
A FPGA-based Implementation of a Fault-Tolerant Neural Architecture for Photon Identification

M. Alderighi1, E.L. Gummati2, V. Piuri3 and G.R.Sechi1

1 Istituto di Fisica Cosmica e Tecnologie Relative, Consiglio Nazionale delle Ricerche
Via Bassini 15, I-20133 Milano, Italy, Tel: +39-2-23699332 Fax:+39-2-2362946 Email: {monica, giacomo}@ifctr.mi.cnr.it

2Dipartimento di Fisica, Universita' degli Studi di Milano
Via Celoria 21, I-20133 Milano, Italy Email: lau1@ifctr.mi.cnr.it

3Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za L. Da Vinci 32, I-20133 Milano, Italy, Tel: +39-2-23993606 Fax: +39-2-2399 3411 Email: piuri@elet.polimi.it

Abstract
Event identification in photon counting ICCD detectors

requires a high level image analysis which cannot be easily
described algorithmically: neural networks are promising to
approach this application. A system capable of identifying these
events on board of satellites needs fault tolerant capabilities to
certify result correctness. The rapid evolution of the problem
specification, due to the increasing knowledge about the physics,
makes attractive the availability and modifiability of prototypes:
FPGA-based design is effective to realize these systems. The
paper presents therefore an FPGA-based implementation of a
fault tolerant neural architecture for event identification.

1. Introduction
Photon counting intensified CCDs have been shown a viable

choice for imaging and spectroscopy in selected spectral bands
from the extreme to the near ultraviolet and, thus, are currently
used in several research for space physics [15]. Due to the
massive amount of data to be treated and the strict temporal
requirements, processing on board of the satellites often becomes
mandatory. As a consequence, massively parallel processing
paradigms and architectures need to be adopted. On the other
hand, due to the incomplete knowledge about the operation to be
performed, it is quite difficult to specify completely and
exhaustively an algorithm to analyse the CCD images and to
extract the desired features. In the literature, the neural networks
have been shown an effective and efficient approach to image
analysis due to their intrinsic computational parallelism and their
configurability through learning by examples [8].

The use of digital systems in critical applications, such as in
the space area, requires error tolerance capabilities in order to
guarantee the correctness and the reliability of the results and, as
a consequence in our specific application case, of the
experimental data, analysis and theoretical consequences from
the experiment. Neural networks are often claimed to have
intrinsic fault tolerance capabilities. Unfortunately, only a
limited amount of intrinsic correction capacity is available [6, 9]
for some very specific classes of faults, for some neural
paradigms, and only if information and computation have been
enforced to be widely distributed in the whole neural network
via a suited learning procedure. However, this capability does not
provide any information both on the correctness of the current
network’s output and on the location of the faulty component.

Intrinsic error masking may fail for some input sets and from a
specific time on, but signal is generated to prevent the use of the
erroneous data generated by the network in critical applications.
On the other hand, no assumption can be a priori defined on the
error magnitude with respect to the normal magnitude of the
network results, so that any error can be extremely critical for the
application. This implies that we need an architectural support to
introduce error detection in these computing structures. When
throughput is a mandatory requirement in massive computing
applications, suited hardware and support techniques must be
adopted to achieve this goal concurrently with the nominal
operations, without degrading the system performance in a
relevant way with respect to the non-fault tolerant system.

The use of computing systems for experiments in physics
makes relevant to adopt dedicated architectures for rapid
prototyping in order to achieve a fast ‘time to market’ and to
validate the theoretical analysis of the experiment. In many
application cases related to the research in advanced physics, the
availability of hardware prototypes and their fast development
become critical due to possible uncertainty in the solution and
the possible incomplete knowledge of the experiments
themselves. When experiments give new information about the
physical behaviours of the system or phenomenon under study,
the computing system needs to be adapted to capture new
information or to behave correctly according to the theoretical
interpretation of the phenomenon. The use of FPGAs is an
effective solution to implement flexible, modifiable and modular
prototypes, even though they may be expensive in terms of
system complexity; a similar example was presented in [7] for a
simple feed-forward network classifier, while we need a more
complex and fast structure modeling a dynamic system for our
application case. More efficient implementations could be
realized by using ASIC technologies, but flexibility and
modifiability would be greatly reduced.

