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Abstract
This paper presents a novel system architecture applicable to

high-performance and flexible transport data processing which
includes complex protocol operation and a network control
algorithm. We developed a new tightly coupled Field Programmable
Gate Array (FPGA) and Micro-Processing Unit (MPU) system
named Yet Another Re-Definable System (YARDS). It comprises
three programmable devices which equate to high flexibility. These
devices are the RISC-type MPU with memories, programmable inter-
connection devices, and FPGAs. Using these, this system supports
various styles of coupling between the FPGAs and the MPU which
are suitable for constructing transport data processing. In this paper,
two applications of the system in the telecommunications field are
given. One is an Operation, Administration, and Management
(OAM) cell operations on an Asynchronous Transfer Mode (ATM)
network. The other is a dynamic reconfiguration protocol enables the
update or change of the functions of the transport data processing
system on-line. This is the first approach applying the FPGA/MPU
hybrid system to the telecommunications field.

1 Introduction
Conventional implementations of telecommunication systems are

achieved through fixed hardware since importance was placed on
high-speed transport data processing rather than flexibility.
However, today's enthusiasm for the inter-networking trend is
forcing network systems to support a wide variety of communication
protocols, even those are not yet fully developed. Thus, not only
high-performance but also high-flexibility will be indispensable for
future network systems [1].

The Asynchronous Transfer Mode (ATM) technique is one of the
solutions to this problem. It is suitable for multimedia data
communication because it has the capability to handle several data
bandwidths equally and flexibly. In addition, its hardware
implementation is so simple that it is easy to construct high-
throughput network systems [2]. However, these advantages are
effective only when complete network systems and protocols are
designed in the ' world of ATM '. For example, efficient harmonizing
of ATM protocols and universal computer network protocols such
as TCP/IP , which is in strong demand for recent inter-networking, is
a hard task because the former is hardware oriented and the latter is
based on software technology. The main problem is how to close the
gap between them.

Moreover, when providing high quality multimedia
telecommunication services, it is indispensable to achieve a high-
performance and flexible network control and management [3]. Up to
now, there has been no other choice but to construct these as
software because they are complex and require frequent updating.
Recently, however, it is considered that some part of the operation
should be implemented as a hardware for achieving high speed data
manipulation. Thus, in the future, lower layer telecommunication
protocols will require more flexible implementation and higher ones
will be forced to achieve higher performance. Therefore, an efficient
fusion technique for hardware and software is becoming

indispensable for building the next generation network systems.
In such a situation, we considered that a Field Programmable

Gate Array (FPGA) is the key device of future telecommunication
systems and have developed an original FPGA especially designed
for high-speed telecommunication data processing [4][5]. Using this
device, we also constructed a reconfigurable signal-transport system
dedicated to real-time emulation of transport processing circuits [6].
This system is useful in implementing lower-layer transport
operations. However, more higher-layer protocols and network
management applications mentioned above include excessively
complex logic operations which are not suitable for FPGAs. Micro-
Processing Units (MPUs) and program logic implemented as
software are indispensable to them.

On the other hand, there are reports on some hybrid systems
which consist of tightly coupled FPGAs and MPUs [7][8]. In these
systems, both FPGAs and MPUs cooperate with each other to
execute operations. Generally, however, it is difficult to find an
actual target application that maximizes the performance of the
system. Because it is difficult to divide a given problem into two
implementation styles: hardware and software. From our experience,
we discovered an effective application for the system in the field of
telecommunications. In a transport processing system, the lower
layer protocols are suitable for hardware implementation and it is
preferable to describe the higher layer protocols as software. It also
requires a high-throughput to operate real-time data transmission
and flexibility to support various protocols.

Thus, we developed a novel architecture for a system comprising
tightly coupled FPGAs and MPUs. This architecture is suitable for
implementing flexible and real-time transport data processing
operations which are the main part of telecommunication systems.

This paper presents the new architecture of the hybrid system
and its advantages. General ideas for achieving efficient coupling of
software (MPU) and hardware (FPGA) are also mentioned.

Moreover, applications of the hybrid system in the
telecommunications field and actual implementation for a few
instances are shown. This is the first approach to applying the
FPGA/MPU hybrid system to the telecommunications field.

2 Related Work
Some other systems which comprise an MPU and FPGAs have

been proposed [7][8]. In those hybrid systems, some particular
operations suitable to hardware implementation are performed by
specially designed logic circuits on the FPGAs and the MPU works
in conjunction with them. They communicate each other using
MPU's local bus. Thus, the FPGAs are treated as co-processors or
special peripheral devices of the MPU. Moreover, specially
designed FPGAs dedicated to co-working with the MPU were
developed [9].

