
Synchronous Up/Down Binary Counter for LUT FPGAs with Counting Frequency
Independent of Counter Size

Alexandre F. Tenca Miloš D. Ercegovac
tenca@cs.ucla.edu milos@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Abstract

This paper presents the design of a fast up/down binary counter
for LUT FPGAs. The counter has a cycle time independent of the
counter size. The key aspects of the design are described and
applied to a 64-bit synchronous binary counter implemented in a
XC4010 FPGA chip. Experimental results show that the counter
can scale up to hundreds of bits while keeping a short cycle time.

1 Introduction

Counters are very common in many digital circuits. The basic
synchronous modulo-2n up counter structure has an incrementer
and a state register. The incrementer generates the next state that
is stored in the state register when a count signal (cnt) is active.
The state transition implemented by an up-counter is:

s(t+ 1) =

�
s(t) if cnt = 0
(s(t) + 1) mod 2n if cnt = 1

(1)

where s(t) is the counter state at time t.
The incrementer used to obtain (s(t) + 1) mod 2n can be im-

plemented in many different ways. In this paper we consider the
simplest case, where the circuit is organized as a chain of Half-
Adders (HA). The HA has only one gate in the path to generate
the carry or sum bit. The delay of such a circuit increases linearly
with the length, in bits, of the number to be incremented (in this
case n). So, for large counters, the delay to generate the next state
becomes unacceptable.

Ercegovac and Lang in [1] describe an implementation method
that partitions a large counter into smaller ones (sub-counters).
Each sub-counter has a circuit that, at the proper time, enables the
sub-counter to change state. The partitioning is made such a way

that the delay of the incrementer of a sub-counter is accommodated
by the counting period of the sub-counter assigned to least signif-
icant bits. For example: if we have two sub-counters, one of n
bits and another of m bits, such that the state is composed by the
concatenation of these bits, the value represented by the most sig-
nificant n bits is incremented in periods of 2m clock cycles, when
all m bits go to zero. If n � 2m, there is sufficient time for carry
propagation in the HAs’ chain that generates the next state in the
n-bit sub-counter, before the condition to change the state of this
sub-counter is reached. We describe the partitioning algorithm
later. Using this partitioning method, the cycle time of the counter
can be made as low as one gate delay, independent of the length
of the counter. Theoretically, the method presented in [1] has no
limit (except for broadcasting of control signals).

A scheme presented by Vuillemin [3] uses the same idea of
counter partitioning, but instead of using independent sub-counters,
he combines the carries generated by each least significant sub-
counter to obtain the count enable of the leftmost sub-counter. The
length of each sub-counter is adjusted (reduced) in order to absorb
the delay caused by the combination of carries. The advantage of
the approach is to use fewer flip-flops – FFs – (since there is no
circuit to enable the load of the next state in each sub-counter) but
the cycle time is limited to at least 2 gate delays.

The previous schemes present the counter delay as a function
of standard gate delays. In this work we present the delays in terms
of Function Generators of the XC4000 LUT FPGA. We assume
the reader is familiar with the organization of Xilinx FPGAs. The
delays are referenced in this paper as FMAP delay, for F or G
function generators only, or FHMAP delay, for the case of the
delay involved with F and H function generators in series. These
values are given in the Xilinx manual [5].

The Xilinx Data Book [4] shows several counters for the
XC4000 FPGAs. The fastest design uses prescaler technique
[4, 2]. An example shows a 16-bit counter with a clock frequency
of 111Mhz. The author of the design points out that the length
of the counter can theoretically go up to 87 bits, with the same
cycle time, but is really limited by the broadcast of control signals.
The practical number of bits is 23. The counter also doesn’t have a
count input. The counter makes use of the fast carry logic available
in the device. The area used is about 1 CLB per bit. CLB stands



for Configurable Logic Block.
All of these designs consider only the up-counting case, and in

particular, in [3] the following question is proposed: “is it possible
to design a synchronous, arbitrary length, constant time up-down
counter?”.

Designs of up/down counters found in [4] show clock cycle
times that increase significantly with the size of the counter. This
paper presents a design of an up/down counter that has a clock
cycle time independent of the counter size 1.

