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Abstract

 

*

 

Guaranteeing or even estimating the routability of a portion of a
placed FPGA remains difficult or impossible in most practical ap-
plications. In this paper we develop a novel formulation of both
routing and routability estimation that relies on a rendering of the
routing constraints as a single large Boolean equation. Any satisfy-
ing assignment to this equation specifies a complete detailed rout-
ing. By representing the equation as a Binary Decision Diagram
(BDD), we represent  all possible routes for all nets simultaneously.
Routability estimation is transformed to Boolean satisfiability,
which is trivial for BDDs. We use the technique in the context of a
perfect routability estimator for a global router. Experimental re-
sults from a standard FPGA benchmark suite suggest the technique
is feasible for realistic circuits, but refinements are needed for very
large designs.

 

1  Introduction

 

Layout for FPGAs is difficult primarily because of the rigid, discrete
interconnect structure of current programmable parts. Placement and
routing techniques imported and adapted from the world of conven-
tional ASICs have been quite successful in automating FPGA layout.
Nevertheless, some layout issues are poorly dealt with in FPGAs,
most notably, problems of routability estimation. Answering 

 

exactly

 

a simple question such as “is this placement routable in this FPGA
routing fabric?” is usually impossible. Routability and congestion es-
timators adapted from ASICs often fare poorly here because the geo-
metric “slack” allowable in free-form routing on bare silicon is sim-
ply not present when we can only embed routes in the finite intercon-
nect patterns available in an FPGA.

A wide variety of tactics have been tried to solve the FPGA rout-
ing problem. [Brow92b] and [Chan93] both elaborate stochastic
wirability theories to handle FPGA structures. In [Alex94], a router
solves approximations to a sequence of Steiner-Tree-on-a-Graph
problems for all nets in a multi-weighted graph depicting the FPGA
architecture; congestion weights prevent signal overlap while net
cost weights are used to build optimal routes. Aggressive rip-up-
and-retry has been developed to deal with the net ordering problem
[McMu95]. [Brow92b] describes a detailed router which expands
the output from a global router into a graph of all possible detailed
routes for a particular two-point connection; these expanded graphs
are then pruned for efficiency and greedy local techniques used to
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search for exact detailed routes. [Lemi93] extends this technique to
the case of partially segmented channels. While often successful,
none of these techniques can 

 

guarantee

 

 that a routable placement
will indeed be routed.

It has also been argued that the highly constrained nature of the
interconnect in FPGAs makes them amenable to unique solution
strategies. One such approach is described in [Nag94,Nag95],
which attack both the placement and routing problems simulta-
neously by allowing placement changes to be evaluated for their
routability and ultimate net delay using an actual, incremental de-
tailed router. [Wu93] observes that simplified variants of the de-
tailed routing problem for FPGAs are reducable to the 2D interval
packing problem, and to the graph coloring problem. These con-
structions were used to assert the NP-hardness of FPGA routing in
[Wu94]. [Chan94] introduces a global router that uses an off-line,
integer linear programming technique to enumerate all possible
uses of a switch-block architecture. A global router uses this infor-
mation as an exact congestion estimator for each small, atomic
block of the routing fabric. However, the global router must still
handle the complexity of managing the competition for routes be-
tween the atomic blocks in the fabric. Again, none of these tech-
niques can predict or guarantee 

 

exactly

 

 the routability of a nontriv-
ial region of an FPGA.

In this paper we offer a novel formulation for both routing and
routability estimation that provides 

 

exact

 

 routability guarantees.
The key idea, extending earlier work in ASIC routing by Devadas
[Deva89], is to render the routing problem as a set of interacting as-
signments of nets to available resources which can be expressed ex-
actly as a large set of Boolean equations. Given a netlist, a descrip-
tion of the routing fabric, a region to be routed, and boundary con-
straints as determined by a global router, we show how to generate
automatically the necessary Boolean equation that determines the
routability of this region. Any assignment of values to input vari-
ables that satisfies this Boolean routability equation (

 

i.e.

 

, that
makes the output 1) specifies precisely a complete, detailed rout-
ing. Although Boolean satisfiability is itself an NP-hard problem,
there is a growing body of successful, practical attacks on even
large satisfiability problems, 

 

e.g.