In this paper, we present an application of the FPGA
technologies for prototyping in the space area: the design and the
implementation of an FPGA-based fault tolerant neural
architecture for event identification in photon counting ICCD
detectors [9, 10, 15]. Section 2 briefly describes the event
identification problem; neural network characteristics are
sketched in Section 3, while the system architecture and neuron
implementation are illustrated in Section 4. The neuron
implementation with added concurrent error detection
capabilities is given in Section 5.

2. The photon counting intensified CCDs
Photon counting intensified CCDs have been shown a viable

choice for imaging and spectroscopy in selected spectral bands
from the extreme to the near ultraviolet [15]. The detector system

consists of a high gain electron multiplier, based on
MicroChannel Plates (MCP), a readout system based on a
phosphor screen fibre optically coupled to a fast-scanned CCD
camera, and of a signal processing unit for event identification
and centroiding, to localize events to sub pixel accuracy.

Incident photons impinge on a photocathode material
deposited directly onto the front MCP face causing the emission
of photoelectrons into the MCP channels (or back outwards and
reflected forwards into the MCP by a biased grid). Each channel
constitutes an independent, continuous dynode photomultiplier
that yields an electron cloud at the MCP output face. The
electron cloud exiting the MCP output face is accelerated, across
a proximity gap, onto a phosphor screen deposited onto a fiber
optic (FO) faceplate. Photons emitted are channelled out of the
screen by the fibers and, through a FO coupler with appropriate
reduction ratio to match the matrix format, are directed onto a
CCD that provides an image of the signals detected. On the CCD
matrix (512x512 8-bit pixels), each photon event is represented
by a charge distribution of approximately Gaussian profile,
covering a 5x5 pixel area.

The processing unit is to recognize valid photon events by a
morphological analysis of the whole CCD frame. Upon
identification, the centroids of each and every individual event
detected are then determined to sub-pixel accuracy and the
resulting image is accumulated at higher resolution. Only those
5x5 CCD areas having the requested energy and Gaussian
distribution of pixels are to be recognized as good events. All the
others, spurious or noisy events, are to be rejected.

The time required for identification is the key factor in
determining the ultimate speed of the system because every pixel
is to be examined, while successive steps are to performed only
on accepted events. The frame rate of the camera presently used
is 60 frame/sec. Acquisition and analysis of each pixel, at 20
MHz readout frequency, takes 50ns.

In order to meet the strict temporal deadlines and possibly
cover even higher readout speed and/or larger CCD format, we
designed an ad hoc computational system to be interfaced with
the CCD readout system. A fast and robust morphological
analysis of signals cannot be easily described by using an
algorithmic approach, while it is possible to create many
meaningful examples of the desired system behaviour. Therefore,
we designed a neural network based computing system: the
SIgnal REcognition Network (SIREN) [3, 4, 5].

3. The SIREN network
SIREN is the feedback neural network designed for the event

identification problem. All neurons work at a time and their state
(which coincides with the output) is both communicated to the
connected neurons and fed back to the neurons themselves. The
network is synchronous, meaning that neurons work
simultaneously on stable input data.

SIREN operates by analysing a whole CCD frame, detecting
and identifying good events. Upon completion of its dynamics,
only good events are preserved, while all other bad or noise
events are zeroed.

SIREN topology is based on a regular scheme of
interconnections of 5x5 neurons, called kernel from now on,
corresponding to the event “window”. Each neuron is viewed as
the central element of a 5x5 neuron area and has 25 connections:
24 to each one of the neighbouring neurons, and one to itself (the
output is fed back as one of its input). This choice is due to the

nature of the event to be recognized, which is expected to cover
an area of 5x5 pixels. This scheme may be repeated to cover any
subset of the CCD frame.