Reasons for long counters are presented in [1, 3]. This paper
is organized as follows: initially, we present a short discussion
of the constant time variable size up-counter proposed in [1], the
next section presents an extension of the original design to allow
up/down counting, and in the last section some experimental results
are discussed.

2 Constant time variable size up-counter

Based on the fact that the worst case delay of a counter is
caused by the incrementer circuit and that the delay is linearly
related to the counter size, Ercegovac and Lang [1] proposed a
design methodology for an up-counter that recursively constructs
the counter by breaking it into sub-counters. A n-bit counter M
is broken into M1 (most significant) and M2, such that M1 is a
(n � dlog2ne)-bit counter and M2 is a dlog2ne-bit counter. The
partitioning process repeats forM2 and to all other modules dealing
with least significant bits until a module of length one is obtained.
A partitioning scheme for a 64-bit counter is shown in the figure 1.
Notice that we swapped the sub-counter sizes in the last partition.

64

58 6

3 3

2 1

Figure 1. counter partitioning

Using this counter partitioning, M1 has a delay that is smaller
or equal to n�1 gate delays (chain of n�1 HAs), and the carry-in
bit of M1 comes in intervals greater or equal to n clock cycles.
So, if the clock cycle is made the same as a gate delay (plus some
other delays: interconnection and FF delay), there is enough time
for M1 to have the incrementer stable before the carry bit arrives
from M2.

Instead of using the actual carry-out bit from M2, M1 has
an enable counter that generates the enable signal to the latch
that stores the counter state. The basic structure is presented in

1a similar design of synchronousup/down counter with frequency inde-
pendentof the counter size, based also in [1], is described in an unpublished
paper [7]. We were made aware of [7] by one of the reviewers of this paper

figure 2. We use the notation Mk;m where k is the modulo of the
enable counter and m is the length of the subcounter, in bits. The
enable signal to the state register of M1 is generated in the same
cycle when the delay-free carry signal from M2 happens. As the
enable counter needs to be fast, because it uses the high frequency
clock of the system, a ring or a twisted-tail counter is utilized.
Twisted-tail counters use fewer components than ring counters and
are used in the implementation presented in this paper. A modulo-k
Twisted-Tail Counter (k = 2q) has a k=2-bit state vector y(t) =
(yk=2�1(t); :::; y1(t); y0(t)) and the following transition function:
yi(t + 1) = yi�1(t), for i > 0 and y0(t + 1) = (yk=2�1(t))

0,
where the apostrophe symbol represents logic complementation.
However, twisted-tail counters have the disadvantage, with respect
to ring counters, of requiring extra logic to obtain the TC signal
(Terminal Count).

Modulo-k
Enable 
Counter
(twisted-

tail)

Incrementer

State RegisterETerminal-Count
(TC)

Count

Counter Output

Clock

M
k,m

m

m

Figure 2. Structure of a Mk;m sub-counter

The partitioning method could be further optimized, reducing
the number and size of enable counters that was obtained with the
original partitioning method. This optimized partitioning method
breaks a n-bit counterM into M1, as a (n�blog2nc)-bit counter,
and M2, as a blog2nc-bit counter, whenever (n � blog2nc) �

2blog2nc. When the condition doesn’t apply, we use the first parti-
tioning method instead. An example of this partitioning method is
shown in figure 3. Notice that a smaller enable counter is used in
M 4;4 when compared to M 8;3 , obtained in the the previous case.

64

58 6

4 2

1 1

M
64,58

M
4,4

M
2,1

M
1,1

Figure 3. optimized counter partitioning

In this counter design methodology, each sub-counter is decou-
pled from the others. The enable counters are synchronized and
they change state at the same time. More details are presented



in [1].

3 Up/Down counter design

In this section we present some modifications to allow down
counting capability to the counterpresented in the previous section.
During normal operation, the next state is obtained incrementing
or decrementing the present state of the counter. So, an incre-
menter/decrementer circuit is needed.

The basic problem is the computation of the next state when
the counting direction changes. The time available to have the
next counter state computed in any one of the sub-counters can be
as low as one clock cycle, and it violates the assumptions in the
method presented for the up-counter. The same problem happens
when the counter was cleared (s(0) = 0), the counting direction
starts as count down and the cnt input is active. To obtain the next
state, it is necessary to have propagation of borrows over the length
of the sub-counters, which may take more than one clock cycle.