 

, decision diagrams [Brya86] and
heuristic search [Marq97]. In our attack on the problem, we repre-
sent this Boolean function using Binary Decision Diagrams
(BDDs, [Brya86]) which allows us to represent 

 

all

 

 possible rout-
ings for a region, for 

 

all

 

 nets, 

 

simultaneously

 

. The efficient BDD-
based implementation allows not only for rapid construction of the
necessary routability functions, but also for very fast incremental
updates of the routability, for example, as the result of perturbing a
global route. 

We refer to this strategy as 

 

routing via Boolean satisfiability

 

. In
the remainder of the paper we develop and illustrate the basic for-
mulation, describe our implementation, and show some promising
initial results for a subset of the Xilinx 4000-series routing fabric.

 



 

2  Routing via Boolean Satisfiability: 
Formulation

 

In [Deva89], Devadas showed a simple but elegant formulation of
conventional 2-layer channel routing as Boolean satisfiability. This
formulation encodes the information present in a channel’s Verti-
cal Constraint Graph, Horizontal Constraint Graph, and anticipated
channel width  into Boolean constraints on 

 

n

 

-bit vectors, one per
net to be routed. The resulting Boolean equation for these con-
straints fully specifies the set of feasible net-to-track mappings via
its satisfying variable assignments. More precisely, any satisfying
assignment is a 

 

complete

 

 routing of the problem—not merely a set
of feasible net-to-track assignments for each net in isolation—as-
signing all nets simultaneously to feasible tracks.The problem with
this application is that 

 

n

 

, which must be known to execute the for-
mulation, is a function of the required number of tracks in the final
solution— a parameter which is necessarily an output of the prob-
lem. Thus, one is forced to continuously reformulate the problem
with increasing guesses at the final track density until a satisfiable
Boolean formulation exists. Worse, the formulation requires a set
of fairly severe simplifications concerning wire width, via size, 

 

etc

 

.
For real channel routing, the formulation is impractical.

But this Boolean satisfiability approach is much more amenable
to FPGAs, which really do have completely rigid routing resourc-
es. In this work we restrict ourselves to an island-style (

 

i.e.

 

, Xilinx-
type, see [Brow92b]) FPGA fabric, illustrated in Figure 1. Config-
urable logic blocks (CLBs) connect to connection blocks (C-
blocks) which allow signals egress into the global routing fabric.
Switch blocks (S-blocks) allow signals to turn corners between
rows and columns of S-blocks and CLBs. In this routing problem,
there is no need to model a Vertical Constraint Graph because track
stubs in an FPGA are pre-fabricated to be electrically disjoint.
However, FPGAs do add a different type of constraint: ensuring
that signals maintain continuity. In a 

 

connectivity

 

 constraint a net
must negotiate turns through the finite set of resources provided in
switch blocks, and also must connect to its sources/sinks through
the finite set of connections provided in connection blocks. 

To recast this routing problem as a satisfiability problem, we
need to do the following:

 

1.

 

Invoke a global router which assigns each net a path through S-
blocks and C-blocks in the FPGA.

 

2.

 

Assign to each net a vector of Boolean variables for each re-
gion of routing fabric through which it passes. This vector of
variables encodes each possible decision for how to assign the
net to physical resources in the region.

 

3.

 

Formulate a Boolean 

 

connectivity

 

 constraint (

 

i.e.

 

, a Boolean func-
tion) that ensures that each net actually connects through a set of
legal, contiguous routing resources from source to sink. This func-
tion is essentially a characteristic function over the encoding of
net-to-resource assignments that is “1” for connected paths.

 

4.

 

Formulate a Boolean 

 

exclusivity

 

 constraint (i.e., another Bool-
ean function) that ensures that no two electrically distinct nets
try to use a common routing resource in any block of the rout-
ing fabric. This function is essentially a characteristic function
over the net-to-resource assignments that is “1” for sets of non-
interfering paths.

 

5.

 

Formulate the final Boolean 

 

routability

 

 function that deter-
mines all the possible routes for these nets; this is just the in-
tersection of the constraints of steps 

 

3

 

,

 

4

 

 above.