Similar connections and the same set of synaptic weights
characterize all neurons in the network. This allows to analyse
all the possible 5x5 windows in a frame, i.e., to identify good
events independently of their position. Let

yj t + 1() = σT ωi si t()− ϑ
j=1

25

∑












j = 1�25 (1)

be the output of the j-th neuron at time t+1, where si(t) is the

state of the i-th neuron at time t, wi is the i-th input synaptic
weight, sT is the sigmoidal function, and T and ϑ are threshold
and temperature respectively. The equation describing the
dynamic behaviour of neurons is given by:

sj t +1() =
sj t() if yj − sj t() < α •sj t() j = 1,�,25

0 otherwise





 
(2)

The sigmoidal function sT is given by [3, 4, 5]:

σT xj()=

0 if xj ≤ 127

int 128+ xj / T[] if −128T ≤ xj ≤ 127T

255 if xj ≥ 128T









xj = ω isi t()−ϑ
i=1

25

∑ j = 1,�,25

The rule provides a fast convergence of the dynamics and event
identification can be accomplished in three cycles only. The
value of a has been experimentally determined in 0.25.
Higher/lower values cause a greater number of bad/good events
to be accepted/rejected. The SIREN computational model is
based on an integer arithmetic: four bits represent weights and
eight input data are used. The rule (2) as well as the
identification capabilities and some performance evaluations of
SIREN are fully described in [5].

The synaptic weights are defined by applying a specific
supervised learning algorithm [3], based on a gradient descent
optimization technique tailored on the specific network structure.
Due to the translational invariance of the identification process
and the rotational symmetry of the patterns to be identified, the
number of independent weights for each neuron is reduced to
only 6. The training is accomplished off-line and off-board.

4. The system description
The system implementing the event identification processing

consists of two main parts: a Serial Acquisiton Unit (SAU) that
concurrently samples event windows and an Event Identification
Unit (EIU) to identify events within the image being acquired
from the CCD camera. A prototype based on an early neuron
model was presented in [2].

SAU operation principle is illustrated in Figure 2. Five 512-
byte shift registers, connected in series, are fed by the pixel-by-
pixel CCD readout system; at any given clock time (but the first
four ones), the contents of their five end registers map a 5x5
pixel window of the CCD frame. As time evolves, the window

Figure 1: SIREN
connections
of the central neuron.

covers dynamically the whole CCD image being acquired. As a
pixel content enters the input 512-byte shift register, five new
pixels (a5 to e5) enter the window from the left-hand side, while

the five pixels (a0 to e0) exit from the right-hand side. This

allows to analyse the whole CCD frame, avoiding problems of
either fixed or dynamic image partitioning. The 5x5 pixel
window is used for event identification and centroiding. Details
about the SAU implementation can be found in [2].

As far as the EIU is concerned, it consists of a twenty-five
neuron unit interfaced to the SAU. This means that one single
kernel is used in the actual implementation, sliding on the CCD
frame. EIU are implemented by using the Xilinx XC4013 FPGA.
EIU consists of five boards for the neural network and one board
for the microprogrammable control unit. The neural network is
realized by twenty-five XC4013 (five for each board).

 a4 a3 a2 a1 a0

 b4 b3 b2 b1 b0

 c4 c3 c2 c1 c0

 d4 d3 d2 d1 d0

 e4 e3 e2 e1 e0

Figure 2: System Block Diagram.

The neuron structure mainly consists of two parts: the
Weighted Sum Section (WSS) and the Sigmoidal Function
Section (SFS). For the WSS we adopt the same architecture as
presented in [1]. The logical scheme is reported in Figure 3.

Briefly, the weighted sum is implemented via several levels of
pipelined full adders. Data are acquired serially (one bit at a
time) to minimize the number of inputs and grouped into six
classes according to the given six weight values. Data in each
class are summed up and multiplied by their corresponding
weight. Results of all classes are finally summed up by a three-
level full adder. The operation proceeds as follows: let us assume
that the first bits of the inputs are acquired at time t, at time t+1
the pre-summation process is performed on the first bits; at time
t+2 the second level of summation is carried out and the results
are stored into the pipeline registers (S1, S2, S3); at time t+3
the content of the pipeline registers are released and the third
level of summation is performed; at time t+4 the last summation
is performed and the result stored into the register S5; at time
t+5 the accumulation loop in the cumulating circuit starts by
adding the result S5(0) (SumReg in Figure 4) with the content of
a 16-bit accumulation register, initially empty (AccReg in Figure
4). At any time from t+6 to t+11, the accumulation continues
working on the subsequent bits respectively. At time t+11 the
output of the accumulation adder yields the result of the
weighted sums of the first set of inputs: 25 eight-bits inputs. At

this time the clear control of the accumulation register is set to
high to restart the process on the next set of inputs. This section
can be viewed as a stand-alone section of the neuron because it
can work continuously on the input data. Except for the initial
transient state, the weighted sum is performed in eight clock
cycles.