The solution for the problem is to make the counter memorize
the last state transition and recover the state when necessary, in-
dependently of the delay involved in the incrementer/decrementer
circuit. Consider the counting sequence shown in figure 4, assum-
ing that the count input is always active. We show the internal
next state being computed (s(t + 1)) and the present state (s(t))
of each sub-counter. When the direction changes, the next state
computed for up-counting cannot be used. It must be obtained
from the information on the previous state of the counter.

0 0 0 1 1 10 0 0 0 0 01 0 0 0 0 1

M M M
4,4 2,1 1,1

1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
up up

down
down

s(t+1)

s(t)

1 1 1 0 0 0

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 1 1 0
CANNOT USE s(t)

Figure 4. Example of counting sequence with
change in counting direction

Each sub-counter may need to recover the state at different
instants in time, depending on the state at the time the direc-
tion changed. Considering the structure of the counter composed
of sub-counters M 4;4, M 2;1 and M 1;1, and the present state is
(010110), when the direction changes, each sub-counter is going
to recover the previous state after 3, 1 and 1 clock cycles respec-
tively. In order to have this feature, the twisted tail counter that
generates the enable signal for the registers should be able to count
up and down, what will force the inclusion of some extra circuits
in the twisted tail counter to get the next state and a slightly more
complex detection of the TC condition. We present in the next
subsections a possible solution for these problems.

The block diagram of the proposed design is presented in fig-
ure 5. Both enable counter and incrementer module are modified

to provide down counting capability. An extra register was in-
cluded to store the carries/borrows generated in the previous state
transition.

Incrementer/Decrementer

TC

CLK

Control DIRCarry/Borrow Register

carry/borrow s

Modulo-k
Up/Down
Counter
(Twisted

Tail)

cnt

changed
direction (DIRCH)

Previous
Direction
(PDIR)

cbus2

cbus1

sbus1

sbus2

m

m

m

m

M
k,m

sub-counter

State Register

Figure 5. Scheme of the Up/Down sub-counter

3.1 Up/down Twisted Tail Counter

A modulo-k twisted-tail up/down counter with k = 6 is shown
in figure 6. Using multiplexers, the connections between the flip-

dir
(up=1)

counting up
counting down

FF
0

1

FF
0

1

FF
0

1

Figure 6. Up/down twisted-tail counter

flips (FF) are modified depending on the direction of counting.

The TC signal, though, must be taken from different conditions
depending if the counter is counting up or down. When counting
up, TC = 1 when the state of the enable counter is s(t) =

(100:::00) (one state before the counter goes back to state 0) and
cnt = 1. When counting down, TC = 1 when s(t) = (000:::00)
and cnt = 1. The detection of zero state is done testing the
extremes of the state vector. This circuit takes 1 CLB in the
XC4000 FPGA, and increases the delay to generate TC, when
compared to the up-counter (FHMAP delay against a FMAP delay
in the original counter). The scheme is presented in figure 7.



TCup

cnt

Twisted Tail State Vector

TCdown

TC
MUX

dir

1

0

Figure 7. Up/Down Twisted-Tail TC circuit

3.2 Incrementer/Decrementer Circuit and
Carry/Borrow Register

The incrementer/decrementer circuit is considered in this work
as a chain of Half Adder/Subtractors (HAS). An HAS has a control
signal (OPER) that commands the circuit to perform addition
(a + cin = 2cout + s) or subtraction (a � cin = �2cout + s).
The truth table of these operations is shown below. The carry-out
of one module is connected to the carry-in of the next module in
the chain.

a cin a+ cin a� cin

cout s cout s

0 0 0 0 0 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 0 0 0

As the s output is the same for addition and subtraction, the
function that generates s depends on variables a and cin, but not
the operation to be performed. The cout output depends on 3
variables (a, cin and OPER).

As explained earlier, there’s no time to wait for the carries or
borrows to propagate when the direction of counting changes. To
solve the problem we can store the carry/borrow bits and use them
to recover the previous state. The use of carry/borrow bits restricts
the use of the Fast Carry Logic available in the XC4000 device. A
solution proposed in [7] allows the use of this dedicated circuit.