There are several trade-offs inherent in this strategy. First, al-
though it is conceptually straightforward to create the necessary
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Figure 1. Island-style FPGA model

Figure 2. Detailed FPGA example with routes and netlist
triples shown

Netlist Triples:

(A1, (2,i+1,west,5), Entrance)
(A1, (3,i+1,west,0), Exit)

(A2, (3,i-1,east,1), Entrance)
(A2, (6,i+1,west,3), Exit)

(A3, (6,i-1,east,3), Entrance)
(A3, (10,i+1,west,4), Exit)

(B, (4,i+1,west,1), Entrance)

(B, (8,i-1,east,1), Exit)

(C, (9,i+1,west,0), Entrance)

(C, (11,i+1,west,0), Exit)

(D, (11,i+1,west,1), Entrance)

(D, (11,i-1,east,1), Exit)



 

Boolean functions for direct detailed routing for 

 

all

 

 the nets for an
entire FPGA, the complexity of the resulting functions is intracta-
ble; we cannot represent these functions even for small designs. In
our early formulations of the problem,  direct representation of all
detailed routes across the entire fabric of even a small FPGA pro-
duced satisfiability equations too large to represent and solve.
Hence, we move some degrees of freedom out of the satisfiability
formulation: we assume a global router assigns signals to 

 

regions

 

of routing fabric, and we also assume that we will use the satisfi-
ability formulation on these regions of the fabric, instead of the
whole chip. Thus, the existence of the global router here is simply
an engineering compromise. Given a region to be routed or esti-
mated for routability, the global router assigns nets to regions of
the fabric, and fixes entry/exit points on the overall perimeter of the
region. These form our boundary constraints for satisfiability-
based routing.

For our particular experiments, we assumed simple island-style
fabric, and chose to treat the FPGA as an array of vertical channels.
(Other region shapes are possible, but channels are perhaps the
simplest for a global router to deal with.) The global router not only
picks a feasible coarse graph for each net, but also provides a 

 

chan-
nel port specification

 

 for each channel. This specification is just a
set of triples (n,

 

ι

 

,flag) where each triple contains the following.
The first field is the net ID. Next is the connection point where this
net intersects this channel: a row and column block in the array,
and a track number. This connection point must occur on either a
CLB or a C-block. Finally, 

 

flag

 

 can take on one of two values: 

 

En-
trance

 

 or 

 

Exit

 

. 

 

Entrance

 

 means that the net intersects the channel
from either the west or east side and makes a turn heading south.

 

Exit

 

 means that the net intersects the channel from either the east
or west and makes a turn north. Figure 2 gives a detailed example
of a channel-style region of an FPGA with 3 columns and 10 rows.
The architecture is described in terms of (W=8, Fc=4, Fs=6) as in
[Brow92b, Ch. 6]. The figure also shows a netlist in this triples-for-
mat for 6 nets. One example set of detailed paths for these nets is
embedded in the channel.To understand the satisfiability formula-
tion, it is instructive simply to construct the relevant Boolean equa-
tions for this simple example in Figure 2. The formulation requires
that 6 vectors be allocated: 

 

, , , , ,  . 

 

These correspond to the 6 two-point connections of interest. We
encode each of these vectors in 3 bits, since each vector encodes
one of at most 8 distinct net-to-resource decisions. (Other encod-
ings are possible, given different representations of the satisfiabil-
ity computation; 

 

e.g.

 

, see [Mina93] for use of zero-suppressed
BDDs for large sparse set representations.) The channel subscript 

 

i

 

is used to emphasize that these bit vectors only belong to the for-
mulation for channel i. Upon determining a feasible route, these
vectors will contain the binary-encoded track assignment for each
two-point connection. Figure 3 illustrates two different types of
routing violations we must be careful to avoid. The left channel de-
picts the violation of a 

 

connectivity

 

 constraint for the two-point
connection involving net B. We know that net B must enter the
channel on S-block (4,i+1) via the pin indexed 1 on its west side.
According to the architecture of Figure 2, the net should be able to
enter the channel only on tracks 1 or 2; thus, the route is invalid be-
cause it has the net on track 3. The right channel shows an 

 

exclu-
sivity

 

 constraint being violated. Here, the two-point connections in-
volving nets C and D are mapped to the same track.  Figure 2 actu-
ally shows a valid route corresponding to the assignment:
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Figure 3. Routability constraint violations

