TG) for high fault coverage is regarded as one
of the most difficult problems in the field of VLSI
testing. It has been known for sometime that the process
of TG is NP-complete. TG can consume CPU time and
memory at a rate which increases at least as the square of
the number of gates in the circuit [6]. For VLSI circuits,
this 1s a serious limitation. This increases the feasibility of
design for testability in reference to built-in self test
(BIST). Random/pseudorandom self testing is a test
strategy used in BIST. However, this strategy introduces
the problem of test quality verification especially when
high fault coverages arc required. The computation of test
quality involves the identification of hard to detect faults,
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namely, those faults whose detection probability falls
below a given threshold. The detection probability of a
given fault 1s the probability that a randomly chosen input
vector detects the fault. The computation of detection
probabilities of a given fault involves the computation of
signal probabilities in the network. The signal probability
of aline { in a network is the probability of line £ having
a value | on a randomly selected vector.

Actually, the computation of the detection probabilities
of a fault could be reduced to the computation of  signal
probability of an auxiliary gate, whose output is 1 if the
sensitizing conditions of that fault are satisfied [7].
Consequently, the problem of computing the signal
probabilities is of central importance in random pattern
testability analysis.

It has long been established that computing signal
probabilities 1s  #P-complete [3]. This implies that the
problem might be intractable even if P=NP. Current
algorithms for signal probability can either compute the
exact value or estimate such probabilities. The exact
computation algorithms suffer from undue complexity,
while estimating algorithms suffer from imprecision.

Parker and McCluskey [1,2] presented the foundations
of signal and detection probabilities. Their algorithms for
computing the exact signal probabilities use the exponent
suppression method. This method is not useful because it
very often requires exponential space.

PREDICT [8] calculates signal probabilities without
simulation by using conditional probabilities. A graph
approach is used to exactly compute these probabilities
using Shannon’s expansion. An attempt was made to
modify the algorithm used in PREDICT so that the exact
values of the detection probability of single stuck-at faults
could be computed [10]. However, the computational
complexity of these approaches increases exponentially
with cardinality of the number of reconvergent fanout nets
at any node. Also, the enumeration algorithms presented in
[12] for computing signal and detection probabilities
combine the notion of PREDICT and have exponential
time complexity.



The Monte Carlo algorithms [4], on the other hand,
estimate such signal probabilities. However, the expected
accuracy of the estimates depends on the number of
experiments performed. In general, the number of
experiments needed to obtain reasonable estimates would
grow at least as fast as a polynomial of a large degree equal
to the number of inputs {11].

The cutting algorithm presented in [7] provides lower
and upper bounds on the signal probabilities. Its objective
is to turn the combinational network into a tree, by cutting
reconvergent fanout branches, and inserting equivalent
bounds at the cut points, which will guarantec that all the
signal probability bounds computed on this tree will
enclose the true values. The advantage of doing this is the
reduction of the computational complexity (time and
space); while the disadvantage is that the output is just a
bound and its effectiveness depends on the cutting choices.
There are two cutting algorithms given in [7], the full-
range and the restricted-range algorithms. The computation
complexities of the restricted-range for signal probabilities
is O(N®).

The simple algorithm, used in COP [5] and extended in
[11], estimates the signal probabilitics using signals’
independence at the node inputs. This algorithm runs in
linear time, and is easy to implement. The following is a
formal description of the algorithm:

The Simple Algorithm
1. Assign signal probabilities of 1/2 to all the
primary inputs.
2. Proceed from the inputs to the outputs and
compute the signal probability of each output gate
using the following formulas:
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In fact, if a network has no reconvergent fanout then the
simple algorithm will compute the exact values of signal
probabilities. Otherwise, it will suffer from imprecision.

The weighted averaging algorithm [11] is an extension
of the simple algorithm and provides a well received

27

overall root mean square (RMS) deviation from the exact
values of signal probabilities. The time complexity of the
algorithm is linear in the product of the size of the circuit
and the number of primary inputs.

This paper presents a new and effective algorithm based
on a new set of inference rules for estimating signal
probabilities, that we shall call the possibilistic algorithm.
The proposed algorithm is also an extension of the simple
algorithm. However, It provides significantly better
estimates of signal probabilities than the weighted
averaging algorithm and it is also linear in the product of
circuit size and the number of primary inputs. Based on
this algorithm, the detection probabilities of stuck-at faults
are estimated.