The storage of the carry/borrow bits will imply an increase in
the number of FFs of about the length of the counter. If a carry or
borrow came to a certain bit position in the last state change, the
bit was inverted and must be inverted again if we want to restore
the previous state. Otherwise the bit didn’t change and must be
kept the same. Once the carry/borrow bits are stored in a register,
the previous state is obtained using a XOR function of this register
contents and the present state register. The carry/borrow register
must be initialized with 1 values, to allow the condition when the
counter starts with the down count direction, and the initial state is
zero.

The restoration of the previous state must be controlled by
each sub-counter independently. When the counter is initialized
and the direction is down or when the direction changes during
regular operation, the control circuit transmits the information of
direction change and forces the incrementer/decrementer to use the
carry/borrow register contents to obtain the next state. The condi-
tion is kept until a TC signal is generated by the enable counter, or
the direction is restored to the previous situation. It is important
to note that only the generation of the next state works based on
the new direction, the carry generation continues to work in the
previous counting direction (PDIR). That is important because
the direction can change more than once during the counting pe-
riod of a sub-counter (that can take many clock cycles) and the
sub-counter should be able to resume the computation of the new
next state that cannot be restored from the register. So, the HAS
should work with the carry/borrow chain independently of the out-
put generation (next state), such that both up and down next states
can be available when the enable signal is generated.

To make the incrementer/decrementergenerate the outputbased
on the carry/borrow register, we use a control signal named
DIRCH (indicates that a new counting direction was given to
the counter). This signal makes the HAS module use the carry-in
from the previous module in the chain (DIRCH = 0), or the
value stored in the carry/borrow register (DIRCH = 1). A pos-
sible mapping of the HAS module, with the needed modifications,
to the XC4000 function generators is presented in figure 8, with
the logical equations for each output. The input cbreg is a bit that
comes from the carry/borrow register.

F Function
Generator

a

cin
PDIR

F Function
Generator

s=(a xor cbreg)DIRCH +
(a xor cin)DIRCH’

a
cin

DIRCH
cbreg

cout=a.cin.PDIR + a’.cin.PDIR’

Figure 8. Mapping of the HAS module with state
recovering to FPGA Function Generators

The state register is clockedwhen TC is generated by the enable
counter. The carry/borrow register changes state based on TC and
the DIRCH = 0. When DIRCH = 1, the counting direction
changed, the value in the carry/borrow register must be kept until
the next TC. This feature is necessary because we don’t get valid
carry/borrow information from the incrementer/decrementer when
the counting direction changes. If the direction signal is stable for
more than one TC pulse, the sub-counter resumes regular operation.



3.3 Control Circuit

The control circuit is a sequential system that has the behavior
represented by the state diagram in figure 9. The state changes
every time TC is activated by the enable counter. The initial stateS0

is necessary for the case of counting down after clearing the counter.
The output signals of the controller are: DIRCH and PDIR.
The DIRCH indicates that the counting direction changed. The
PDIR signal indicates the previous counting direction used. The
state of the circuit changes when the Enable Counter generates the
TC signal.

S0

S2S1

up/up,0 down/down,1

down/up,1

up/down,1

down/down,0up/up,0

dir/PDIR,DIRCH

transitions are:

Figure 9. Control Circuit State Diagram

Extra delays caused by the control logic will increase the clock
cycle time of this design, when compared to the up-counter. This
is discussed in the next section.

4 Experimental Results

The design was specified in Viewlogic VHDL and the synthesis
results are presented in this section. The results were obtained
without imposition of constraints to the synthesis tools. No manual
placement or routing were performed, what leaves some space for
optimizations and better performance. The design was also tested
in the EVC board [6] to verify the counter operation.

We split the results in two subsections. The first one shows the
implementation of the up-counter using the methodology, and the
second shows the implementation of the up/down counter.