ConnA1,i A1,i 5≡( ) A1,i 6≡( )∨[ ]

A1,i 1≡( ) A1,i 3≡( ) A1,i 5≡( ) A1,i 7≡( )∨ ∨ ∨[ ]

∧=

ConnA2,i A2,i 0≡( ) A2,i 2≡( ) A2,i 4≡( ) A2,i 6≡( )∨ ∨ ∨[ ]

A2,i 3≡( ) A2,i 4≡( )∨[ ]

∧=

ConnA3,i A3,i 3≡( ) A3,i 4≡( )∨[ ] A3,i 4≡( ) A3,i 5≡( )∨[ ]∧=

ConnBi Bi 1≡( ) B i 2≡( )∨[ ] Bi 1≡( ) Bi 2≡( )∨[ ]∧=

ConnCi Ci 1≡( ) C i 3≡( ) Ci 5≡( ) Ci 7≡( )∨ ∨ ∨[ ]

Ci 1≡( ) C i 3≡( ) Ci 5≡( ) Ci 7≡( )∨ ∨ ∨[ ]

∧=

Excl
i

Bi A2,i⊕( ) Bi A3,i⊕( ) A3,i Ci⊕( ) Ci Di⊕( )∧ ∧ ∧=

Routable i ConnA1,i ConnA2,i ConnA3,i ConnBi  ∧ ∧ ∧ ∧
ConnC

i
ConnD

i
Excl

i
∧ ∧

=

ConnDi Di 0≡( ) Di 2≡( ) Di 4≡( ) Di 6≡( )∨ ∨ ∨[ ]

Di 0≡( ) Di 2≡( ) Di 4≡( ) Di 6≡( )∨ ∨ ∨[ ]

∧=

Figure 4. Satisfiability formulation for example of Figure 2

The seeming redundancies are an artifact
of the constraint-generation process,
which starts independently from each
end–port constraint–of each 2-point
connection and generates the relevant
constraint. 



 

To formulate the solution, these two classes of routing viola-
tions must be prevented. First, each two-point connection has a
connectivity constraint associated with it whose purpose is to en-
sure that the connection makes a contiguous path through the chan-
nel. Also, exclusivity constraints are needed for all pairs of connec-
tions of distinct nets that interact: that is, the interval defined by
their endpoints overlaps in one or more C-blocks. The exclusivity
constraint between any two bit vectors is just the 

 

vectored

 

 exclu-
sive-or between them. This ensures that at least one bit differs in
their respective vectors. On the other hand, we sometimes choose

 

not

 

 to generate an exclusivity constraint between two nets: this is
the mechanism for handling multi-points. By allowing electrically
common two-point nets to “overlap”, multiple two-point connec-
tions of the same signal can be merged automatically. In this way,
we can handle multi-point nets (

 

i.e.

 

, those that fan out inside the
routing fabric to multiple sinks) directly and naturally. Figure 4
shows the complete set of equations. For convenience, the equa-
tions are shown in a shorthand where only the net vectors are
shown, using the obvious decimal encoding, as opposed to each of
their individual bits. 

Each of the connectivity constraints can be broken down into
two intersected clauses, each arising from one of the paired triples.
For instance in ConnA

 

1,i

 

 the two component triples are (A,
(2,i+1,west,5), Entrance) and (A, (3,i+1,west,0), Exit). The first
engenders the query: 

 

find_tracks_S_block

 

(2,i,east,5,south) which
looks at the S-block architecture present in S-block (2,i) and deter-
mines to what pins on the south of this S-block the pin labeled 5 on
the east side can turn. The second triple results in the query:

 

find_tracks_C_block

 

(3,i,east,0) which queries the C-block at loca-
tion (3,i) and returns the set of tracks that pin 0 on the east side can
connect to. In this instance, 

 

find_tracks_S_block 

 

will return tracks
5 and 6 while 

 

find_tracks_C_block 

 

will return tracks 1, 3, 5, and 7.
So, for the connection to be complete, it requires that the results
from these two function calls be ANDed together. The exclusivity
constraints are built between all interacting pairs of two-point con-
nections of differing nets. This ensures that the route obeys the
one-net-per-segment constraints.