Experimental results offer empirical evidence indicating
the quality of results produced by these algorithms on a
commonly accepted set of ISCAS benchmark circuits.

II. The Possibilistic Algorithm for
Estimating Signal Probabilities
The major difficulty in computing the signal

probabilities is reconvergent fan-outs. In fact, if a circuit
has no reconvergent fan-outs, then the independent
formulas (1), (2), and (3) used by the simple algorithm
will compute the exact signal probabilities in a linear
time. However, if a node fans out and reconverges at a gate
G, then the signal probability computation of the simple
algorithm for all nodes driven by gate G is more likely
to be deviated from the exact values. The idea of our
technique lies in the observation that the deviated
computation of the simple algorithm for any gate G could
be caused by: a) a reconvergence at gate G, b) a
reconvergence at a gate in its cone of influence, or c) a
combination of them. The possibilistic algorithm
distinguishes between these causes and uses a proper
inference rule to reduce the error in every case.

The proposed technique for estimating signal
probabilities for every output gate is given in the
following steps. (For the sake of clarity, the steps will be
applied, below, to the circuit in Figure 1.)

Possibilistic Algorithm:
Input: A combinational network with n primary
inputs, I, L, ... .1,
Output: An estimate of the signal probabilities of each
output nodes.

Procedure:
Step 1: Run the simple algorithm (S_Alg) to estimate
the signal probability (SP) at the output node of each
gate. These estimates are denoted by § in fig. 1.
Step 2: For each primary input [;, 1<i <n, perform
the following:



a) Set the input I; to 0 and run the S_Alg, let us

denote the resulting SP at the output gate by
S_Alg(/;=0).

b} Set the input I; to 1 and run the S_Alg once
again, yielding the SP S_Alg(/,;=1). In a) and b),
when we set input /; to 0 or I, all other inputs Ij,
1<j <n, j#i, are set to -;—
¢) Compute the average of  S_Alg(/;=0) and

S_Alg(/;=1), denote the result as p,.

S_Alg(li=0)+S_Algli=1) @
t 2
Step 3: Calculate the level of every gate in the network
and sort the gates in non-decreasing order according to
their levels.
Step 4: Proceeding from the inputs to the outputs of
each gate, perform the following steps starting from the
gates with the lowest Jevel:
a) Compute the expected-tuple (E-tuple) of cach
output gate using the P-tuples of its inputs and the
independent formulas (1), (2), and (3).
b) For every component p; , 1</ <n, in P-tuple
do:Compare it with S, computed in Step 1. If they
are cqual, mark it with 0. If they are not, then
compare it with its expected value ¢; in the E-tuple
and mark it with 1 if they are equal, else mark it
with 2. By doing this, we will have a Mark-tuple
(M-tuple) with components m;, 1<i <n.
¢) Count the number of s and 2s in the M-tuple, let
us denote these counts by ctrl and ctr2, respectively.
d) Compute the no-dependent (ND) value by using
independent formulas and the estimated signal
probabilities of its inputs from previous level.
¢) Apply the inference rules listed in Figure 2. (These
rules were developed and refined through empirical
and experimental results).

By performing Step 2 for cach primary input, we will
have a probability tuple (P-tuple) of n components for
each output gate. Each component p; is the resulting
computation of the average setting of expression (4) with
respect to each primary input. The component p; of gate
G will avoid errors due to multiple dependencies on
primary input /;.

Table-I lists the P-tuples for the circuit in fig. 1. The
components are listed in order, 1.e. (p,,p2,P1,-----. .py) fora
circuit with n primary inputs.

In Step 4, we compute two more tuples, namely, the
Expected-tuple (E-tuple) and the Mark-tuple (M-tuple). For
example, the P-tuples of the inputs of gate U2, /, and
Ul, are (1/2, 1/2, 1/2) and (3/4, 3/4, 3/4), respectively.
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Fig. 1 (Network example). S denotes the

estimate computations of the Simple algorithm
while P denote the output estimates of the
possibilistic algorithm.

The E-tuple of the is

U2,
(é—r%,é—f%%*%) = (3/8, 3/8, 3/8). The M-tuple records
useful information about the type of dependence, with
respect to every primary input, at a current gate under
processing G. If a primary input I, does not influence
gate G, then S =p; and will be marked with 0 in the M-
tuple. However, if [; influences gate G then S # p,. In
this case, we have three possibilities for this deviation:

- The input 7, does not reconverge at gate G, but it

reconverges at a gate(s) in the cone of influence of G

and its effect causes S # p;. We mark this case by 1

in M-tuple.