4.1 Up-counter implementation

The minimum clock period for the up-counter should be 1
FMAP delay plus interconnection delay and propagation time of a
FF (set up time is included in the FMAP delay). This value can be
made as short as 10ns. Unfortunately, the implementation results
shows that the broadcast of the enable signal, from the Enable
Counter to the State Register, makes the propagation delay of this
signal greater than 10ns. It is caused by the large fan-out of the
signal and it becomes worse as we enlarge the counter size. On
the other hand, this problem can be solved independently of the
counter size, in order to reduce its effect to a minimum. We discuss
this problem by the end of this section.

length P1 P2 P3 P4 # FFs #CLBs #CLBs
(FCL) (w/o FCL)

32 27 3 1 1 51 26 27
36 31 3 1 1 55 28 28
37 32 3 1 1 56 28 30
38 32 4 1 1 73 37 39
40 34 4 1 1 75 38 39
50 44 4 1 1 85 43 45
60 54 4 1 1 95 48 50
64 58 4 1 1 99 50 51
70 64 4 1 1 105 53 54
71 64 4 2 1 140 70 70
128 121 4 2 1 197 99 99

Table 1. Estimation of the Counter Design Area

Table 1 shows the partitioning results obtained from the equa-
tions presented in section 2 and area estimates in terms of number
of CLBs for some counter sizes. We are assuming the optimized
partitioning method. The number of CLBs used is presented for
two different implementations, one considering Fast Carry Logic
(FCL) and the other disregarding Fast Carry Logic (w/o FCL). To
implement the design we used two versions of a 64-bit counter,
both described in Viewlogic VHDL. The first one uses standard
structures and describes the incrementer as a chain of HAs. The
second uses XBLOX add/sub module as the incrementer. The first
implementation does not take advantage of the Fast Carry Logic
and the second does. Because of that, the first design uses a slower
incrementer. The area is almost the same for both cases.

A good implementation of the first case would give the follow-
ing parameter estimates for the incrementer:

delay = tp(d
n� 4

3
e+ 1) (ns)

area = 2(d
n� 4

3
e+ 1) (CLBs)

assuming a CLB delay of tp ns (FMAP delay, interconnect delay
and FF propagation time). The structure is shown in the figure 10,
for an incrementer of 10 bits, using 4-input LUTs that are available
in the XC4000 series. From the CLBs used in the incrementer,
only dn�4

3 e FFs can be used by the twisted tail counter. Other FFs
that are needed for the twisted tail counter will increase the area
used by the final sub-counter (2 FFs per CLB). This was considered
in the table. The synthesis tool used 62 CLBs.

In the second implementation, using Fast Carry Logic, the in-
crementer delay can be estimated using the equation: 8:5+ 0:75n
(ns) (based on application notes [4]) for a XC4000-5 device. The
area used by the incrementer is only n=2 CLBs. The total number
of CLBs used in this implementation equals to half the number of
FFs needed in the design (50 CLBs in a 64-bit counter).

Our implementation consumes more area than Vuillemin’s
counter. This increase in area corresponds to the Enable Counter
used.

The use of 4-input LUT FPGA technology allows the imple-
mentation of incrementers of up to 4 bits with only one CLB delay.
The counter partitioning used is quite appropriate to 4-input LUTs



4 FGs

4-bit incrementer

1 FG

Carry 
Computation

3 FGs1 FG

3 FGs
3-bit incrementer

3-bit incrementer

incrementer inputs

FG - Function Generator

Figure 10. Example of the incrementer circuit par-
titioning (10 bits), without Fast Carry Logic

since 3 out 4 partitions used in the cases presented in the table have
at most 4 bits (for reasonable counter size).

The most important observation is that the last and most sig-
nificant group of bits (leftmost sub-counter) can be made larger
than 26 bits!! An incrementer of 58 bits, using fast carry logic
will have a estimated delay of 52ns (without considering intercon-
nection delays) what is far below the enable signal period of the
M 64;58 sub-counter that uses it, that is 640ns (counter clock cycle
of 10ns). Even the regular implementation using the chain of HAs
would have a delay of 190ns. Based on this observation, we know
that the incrementer delay is not going to be in the critical path,
and it is possible to use much larger most-significant sub-counters
than was initially calculated (using the partition method). For an
enable signal period of 640nswe could have roughly 800 bits in the
leftmost sub-counter (assuming 4 sub-counters in the design). So,
for all practical purposes, only 4 partitions are needed and adjust-
ments of the counter length are done in the leftmost sub-counter,
for large number of bits. These adjustments involve the width of
the incrementer and state register.