Note that the construction process for the equations allows us to
prune some obvious interactions that cannot happen. For example,
we do not need to check for exclusion between nets whose global
routes cannot possibly share resources, and we do not need to cre-
ate clauses that check connectivity for block-to-block paths that
cannot connect in our architecture. In this way we reduce the com-
plexity of the intermediate connectivity equations, the single ex-
clusivity equation, and the final routability equation. Recall that

 

Routable

 

i

 

 is, at the end, a Boolean function of the per-net bit-vec-
tors which specifies the assignment of net segments to individual
routing resources in this region. If 

 

Routable

 

i

 

 is identically 0, then
the region is unroutable under the boundary conditions established
by the current global routing. In contrast, if there exist satisfying
assignments for the inputs to 

 

Routable

 

i

 

, then any such assignment
is a valid routing. The need to manipulate these formulae to create

 

Routable

 

i

 

, and to test it for satisfiability motivates our decision to
represent all these equations as BDDs.

 

3  Solution Implementation: 
BDD Management

 

We use Reduced Ordered Binary Decision Diagrams (ROBDDs)
[Brya86,Brya92] as introduced by Bryant, to represent and solve
our satisfiability formulation.  ROBDDs constitute a canonical
DAG-based representation for arbitrary Boolean functions, unique
for a given a variable ordering. In contrast to other search-based
satisfiability solution techniques, 

 

e.g.

 

, [Marq97], a BDD-based so-

lution actually represents all possible satisfying assignments ex-
plicitly. The obvious disadvantage here is the size of the resulting
BDD, which in our application represents explicitly all possible
routing solutions for all the nets in a region of FPGA fabric. The
advantages, however, are two-fold:

 

1.

 

The structure of the BDD itself offers insight into the structure
of the routing problem.  A large BDD means a large number of
routing solutions are possible; a small BDD means few feasible
routings.  A null “0” BDD of course means 

 

no

 

 solution. This
was in fact our original motivation for pursuing satisfiability as
a routability 

 

estimation

 

 strategy.

 

2.

 

BDD-based representation  allows us to perturb the routing so-
lution incrementally, by moving pins on the entry/exit bound-
ary conditions of the routing region. Since all possible routes
are represented explicitly, all interactions are correctly cap-
tured when perturbations are to made. (See Section 4.)

Since BDDs can grow quite large for some functions, and are ex-
tremely sensitive to the order in which intermediate results are
computed and the global variable ordering, several issues had to be
addressed.

In the examples shown so far, nothing has been said about the
order of final intersection of all the constraints for a particular
BDD. To keep the BDDs of reasonable size while they are being
assembled, it is important to intersect the most restrictive con-
straints first. So, in the process of generating the final Boolean
function (which itself may ultimately be of manageable size) inter-
mediate results may grow too large if the exclusivity constraints
are intersected first because these are least restrictive. For this rea-
son, the connectivity constraints, which are generally more restric-
tive, are ANDed together first, followed by the exclusivity con-
straints. This improvement proved to be sufficient for most de-
signs. However, for some channels of the most complex designs,
another level of constraint ordering had to be used.

The set of connectivity constraints can be broken down into two
classes: those that involve two-point connections both terminating
on CLBs, and those that do not. Because C-blocks are typically
much more flexible than S-blocks, the first class of connections are
much less restrictive; so, they should be ANDed in after the second
class but still before the exclusivity constraints. Returning to the
simple example of Figure 4, if we AND the constraints in the ex-
ample in this order: Excl

 

i

 

, ConnD

 

i

 

, ConnC

 

i

 

, ConnB

 

i

 

, ConnA

 

3,i

 

,

ConnA

 

2,i

 

, ConnA

 

1,i

 

 which corresponds to a monotonic decrease

in flexibility and, hence, the 

 

worst

 

 possible ordering, the interme-
diate BDD sizes are: 226, 217, 179, 82, 35, 23, and 26 nodes. In
contrast, when the constraints are intersected in the opposite order,
the BDD grows as 3, 6, 9, 12, 14, 15, and finally 26 nodes. Thus,
as opposed to the poor constraint ordering, which requires space to
represent an intermediate BDD of size 226, the intelligent ordering
only ramps up to a BDD of maximum size 26, the final solution
size. This difference would be even more significant if a non-opti-
mal variable ordering were chosen.