+

+

+ + + +

x x x x x x

++

+

+

+

Weight0 Weight1 Weight2 Weight3 Weight4 Weight5

W0 W1 W2 W3 W4 W5

S1 S2 S3

R

S4

S5

S6

PARTIAL
SUM REG.

OUTPUT
SHIFT REG.

Figure 3: The weighted sum block diagram.

The sigmoidal function computation is accomplished by
dividing the weighted sum, diminished by the threshold, by the
temperature. The division algorithm is implemented by iterate
subtractions. Before performing division, the three most
significant bits of the dividend are checked: if at least one bit is
“1”, then the result will exceed the maximum value allowed for
neuron status. In this case the output is set to 255. The dividend
sign is also evaluated: if it is “1” (i.e. negative dividend), then
the output is set to “0”, since the result will be less than the
minimum status value. In all other cases division is performed by
eight pipelined steps, each one providing one bit of the result,
while the WSS is being processing the next input sets. The
division section takes eight steps, one for each bit of the result
needed. The neuron is designed in order to allow division to be
performed on the inputs at time t while the weighted sum section
is processing the inputs at time t+1, reducing the overall
computation time.

The final schematic of the whole neuron is shown in Figure 4.
At the top one can see the sets of registers, the central area is
filled by the WSS, while the SFS lays in the lower area of the
schematic.

An estimate on the overall computation time, after the first
transient phase, can be given on this basis: the highest line
propagation time is calculated by the simulation program in
100ns for the longest line in the schematic. Therefore one can
oversize the clockstep, putting it to 100ns. The global evolution
time is 13 clock cycles. Therefore the whole neuron takes 1.3 µs
to perform one step of its dynamics. The network is to work in
parallel, thus yielding a global recognition time of 1.3 µs per
cycle, i.e., 3.9 µs.

Figure 4: The schematic diagram of the neuron.

The overall recognition time is mostly due to the WSS,
because it has to accumulate eight partial results, so it takes eight
clocksteps, plus a fixed delay of three clocksteps. The SFS works
in parallel with the WSS.

5. The concurrent error detection capabilities
In the serial architecture of the dedicated massive computing

system as described in Section 4, the fault model adopted for the
FPGA-based implemention is the traditional single gate-level
fault model. It is worth noting that other kinds of faults may

occur in the FPGAs, but they may be so devastating (leading
even to the collapsing of most of the device) that no technique
within the individual FPGA is appropriate; on the other hand,
these faults are relatively rare so that they can be neglected.
Since we are concerned with protection of the digital
components, the fault model allocates the possible faults into the
weight storage, the arithmetic devices, and the activation
function evaluators; as usual in most fault-tolerance approaches,
interconnections are assumed fault-free, unless differently noted.
In the envisioned implementation, it is possible to design the

4

4

4

4

4

4

3

3

3

3

3

3

7

7

7

7

7

7

9

9

10 16

4 4 4 4 4

4

threshold

cumulating
circuit

*W1

*W2

*W3

*W5

*W4

*W4

*W0
 Sr1 Sr2 Sr3 Sr4 Sr5 Sr6

to division

16

9

8

8
8

8

temperature

divider comparator

serializer
parallel input from CCD

serial input

controller

Pipe_1

Pipe_2

Pipe_3

Pipe_4

8

8

8

SumReg
Sum2_1

Sum2_2

Sum3_1

Tr
Reg

Out
Reg

AccReg Acc
Adder

digital structures [14] so that the effect of the adopted fault
model onto the computation can be described by the single-error
assumption.

Data coding is often considered as a good compromise
between the circuit complexity and the computational delay
introduced by encoded operations in the neural architecture [12].
The parity code [13] is well suited to protect the memory storage,
as it is widely recognized. For the arithmetic devices, we
identified AN codes as capable of satisfying all the above
requirements for concurrent error detection, given reasonable
choices for A and B [11].