It was observed that the propagation delay of the enable signal
in the sub-counter is the critical path delay in the design. As the
number of bits increase, the fan-out of the enable signal increases.
The enable signal is generated by the combination of the state of
the enable counter and the count signal. It must be broadcast to
many FFs in the leftmost sub-counter, in just one clock cycle. Our
experiments show that the enable signal path delay for the 64-bit
counter is 24.6ns (for the M 64;58 sub-counter).

Long lines (with smaller delay and larger fan-out capacity) can
be used to minimize the delay in the path. Another approach is
to split the path into a tree. The enable signal is broken into two

lines, for example, using two equivalent circuits that generate TC,
each circuit will feed half of the original load. When combining
the idea of signal split and Long Lines to broadcast the signals, we
obtained a critical path of 16.2 ns (60MHz).

Another solution is to use Global Buffers (GB). The use of
GBs makes the circuit that transmits the signal less sensitive to
an increase in the load. Since a small number of GBs are avail-
able, a careful placement is important to reduce interconnect delay
between the signal source and the buffer.

The conclusion of this discussion is that the delay caused by the
broadcast of the enable signal (TC) can be reduced independently
of the sub-counter size.

4.2 Up/down counter implementation

The up/down sub-counter Mk;m consumes an area of m +

k=4+3 CLBs (except forM 1;1 that uses always 0.5 CLB). The first
term is the number of CLBs used by the incrementer/decrementer
and registers, the second term is the area used by the twisted tail
counter, and the last term is the area used by control logic.

For the 64-bit up/down counter, the area used is calculated as
91 CLBs. It represents an increase of 78% in area, when compared
to the up-counter. This increase is caused by the inclusion of the
extra register to restore the state.

The critical path in the up/down counter is related to the distribu-
tion of the control signals. In the path associated to the generation
of DIRCH and the correct output of the next state from the incre-
menter/decrementer, there are 2 CLBs. The delay is 2*FMAP plus
interconnect and FF delays.

If the load is excessively affecting the delay in the circuit, it’s
possible to reduce the load based on the same ideas proposed for
the up-counter design.

5 Summary

The paper presents the implementation of a fast counter of arbi-
trary precision with constant counting period for FPGA technology.
We improve the functionality of the counter making it an up/down
counter. The experimental results were obtained using simulation
of a 64-bit counter and estimates of the area and delay for other
cases. The clock cycle time obtained for a 64-bit up-counter was
16.2ns (60MHz) but could be reduced even more, since a reason-
able value is around 10ns and the cycle time is independent of the
counter size. The paper gives some solutions to the problem. The
up/down counter for a 64-bit implementation would consume 78%
more area and have a clock cycle time of 2*FMAP delays. We
estimate a frequency of almost 50MHz. The design was function-
ally tested in the EVC FPGA board, with a XC4010-5 with a clock
frequency of 25MHz.

Acknowledgments. This research has been supported in part by
the NSF Grant MIP-9314172 “Arithmetic Algorithms and Struc-
tures for Low-Power Systems” and by CNPq.



References

[1] Ercegovac, M. D.; Lang, T.; Binary Counter with Counting
Period of One Half Adder Independent of Counter Size;IEEE
Transactions on Circuits and Systems, Vol. 36, No.6, 1989,
pp. 924-926.

[2] Ercegovac, M. D., Lang T. and Moreno, J.; Introduction to
Digital Systems, in preparation, John Wiley & Sons, New
York, 1996.

[3] Vuillemin, J. E.; Constant Time Arbitrary Length Syn-
chronous Binary Counters; IEEE 10th Symposium on Com-
puter Arithmetic, 1991, pp. 180-183.

[4] Xilinx; The Programmable Logic Data Book, August 1993.

[5] Xilinx; The XC4000 Data Book; August 1992.

[6] VCC– EVC1 – Engineer’s Virtual Computer, User’s Manual.

[7] Stan, M. R. and Burleson, W. P.; Synchronous Up/Down
Counter with Period Independentof Counter Size; distributed
at FPGA’96.


	CD-ROM Home Page
	FPGA97
	Front Matter
	Table of Contents
	Session Index
	Author Index