Unfortunately, the size of a BDD is also known to be extremely
sensitive to its variable ordering. As a result, there has been exten-
sive research into determining an optimal ordering for a given
BDD representation. In [Berm89], Berman showed that the size of
a BDD representation of a circuit  has an upper bound of

 nodes where n is the number of inputs variables and

 is the so-called 

 

T-width

 

 of the circuit under some topo-
logical ordering of the gates. The T-width is the number of “tracks”
needed to “route” a circuit when its gates are placed on a line ac-

c

n 2
wT c( )⋅

wT c( )



 

cording to the order T. The bound is extremely sensitive to this T-
width; we have developed a novel heuristic to minimize this value.

Hall in [Hall70] first noted that the optimal placement of con-
nected point objects in an R-dimensional space corresponds to the
R smallest eigenvectors of the Laplacian of the graph of interest.
We are interested in the minimum total quadratic wirelength place-
ment problem, which only requires computation of the eigenvector
corresponding to the smallest non-zero eigenvalue. This eigenval-
ue will then correspond to the total wirelength. The eigenvector
represents an embedding of the nodes in a 1-D space such that qua-

dratic wirelength (e.g. ) is directly minimized and T-

width is 

 

indirectly

 

 minimized under the constraint that the variance
of the coordinates is equal to 1. So, by producing the adjacency ma-
trix corresponding to the exclusivity constraints for a particular
channel, we should be able to determine a good variable ordering
via a simple eigenvector extraction. However, this will in general
destroy the topological ordering of the gatelist. This is not a factor
in our case because we are only interested in the relative locations
of the bit vectors which all happen to be primary inputs and hence
have no topological dependencies. An ordering based on this sim-
ple eigen-solution strategy proved sufficient for us to create BDDs
for most of our routing problems.

 

4  Incremental Updates of Routing

 

As mentioned earlier, to fit this technique into the context of a com-
plete routing solution, 

 

e.g.

 

, a perfect congestion estimator for a glo-
bal router, our satisfiability  formulation must have the added qual-
ity that it can be quickly updated. As it turns out, it is easy to incre-
mentally update the Boolean formulation for the routing of a region
when we use BDDs as the basic representation. The central ques-
tions are: 

 

1.

 

How do we 

 

remove

 

 a net from the routability function? 

 

2.

 

And, how do we 

 

add

 

 a new net at new port/block locations? 

Consider the following situation (refer again to Figure 2). Two-

point connection  is modified from its original triplet pair of

(A,(6,i-1,east,3),Entrance), (A,(10,i+1,west,4),Exit) to (A, (8,i-
1,west,4), Entrance), (A, (10,i+1,west,4), Exit). Clearly, this new
connection impacts the feasibility constraints. So, first, the previ-

ous bit vector associated with the connection,  is 

 

smoothed

 

[Brya92] out of the BDD by computing a new BDD which has the

same on-set as the previous for 

 

any value

 

 of . This is just the

 

existential quantification

 

 operation over all of the bits in the bit

vector . The 

 

new

 

 routability function for this region of FPGA

fabric, 

 

minus

 

 this net, is just:

  

which can be computed in time proportional to the number of
nodes in the BDD [Brya92].  Then, the new connectivity constraint
is generated by simply adding (via AND, OR, EXORs) the clauses
that represent interaction with the new net at its new location. Fi-
nally, the new exclusivity constraints are built corresponding to all

of the variables that  intersects with. These are intersected with

the existentially quantified root BDD in the order just described.
(See [Wood96] for more details of the incremental update process.) 

xi xj–( ) 2

A3

A3

A3

A3

A3  routablei∃( ) A1,i A2,i, Bi, Ci, Di,( )

A3

This is a singular advantage of a BDD-based formulation of the
routing problem: because we represent explicitly all possible rout-
ing solutions for the region, all the necessary information for cor-
rect and efficient perturbations of the geometric boundary con-
straints is already available to us. Assuming that we can afford the
time and space to build the initial BDDs for the satisfiability con-
straints for a given region, subsequent exploration of “nearby”
routing solutions, obtained by moving pins, adding/deleting indi-
vidual nets, etc., can be done quite efficiently.