- The input I, reconverges at gate G but not at any

node in its cone of influence. This case is marked by 2.

- A combination of the above two cases. Here, we also

mark it with 2. Table-I list the M-tuples for the circuit

in fig. 1.

The calculation of no-dependent (ND) proceeds from
primary inputs (level 0) to each output of the gate in a
recursive fashion, by applying the independent formulas
(1).(2), and (3) to the estimates of its inputs. For example,
for gate U1, ND = 1 ~—-%-*;—: % However, ND of gate U2
depends on the signal probability estimation for gate Ul.
Assuming that, this algorithm estimates a signal

for gate U1, then ND of gate U2 is

output  gate,

probability equal to =

4
1.3 3 L. . . .
T3 Similarly the NDs for other gates of Fig.1
could be calculated in the same way.
The results of applying the inference rules of Fig. 2 are
shown in Table II. For example, for gate U1, ctr]l = 0 and

ctr2 = 0, which satisfy rule-1(Case 1). So, P =S = -?T ,
where P denotes the estimate of the possibilistic

algorithm. For gate U2, ctrl =0 and ctr2 = 1, which
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satisfy rule-3, thus, P = 7 By checking the results in  Table II, one will note that
In rule-3, the variable effect2 = 2( pi—ei), represents the estimates of this algorithm, for the netvx_/ork of flg.l,are
5 equal to the exact values. Also, we ran this algorithm on
mi =

the total deviation of the P-tuple from the E-tuple of those
components which are marked with 2. The function sign(
), used in rule-3, return the sign of its argument.

Case I: if (crl =0and ctr2 =0) then { P=S}
Case 2: if (ctrl # 0 and ctr2 = 0) then {P = ND}
Case 3: if (ctrl = 0 and ctr2 # 0) then {
if (ctr2 = 1)then P = p,
else { effect2 = (pi-¢)
mi=2
P = ND + effect2 + sign(effect2)*
(effect2/ctr2)
}
}
Case 4 - if (ctr] # 0 and ctr2 # 0) then {
effect2 = (pi-e)
miz=2
P = ND + effect2 + sign(effect2)*
12
s - NDy+ & ?
}

Figure 2. Inference rules for estimating signal
probabilities

several benchmark networks given in [18], and it provides
a well received overall root mean square deviation from the
exact values. Table III gives a summary of the results and
shows the improvement of this algorithm over both the
simple as well as the weighted averaging algorithm.

III. Estimating
Probabilities

Similar to the signal probability algorithm, the
sensitization procedure first assigns a sensitization
probability of 1.0 to all primary outputs since they are
completely observable. Having made the output
assignments, the procedure then repeatedly traces back the
sensitization probabilities along lines with the same
connection and calculates a gate's input sensitization
probabilities until all sensitization probabilities have been
established.

Unlike  signal  probabilities, the  sensitization
probabilities of fanout branches with a common stem are
not always equal. However, for a node which is not a
fanout stem we can assume that it inherits the sensitization
probability of its unique connection. For a fanout stem, we
approximate its sensitization by:

Sensitization and Detection

S(stem) =S, ® S, ® ... §,, (5)
where the associative operation @ is defined as:
a®@b=a+b-axb (6)



TABLE Ill
A COMPARISON BETWEEN SIMPLE, WEIGHTED, AND POSSIBILISTIC ALGORITHMS

RMS of Deviations
Exact_Computation Simple_ Weighted Possibilistic_ % Improvement | %Improvement Correlation
CIRCUIT E = Exhaustive Algorithm _ Algorithm Weighted Possibilistic Coefficient
M = Monte Carlo Algorithm over over from
Simple Simple Possibilistic
+BitALY E 0.0672 | 0.0563 0.0182 19.36 269.23 0.9992
#Bit Compartor E 0.085 | 0.0308 0.0237 175.97 258.65 0.997
O-Bit Parity E 0.0675 | 0.0549 0.03 22.95 125 0.9957
cax M 0.0941 [ 0.0853 0.0551 10.31 70.78 0.9788
499 M 0.0502 | 0.0426 0.0394 17.84 27.41 0.9761
880 M 0.0360 | 0.035] 0.0322 2.56 11.80 0.993
CI355 M 0.0835 | 0.0719 0.0652 16.13 28.07 0.9671
S, to S,, represent the sensitization probabilities of fanout
branches driven by the common stem.The sensitization Once the signal probabilities and sensitization
probability algorithm proceeds from primary outputs to probabilities have been estimated, the detection

primary inputs in a recursive fashion. The formula for
estimating the gate input sensitization probabilities is:
Se; = Sy ouput ¥[f(Pey,Pe,y, .. Pey, 0 Pe,,, ... ,Pe,,,Pe,)