AN codes are non-systematic codes in which each nominal
datum N is substituted by its coded representation C(N) via the
linear transformation C(N)=A*N, where the integer constant A is
the code generator. Arithmetic units (namely, adders, subtractors,
multipliers) are not modified by the adoption of the coded data;
the only difference with respect to the nominal structure is given
by the number of bits required, that obviously increases with A.
The coding unit is therefore a simple multiplier; since A is a
constant, its structure can be optimized to grant maximum
compactness and speed. Decoding is performed, for addition and
subtraction involving coded operands, by applying the linear
antitransformation N=C(N)/A; the same decoding holds for
multiplication whenever one operand only is in coded form. If
both operands are coded, for a multiplication the
antitransformation becomes N=C(N)/A2. Whenever the
antitransformation produces a non-null residue, an error is
detected. Aliasing is possible whenever the error is a multiple of
the code generator (A or A2); a number of papers have been
published on optimum choice of A to minimize aliasing in the
various arithmetic units [13]. In particular, it has been proved
that choosing A=3 gives satisfactory detection capacity for all
arithmetic units in which a single fault induces an error that can
be represented as the addition of a power of 2; moreover, both
encoder and decoder are quite simple and representation of the
coded operands is only two bits longer than the nominal one.

The application of the coding techniques must take into
account the specific structure of the neural architecture described
in Section 4.

As the shift register subsystem is concerned, it is worth - but
effective - adopting the traditional parity coding. Encoding
should be performed in the CCD camera to guarantee protection
of the interconnection path. However, since we cannot modify the
internal structure of the commercially-available CCD camera in
the present version, we assume - as it is anyway reasonable - that
this interconnection is fault free. Coding is therefore performed
at the shift register input. Checking is performed in the FPGA
dedicated to extract the pixels from the shift register in the order
expected by the neural system. Operation within such an FPGA
is duplicated and compared for self checking.

Consider now each neuron implemented by an FPGA. The
scheme of the architecture with concurrent error detection
capabilities is shown in Figure 5. One input per neuron is
presented to the FPGA corresponding to such a neuron in a bit-
parallel way and stored in two shift registers. The input block
serializes and distributes this input to all neurons. Serialization
is duplicated and compared for checking.
Distribution is bit-serially performed: each receiving FPGA,
during the input acquisition, computes the 3N representation.
The encoder is a serial adder computing C(N)= N+2N; the
nominal input is presented twice: one is shifted by one clock

cycle with respect to the second one. Each encoded input is
stored in a separate shift register. Due to the simplicity of
encoding and storing, these structures are duplicated with voting.
Also the interconnection weights of the neural network are stored
in the weight registers in the 3N code to protect also these
registers during the system operations as well as the
interconnecting paths among neurons.

The arithmetic operations generating the weight inputs'
summation can be directly protected by the use of the 3N code
for all operands (namely, inputs and weights). Note that, as a
consequence, each weighted input is given in the 9N code as well
as the whole weighted summation. The threshold value (in the
9N code) is then added to the weighted summation to generate
the excitation signal for the linear activation function. The
additional circuit complexity due to the use of all coded operands
with respect to the minimum required by single-error detection is
acceptable to guarantee protection also of the interconnection
paths if the weights are not multiple of 3; on the other hand, the
use of FPGA does not require to minimize hardly the number of
gates as it is usual in the standard VLSI approach, being
sufficient not to exceed the capacity of the FPGA itself.
No intermediate checking or decoding is required in all the above
structure to preserve the single-error assumption since no
aliasing is induced by possible reconvergent data paths or cycles.
The registers used for pipelining the operations are protected as
well as the arithmetic units without introducing any additional
technique since a fault in any of them appears as a single error in
the subsequent arithmetic unit.

The excitation signal is then scaled to support the subsequent
direct evaluation of the energy associated to the photon activating
the pixels. This operation is performed by dividing the weighted
summation by a suited factor computed during the neural
learning procedure. Being division implemented by iterated
subtractions, checking must be introduced at the accumulator
output in order to preserve the single-error assumption.
The final result of the division is the coded output of the neuron:
it is transferred to the other neurons during the subsequent
iteration of the neural operations, while recoding in the 3N code
is performed.

Checking of the neural operation is performed locally within
each individual neuron concurrently with the nominal
computation. The datum Y=3X belongs to the code if it is
divisible by 3. Checking consists of dividing Y by 3 by means of
the subtraction X=Y-2X, and by verifying that the most
significant bits of the result are zeros [11]. A similar technique
can be adopted also for checking the 9N code. The presence of a
fault in the individual neuron is pointed out by the neuron's error
signal. Possible errors are propagated to the other neurons, but
the first error signal becoming active identifies implicitly the
faulty neuron, without any additional overhead in circuit
complexity and latency.