5  Experimental Results
All experiments were conducted on an IBM Power Series 850
based on a 100 MHz PPC604 chip running AIX 4.1.3 and equipped
with 64 MB of RAM. All coding was done in C++, and our satis-
fiability-based region routing code amounted to roughly 7500
lines. A global router of the type in [Brow92a,Lemi93] produced
coarse graphs. To generate triple sets for each of the channels, a
simple left-edge channel routing algorithm was used to assign nets
to tracks followed by back-mapping of tracks to channel border
pins assuming diagonal switch blocks. Because the channel is ful-
ly-segmented, the left-edge algorithm produces an optimal track
assignment [Gree90]. Of course, due to fact that the channels are
considered separately, this does not represent a legitimate route
globally; however, for the purposes of experimentation, it suffi-
ciently represents the class of triple sets that our satisfiability-
based region router is likely to encounter. The BDD package from
[Brac90] was used. Each BDD node requires 18-22 bytes depend-
ing upon how close the BDD is to the maximum memory limit.
Simplified Xilinx-style FPGAs were investigated with varying
switch block architectures and array dimensions, no long-line glo-
bal interconnect, and a constant C-block architecture with Fc=W. 

Table 1 describes the benchmarks. The benchmarks are those
from Alexander [Alex94] at the University of Virginia. W is the
minimum C-block track count that the global router has deter-
mined can be used to complete the detailed embedding of its coarse
graphs. We use this in our subsequent experiments to make the sat-
isfiability problems suitably challenging:  if we use many fewer
than W tracks per channel, the regions are trivially unroutable and
each BDD quickly collapses to the null “0” BDD. Conversely, if
we use many more than W tracks, the regions are easily routable,
and the BDD-based formulation simply produces very large repre-

Table 1. Benchmark Circuits

Benchmark
Dimension
rows X cols

W # Nets
# 2-point 
connects

9symml 10 x 11 9 79 259

alu2 13 x 14 10 153 511

alu4 17 x 19 13 256 851

apex7 10 x 12 12 126 300

example2 12 x 14 16 205 444

2large 14 x 15 11 145 519

k2 20 x 22 16 404 1256

vda 16 x 17 14 225 722



sentations of the constraints. Neither of these scenarios require the
use of an exact estimator or routability.  

Figure 5 presents the number of nodes required to represent
each of the BDDs for each of the channels for the single benchmark
9symml. The bottom curve corresponds to an FPGA with W=9 and
diagonal switch blocks, i.e., Fs=3 and each pin has only one option
for turning to each of the other 3 sides. The top curve plots the same
information for a switch block architecture with Fs=9. Notice how
some of the channel BDDs increase in size greatly. This is due to
the fact that their satisfiability sets increased in size with the more
flexible S-blocks. Since our BDD representation explicitly repre-
sents all routing solutions, it grows in size with the flexibility of the
FPGA fabric.

Table 2 describes the result of an experiment in which we build
routability BDDs for each channel  for each of the benchmarks,
assuming that Fs=3 for each switchbox.The table offers the follow-
ing data:

• Column 2 is the total BDD size  (BDD nodes) when summed
over all of the channels in each FPGA. Large problems with
more nets have, unsurprisingly, larger BDDs. When the con-
straints are ordered carefully as described in the previous sec-
tion, the intermediate sizes of the BDDs tend to increase
monotically to this final size. 

• Column 3 gives the mean time required for an incremental
routing update averaged over 20 random triple set perturba-
tions. This means the geometric boundary conditions for signal
entry/exit to each channel were randomly perturbed (in this
case, pins were swapped) 20 times. Note that given the com-
plete BDD for all the routability constraints, this is quite fast.

• Finally, column 4 shows the mean time required to build the
initial  routability BDDs for each channel, averaged over all of
the channels in each design. Once again, this assumes Fs=3,
and W is taken from Table 1.

It is interesting to note how the above parameters vary with
more flexible routing architectures. Table 3 repeats Table 2, but
uses FPGAs possessing switch blocks with Fs=6 (much like those
in Figure 2). As can be seen, once again, the problem complexity
grows quickly with more flexible interconnect structure, with some
examples taking as much as 24X more space and 28/50X more
time for incremental/initial BDD build time. (Note that vda and k2
had to be run on a different machine that had more memory but also
had an extremely high process load; so, the times are not compara-
ble.) Still k2 exhausted all memory and was not able to complete.

