Challenges in CAD for the One Million Gate FPGA

Kurt Keutzer
Synopsys, Inc.

Abstract

FPGA and CPLD densities have typically lagged
their gate-array and standard-cell counterparts in effec-
tive density by a factor of 10. This means that the de-
sign problems encountered by ASIC designers will typi-
cally be encountered by FPGA designers 5-6 years later
and tools used in the ASIC market to address them will
ultimately be adopted by FPGA designers. Thus any-
one familiar with the evolution of ASIC design tools can
amaze and impress their FPGA-focussed friends with
their ability to predict the future of FPGA design tools.
In this short abstract we will outline the probable evolu-
tion of FPGA devices as they grow to one million gate-
equivalents and then will chart the evolution of FPGA
tool needs as they grow to meet the challenges of the
million gate FPGA.

1 Defining the 1M Gate FPGA

CAD tool needs for a system implementation
medium, such as an application-specific integrated cir-
cuit (ASIC) or afield-programmable gate array (FPGA)
are largely determined by the capabilties of the device.
These include the speed at which the device can be used,
the number of gates of logic or bits of memory that can
be implemented in the device, and finally the cost of the
device itself. Estimates from FPGA and CPLD vendors
indicate that 500K gate devices will be achieved by the
year 2000 with the 1M FPGA of our discussion soon
to follow. These devices will run clock speeds well in
excess of 100MHz. It seems almost certain that FPGA
vendors will follow the trend of ASIC’s and incorporate
at least one microprocessor or microcontroller together
with a significant amount of on-chip memory into these
devices as well. The resulting combination of a proces-
sor, memory sub-system and un-characterized logic cre-
ates the FPGA incarnation of a system on a chip. Be-
cause the microprocessor and memory sub-systems do
not pay the overhead of the programmable-logic portion
of the chip the relative cost of the FPGA system-on-a-

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

given that copyright is by permission of the ACM, Inc. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

FPGA97, Monterey California USA

© 1997 ACM 0-89791-801-0/97/02 ..$3.50

133

chip will draw increasingly closer to its ASIC relative.
For these reasons the FPGA system-on-a-chip appears
to be a device that is technically viable and commer-
cially attractive.

For these reasons, in the remainder of the paper we
will review the CAD needs for servicing the FPGA ver-
sion of a system on a chip. It may be of interest to note
that the FPGA incarnation of the system-on-a-chip has
the promise to be more than simply an FPGA version
of its gate-array or standard-cell cousin. A system-on-
a-chip implemented on an FPGA or CPLD has the abil-
ity to be fully user-programmable through the mixture
of electrical programming of the FPGA or CPLD por-
tions and through software programming of the soft-
ware sub-system. Thus it may be more accurate to call
the FPGA system-on-a-~chip, a fully user-programmable
system-on-a-chip (FUP-SOC). Such a device has the
promise to help to overcome the verification bottleneck
that will be briefly discussed later.

In discussing CAD needs for the FUP-SOC it may
be valuable to divide the design process into three ac-
tivities: design entry, design implementation and ver-
ification. These will be discussed individually in the
following sections.

2 Design Entry for the 1M Gate FPGA

Because a FUP-SOC incorporates both the hardware
portion and the software portion of a system on a sin-
gle die, to enter the design of a FUP-SOC requires the
abilty to model a system with both hardware and soft-
ware components. There are at least a couple differ-
ent approaches to this problem. The most widely used
approach is to simply use a common programming lan-
guage such as C or C++ for modeling the hardware-
software system. In this approach the partitioning of
the model into modules for hardware and software im-
plementation is made manually and the individual mod-
ules are gradually refined into efficient C-code for the
software portion or into an HDL for the hardware por-
tion. A natural evolution of this approach is to im-
prove synthesis tools to handle the C-code directly so
that hardware can be generated directly from the sys-
tem description. Another potential evolution would be
the birth of more general languages from which either
hardware or software can be generated. ’

A different approach is to use a heterogeneous
simulation environment to integrate a variety of
domain-specific approaches, such as statecharts for
control-oriented applications, and dataflow diagrams for
dataflow-oriented applications. Either hardware or soft-
ware can be automatically generated from these descrip-
tions but the generation of efficient implementations of
either requires manual intervention. In addition, the
partitioning into hardware and software is manual and
is likely to remain so for some time.