Due to the limited number of neurons in the envisioned
application, localization of the faulty component can be obtained
by observing the value of each neuron's error signal at each
neural iteration. This could be exploited in the future for
dynamic reconfiguration of the system.

The prototype implementation of the fault tolerant neural
network for the envisioned application gave attractive results
with respect to the structure without concurrent detection
capabilities. Each neuron has been implemented by using one
Xilinx XC4013 FPGA. The version of the neuron without fault-

Figure 5: The schematic diagram of the fault-tolerant neuron.

tolerance features occupies 327 CLB's (56% of the total CLB’s of
the XC4013) and 110 I/O pins (57% of the total pins of the
XC4013). The fault-tolerant version of the neuron (including
both the nominal computational features and the concurrent error
detection circuits) uses 415 CLB's (72% of the total CLB's of the
XC4013) and 118 I/O pins (61% of the total pins of the
XC4013). The additional circuit complexity introduced for fault
tolerance in each neuron (measured as number of CLB’s) is
about 35% with respect to the basic structure without fault
tolerance features, while the increase of the interconnection
complexity (measured as number of pins) is less than 8%.

The time diagram of the neuron behaviour is given in Figure 6.
In particular, it points out the time behaviour and the stability of
the pipeline stages within the neuron structure. The design was
performed to maximize the system throughput by accurately
balancing the operations in each pipeline stage, as it is shown by
the input and the output signals of the pipeline registers. With
reference to the schematic diagram of Figure 5: PIPE_IN_1 and

PIPE_IN_3 are the input signals to Pipe_1 and Pipe_3 registers;
PIPE_M_1 and PIPE_M_3 are the output signals from Pipe_1
and Pipe_3 masters; PIPE_S_1 and PIPE_S_3 are the output
signals from Pipe_1 and Pipe_3 slaves; SUM2_1, SUM_2_2 and
SUM3_1 are the output signals from corresponding sum devices;
SUM_3_M is the output signal from SumReg register master and
finally SUMREG is the output signal from SumReg slave.
PIPE_IN_2 and PIPE_IN_4, PIPE_M_2 and PIPE_M_4, and
PIPE_S_2 and PIPE_S_4 are not shown as they have the same
behaviour of PIPE_IN_1, PIPE_M_1 and PIPE_S_1 signals
respectively. It can be noticed that SUM_2_1 and SUM_2_2
correctly become stable later than PIPE_S_3 and the same
applies to SUM3_1 with respect to SUM2_1 and SUM2_2.

The system needs 13 clock cycles in the non fault-tolerant
version to generate each neuron output, being 150ns the duration
of the clock cycle. In the architecture with concurrent detection,
17 cycles are necessary to complete the operation, i.e., about
30% more than the basic approach.

4

4

4

4

4

4

3

3

3

3

3

3

13 16

6 6 6 6 6

6

threshold

cumulating
circuit

3NW1

3NW2

3NW3

3NW5

3NW4

3NW4

3NW0 3N*W Sr2 Sr3 Sr4 Sr5 Sr6

to division

16

8

8
8

divider comparator

controller

16

error checker

error signal

3xN serializer
duplicated
with voting

 serial input
 10 8

SumReg

10

10

10

10

10

10

12

Pipe_1

Pipe_2

Pipe_3

Pipe_4

11

11

11

12

Sum2_2

Sum2_1

Sum3_1
Tr
Reg

from CCD

Out
Reg

Figure 6: The time diagram.

6. Conclusions
A fault tolerant neural network implementation based on

FPGA was presented. The resulting architecture has a good level
of flexibility and modularity, which are desirable properties for
rapid prototyping. Current performance matches CCD camera
throughput. Further research will be directed to improve the
characteristics of the camera and of the neuron, both from the
point of view of speed and fault tolerance. As a consequence, the
internal structure of the neuron will be revised to reduce clock
cycle time. In particular, we are studying a faster control signals
distribution scheme to reduce the control propagation delay. In
fact, the arithmetic part is able to operate at a 50 MHz clock rate
(20 ns. clock cycle), but the system clock must be delayed to 150
ns. to guarantee a correct control propagation through the whole
FPGA device since the FPGA synthesis tool introduces a poor
routing for such signals.