@ f(Pe,,Pe,, ... ,Pe,,, 1 ,Pe,,,, ... ,Pe, ,Pe,)] )
where Se; is the gate input sensitization probability to be
determined, Pe, to Pe, are the gale input signal
probabilities, f 1s the Boolean function applied to the
signal probabilities according to the gate type, and the @
signifies the associative operation as previously defined.
The above-mentioned associative operation was defined
differently in [9]. The proposed algorithm was tested with
both formulas and the above-mentioned definition - which
describes the probabilistic disjunction of two signals -
consistently resulted in higher correlation coefficients and
smaller absolute average differences between the estimated
and the exact fault detection probabilities.

Using formula (7), the specific gate input sensitization
probability formulas for various kinds of gates could be
calculated easily. For example, for an AND gate, the
function f is the product of the gate input signal
probabilities, and the first part of the associative operation
reduces to zero, simplifying the equation to:

Se,(AND) = S, qupu( AND) * [f(Pe; #Pey* . %P j# 0 *
Pe,, * ... ¥Pe *Pe,) @ f(Pe #Pe,* ... xPe, %1

* Pe, % ... #Pe, ,*Pe))]
= Sy cupul AND) # [£(0) @ f(Pe#Peys . +Pe, #

1* Pe,, ¥ ... ¥Pe, *Pe,)]
= Spue oupuAND) # [0 @ f(Pe,#Pe,* .. *Pe * |
*Pe, * ... ¥Pe_ *Pe )]
Simplifying it even further yields:
Se(AND) = S, qupu(AND) * (Pe #Pey# ... #Pe; % | *

Pe;, * ... *Pe, *Pe,).

probabilitics of a fault x could be estimated by:

D(x/0) = Px * S(x) and

D(x/1) = (1-Px) * S(x).
Where D(x/0) and D(x/1) are the estimated detection
probabilities of stuck-at 0 and stuck-at 1, respectively.

Table IV gives a summary of the results for the circuits
that were simulated to check the validity of this algorithm.
For cach fault x the value of P,(x) is the estimated
detection probability by using the proposed algorithm,
whereas Pg(x) is the exact detection probabilities using
fault simulator. We indicate in the table how the ‘exact’
detection probabilities were obtained, i.e., through
exhaustive simulation or Monte Carlo techniques. For each
circuit, we computed maximum error, average difference,
root mean square and correlation coefficient between P, and
Py The table shows high correlation coefficient and
small RMS which indicate that the proposed algorithm
computations track the exact values very closely. For the
circuit C432, an increase in the number of test vectors
applied to the circuit (to estimate the exact detection
probabilities) resulted in an overall increase in the
correlation coefficients.

IV. CONCLUSION

We have presented a practical and effective algorithm
based on new set of inference rules for estimating signal
probabilities. This algorithm is called the possibilistic
algorithm. We have demonstrated that this algorithm is
linear and equal to the product of circuit size and the
number of primary inputs. We also showed that it provides
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TABLE IV
Maximum error, average difference, root mean square
and correlation coefficient for some tested circuits

Exact_Computation J| Maximum | Average RMS Correlation
CIRCUIT E = Exhaustive Error differenc of Coefficient
M = Monte Carlo ¢ Error
4-Bit ALU E 0.40 0.073 | 0.098 0.917
4-Bit Compartor E 0.21 0.020 | 0.074 0.940
9-Bit Parity E 0.31 0.12 0.114 0.861
c17 E 0.09 0.012 0.036 0.975
Caz2 M 0.25 0.024 0.075 0.913
significantly better estimates of signal probabilities than [9] J. Wunderlich, “PROTEST: A tool for probabilistic

other linear algorithms, such as the simple and the
weighted averaging algorithm, primarily, on the account of

accuracy. Based on

this algorithm, the detection

probabilities of stuck-at faults are estimated.

ISCAS benchmark circuits were used to validate the

proposed algorithm. The experimental results show that

reasonable accuracy may be achieved using

linear

algorithm. Such results were shown to be fairly accurate
using a fast linear algorithm.
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