3 Implementing the 1M Gate FPGA

The software implementation route for an FUP-SOC
is likely to rely on traditional software development en-
vironments for embedded processors. These include
compilers, assemblers and debuggers. Due to limited
on-chip memory there is still a certain amount of hand-
coded programming and a reticence to use memory gob-
bling real-time operating systems; however, the use of
higher-level languages and RTOS’s in embedded sys-
tems is steadily increasing.

The hardware implementation route for a FUP-SOC
is certain to rely on an orchestration of HDL synthe-
sis, module generators and re-use of large blocks. HDL
synthesis appears ready for the challenge of FPGA and
CPLD architectures and efficient module generators are
currently offered by the major programmable-logic ven-
dors. The increased used of static timing verification
and a closer integration of physical design and synthe-
sis are two other certain developments. Finally, an inde-
pendent market of re-useable designs for programmable
devices is emerging to meet the need of the FUP-SOC.

4 Verification of the 1M Gate FPGA

While the design entry and implementation of the
FUP-SOC closely follows the evolution of the system
ASIC, the verification of the FUP-SOC may be sig-
nificantly different. For the ASIC-SOC a significant
amount of verification is required at the system level.
Designers are reticent to commit to the labor of im-
plementing a design that has not been verified against
its system specification. This verification process con-
tinues through each of the stages of design refinement.
Along the way the actual implementation of the hard-
ware must be co-verified with the implementation of the
software. In addition each step of refinement of the im-
plementation must be verified for consistency against
the last. For example the HDL model that is used
for synthesis must be verified against the system-level
model that inspired it. Currently for many integrated
circuit designs the verification of the functional correct-
ness of an integrated circuit design ultimately serves as
the bottleneck to the entire design process. As a result

134

it is often echoed in the industry that the gap between
the complexity of devices that processing makes avail-
able and the complexity of devices that can be efficiently
designed is growing wider with each new generation of
semiconductor processing.

" The FUP-SOC promises to be one device that can
bridge this gap. Because it is a fully programmable de-
vice, a system development paradigm can be used that
1s much closer to software development. It is likely that
some time will still need to be invested in system-level
verification to make some initial feasibility analysis be-
fore commiting to an implementation. After this phase
one can easily imagine the bulk of the functional ver-
ification being done through programming the actual
device. To understand how this helps bridge the verifi-
cation gap it may be helpful to better understand the
verification gap itself.

One of the major difficulties in functional design ver-
ification is developing the test stimuli that are used to
verify the design. Billions of vectors may be required to
adequately verify devices which perform complex func-
tions such as protocol processing or image processing. A
second difficulty is that the speeds at which the stimuli
can be applied through software simulation are typically
less that 50 cycles-per-second in a simulator. This num-
ber may reach 500K cycles-per-second in an emulator
but even this number falls still short of system speeds
of over 100MHz. The FUP-SOC provides a device that
can simply inserted directly into the final operating en-
vironment and can operate at the system speed. The
test stimuli and verification monitoring are then natu-
rally provided by the environment and in this way all
the issues regarding stimuli generation, monitoring and
speed are finessed.

5 Conclusion

Advances in semiconductor processing will give
FPGA and CPLD vendors the ability to create a
Jully-user-programmable system-on-a-chip (FUP-SOC)
by the end of the decade. These devices will incor-
porate at least one processor, a significant amount of
on-chip memory, and hundreds of thousands of gates of
un-characterized logic all on a single die. In addition
these devices will be fully user-programmable through
the mixture of electrical programming of the FPGA por-
tions and through software programming of the software
sub-system. It seems certain that the CAD tools to per-
form the top-down design and implementation of these
devices will be readily available as the devices them-
selves mature. Moreover, these fully programmable de-
vices offer the promise to bridge the increasing gap be-
tween what can be designed and what can be efficiently
verified.

	CD-ROM Home Page
	FPGA97
	Front Matter
	Table of Contents
	Session Index
	Author Index