References
[1] P. Achdjian, C. Baroncelli, S. D’Angelo, M. Dapri, and G.R. Sechi, “A

Hardware Prototype of a Neuron for Signal Processing”, Proc. IASTED
Int. Symp. on Applied Informatics, Innsbruck, Austria, Feb. 21-23,
1995, pp. 79-82.

[2] P. Achdjian, M. Alderighi, S. D’Angelo, G.R. Sechi, E.G. Tanzi, and M.
Uslenghi, “Neural Network Based Event Identification in a Photon
Counting Intensified CCD: Performance Evaluation”, Proc. Int. Conf.
on Massively Parallel Computing Systems MPCS’96, Ischia, Italy,
May 6-9, 1996.

[3] M. Alderighi, F. d’Ovidio, E. Gummati, and G.R. Sechi, “Analysis and
Evaluation of a Neural Network Performing Digital Filtering”, Proc.
IASTED Int. Conf. on Artificial Intelligence, Expert Systems and
Neural Networks, Zurich, Switzerland, July 4-6, 1994, pp. 106 - 110.

[4] M. Alderighi, D. Crosetto, F. d’Ovidio, E. Gummati, and G.R. Sechi,
“A Feedback Neural Network for Signal Processing and Event
Recognition”, Proc. IEEE Int. Conf. on Algorithms and Architectures
for Parallel Processing, Brisbane, Australia, April 19-22, 1995, pp.
788-791.

[5] M. Alderighi, S. D’Angelo, F. d’Ovidio, E. Gummati, and G.R. Sechi,
“An Advanced Neuron Model for Optimizing the SIREN Network
Architecture”, Proc. IEEE Int. Conf. on Algorithms and Architectures
for Parallel Processing, Singapore, June 11-13, 1996, pp. 194 - 200.

[6] C. Alippi, V. Piuri, and M. Sami, “Sensitivity to Errors in Artificial
Neural Networks: a Behavioral Approach”, IEEE Trans. on Circuits
and Systems - 1: Fundamental theory and applications, vol. 42, no. 6,
June 1995, pp. 358-361

[7] C.E. Cox, W.E. Blanz, “GANGLION - A Fast Field-Programmable
Gate Array Implementation of a Connectionist Classifier”, IEEE Jour.
of Solid State Circuits, vol. 27, n. 3, March 1992, pp. 288-299.

[8] R. Eckmiller, and C.v.d. Malsburg, Neural Computers, NATO ASI
Series, Series F: Computer and Systems Sciences, Vol. 41, Springer
Verlag, Germany, 1988.

[9] V. Piuri, M. Sami, and R. Stefanelli, “Fault Tolerance in Neural
Networks: Theoretical Analysis and Simulation Results”, Proc.
Compeuro 1991, Bologna, Italy, May 1991.

[10] V. Piuri, M. Sami, and R. Stefanelli, “Neural Networks on Silicon: the
Mapping of Hardware Faults onto Behavioral Errors”, Proc. Int'l
Workshop on Defect and Fault Tolerance 1991, Hidden Valley, USA,
Nov. 1991.

[11] V. Piuri, and R. Stefanelli, “Efficient Use of the 3N Code for Concurrent
Error Detection in Parallel Multipliers”, Computer Arithmetic,
Scientific Computation and Mathematical Modelling, E. Kaucher,
S.M. Markov, G. Myer editors, J.C. Baltzer AG, Scientific Publishing
Co., 1991

[12] V. Piuri, M. Sami, and R. Stefanelli, “Arithmetic Codes for Concurrent
Error Detection in Artificial Neural Networks: the Case of AN+B
Codes”, Proc. Int’l. Workshop on Defect and Fault Tolerance in VLSI
Systems, Dallas, TX, 1992.

[13] T.R.N. Rao, Error Coding for Arithmetic Processors, Academic Press,
NY, 1974.

[14] R. Stefanelli, and M. Annaratone, “A Multiplier with Multiple Error
Correction Capability”, Proc. ARITH-6, 1983.

[15] E.G. Tanzi, “Photon Counting and Analog Intensified Imagers for UV
and X-Ray Radiation”, IFCTR-CNR Internal Report, January 1995.

	CD-ROM Home Page
	FPGA97
	Front Matter
	Table of Contents
	Session Index
	Author Index