This experiment nicely captures the trade-offs of the BDD-
based solution strategy. Since we represent explicitly all possible
routing solutions, incremental geometric perturbations (of the type
a global router might be expected to attempt) are efficient, fast, and
exact in the sense that the new BDD again represents all possible
solutions under the new boundary conditions.  However,  some
very large problems—with many nets or tracks, or large flexibili-
ty—may require BDDs that are difficult to construct.  If we need
only to answer the question “is there any routing for this region?”
we might try other search-based techniques for satisfiability that do
not represent all solutions [Marq97].  Of course, if we merely want
to find one routing solution for a segmented channel in an FPGA,
many techniques exist, e.g., [Gree90]  which again uses a search
technique, but does not represent explicitly all solutions.  On the
other hand, alternative decision diagram structures and construc-
tion techniques exist which may be more suited to these large sat-
isfiability problems. The side-effect of the satisfiability-based
strategy that we find most intriguing is the possibility of using the
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Figure 5. BDD size by channel for benchmark 9symml, for
flexibility Fs=3 and Fs=9
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Table 2. Aggregate Benchmark Results

Benchmark
Total 
BDD 
Nodes

Incremental
 Time

Initial Time

9symml 740 12.9 ms 105 ms

alu2 2069 25.5 ms 229 ms

alu4 3542 31.1 ms 448 ms

apex7 1559 15.6 ms 166 ms

example2 7014 84 ms 439 ms

2large 2582 25.3 ms 301 ms

k2 1229464 50.5 ms 1238 ms

vda 10444 46.1 ms 726 ms

Table 3. Aggregate  Results, More Flexible Switch Blocks

Benchmark
Total 
BDD
Size

Incremental
 Time

Initial Time

9symml 6202 35.8 ms 245 ms

alu4 29561 183.3 ms 2.54 s

apex7 11016 75 ms 537 ms

term1 6867 55 ms 380 ms

example2 171377 2.37 s 22.3 s

2large 31003 198 ms 2.76 s

k2* N.C. N.C. N.C.

vda* 169702 4.25 s 96.0 s



structure of the rendered BDD itself — for example, its size, or its
density of satisfying assignments—as an estimator  for the difficul-
ty of the final detailed routing problem for the region. This remains
an interesting open problem for us.  

6  Conclusions

In this paper we developed a novel formulation of the FPGA
routing and routability estimation problems that reduced these
problems to Boolean Satisfiability. Given an FPGA routing archi-
tecture, a region of the routing fabric, and boundary constraints on
signal I/Os and coarse paths as produced by a global router, this
formulation can answer exactly the question “can we route these
nets in this region?” By representing the resulting satisfiability
problem using BDDs, we can not only determine exact routability,
but also determine all feasible routing assignments for nets in the
region, and support incremental perturbations of the global routing
constraints. A preliminary implementation suggests that the tech-
nique is workable, but that great care must be taken in the construc-
tion and solution of the satisfiability problem, since real FPGAs
can easily generate very large satisfiability problems. 

One obvious application of such a technique is as a perfect
routability estimator for a global router. It is worth noting, howev-
er, how very different is the behavior of a satisfiability-based esti-
mator. When the routing flexibility is low, when space is tight,
when signals contend for limited paths, the estimator works best.
This is because the number of feasible routing alternatives is small,
which makes for simpler BDDs. When routing is highly flexible,
space is easily available, nets interact little, the estimator works
poorly since all paths must be represented and there are many fea-
sible paths. But in such circumstances routing is generally easier,
and estimation is less critical. 

In summary, we believe that this formulation is both and ele-
gant and potentially practical. However, there is significant oppor-
tunity for improvement in our implementation. Improvements in
net-to-resource variable encoding (e.g., 1-hot sparse set encodings
[Mina93]), Boolean constraint clause ordering, decision diagram
variable ordering (notably dynamic ordering techniques [Rude93],
and decision diagram structure (e.g., smaller structures such as
free-BDDs [Bern95] which support the satisfiability computations
we need but not canonicity which we do not, or zero-suppressed
BDDs [Mina93] for large sparse set problems) could have a sub-
stantial improvement on the range of practical application for the
technique.
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