Most of the target applications for these systems involve
numerical calculation or digital signal processing such as video-
CODEC. However, it seems difficult to find an effective application
which derives the maximum performance from the system. One reason
for this problem is that it is difficult to divide the target application
into hardware and software. Moreover, data transmission between



the MPU and FPGA becomes a bottleneck which prevents the
system from attaining a high throughput. Thus using only a local
bus-style connection, the bus congestion and overhead of the bus
arbitration protocol reduce the merits of the system.

3 YARDS Architecture
3.1Overview

We developed a new system architecture comprising tightly
coupled FPGAs and an MPU named YARDS (Yet Another Re-
Definable System). Figure 1 shows the basic architecture of YARDS.
The main parts are an MPU, an FPGA array, programmable switching
devices, and 2-port SRAMs. Figure 2 shows the system overview of
YARDS. It comprises three cards: the main card, the MPU card, and
the FPGA card. The main card contains devices for interconnecting
the FPGA part and the MPU part of the system. The MPU card
contains a RISC MPU with a BIOS-ROM. The FPGA card features a
multiple FPGA array mounted on it. The MPU card and the FPGA
card are designed as separated modules.

YARDS also has two external interfaces: VME-Bus I/F and
direct I/O channel derived from the FPGA card. Using the VME-Bus,
this system can be communicate with other YARDS or host
computer systems. We utilize it for controlling and monitoring the
system. The direct I/O channel enables a direct exchange of signals
between other devices and the FPGA card.

The front view of YARDS is shown in Figure 3 and the back is
shown in Figure 4.

3.2YARDS Main Card
The main card contains interconnection elements for the FPGAs

and the MPU. It comprises field programmable switching devices (I-
Cube) that support various types of connections among its pins
such as a one-directional or a bus. The local-bus signals and a few
interrupt pins of the MPU and most I/O pins of the FPGAs are
connected directly to these switching devices.
The 2-port SRAMs on the main card have various uses. These are
connected directly to the switching devices. Configuring the
connection pattern of the switches, those SRAMs are used as shared
memories or buffers among the FPGAs and the MPU. Thus, using
these programmable switching devices and 2-port SRAMs, various
connection styles between the FPGAs and the MPU can be
established.

The programming and control logic of the system are
implemented on the main card. Those circuits are implemented using
an FPGA, thus the system can support various types of FPGAs and
MPUs by re-programming the FPGA.

YARDS has three clock generators except for the MPU's base
clock (20 MHz). One of these provides a fixed clock speed of 19.44
MHz. This is the base clock for a typical telecommunication circuit
which handles a 155-MHz Synchronous Digital Hierarchy (SDH)
interface. Others are programmable clock generators.

3.3FPGA Card and MPU Card
We wanted to try various types of FPGA or MPU devices

because YARDS is an experimental system. Thus the FPGA part and
the MPU part of the system are designed as separate daughter cards.
They can be replaced with the cards that contain other devices. As
for the MPU part, we have only a few choices owing to the
constraint of the local bus compatibility. However, as for the FPGA
part, there are many candidates. Actually, we have developed two
types of FPGA cards which consist of different FPGA devices. We
adopted Xilinx LCA (XC4010)  and  ALTERA MAX (MAX-9000)
respectively. Figure 5 shows a block diagram of the LCA array card.
It consists of four devices which are connected directly to each other
on the card as shown in Figure 5. Their link topology on the card is
a cascade. However, most of the I/O pins of the FPGAs can be
connected to the programmable switching devices on the main card
and some of them are connected to external I/O connectors. Using the

switches, the topology of the links among the FPGAs can vary as
shown in Figure 6. The MAX-9000 array card also has an
architecture such as that shown in Figure 7. Furthermore, we are
planning to develop a new type of FPGA card which contains our
original FPGA device [4] using a new compact package version of
it.

Generally, different kinds of FPGAs require different
configuration methods. Therefore, the configuration and logic
control of an FPGA must be changed for each device. This difference
in the logic configuration can be absorbed by the programming
control FPGA (LCA XC4005) mounted on the main card. All of the
pins for configuration and control of the FPGAs on the FPGA card
are connected to this programming control FPGA via the switches.
By reprogramming a suitable configuration logic circuit on the
programming control FPGA, we can program and control different
types of FPGAs on the FPGA card.

Figure 8 shows a block diagram of the MPU card. We adopted a
32-bit RISC microprocessor (Hyperstone E-1) which has a simple
architecture and is easy to use. The MPU card comprises the MPU
and a BIOS-ROM. All of the local bus signal lines are connected to
the main card bus via the connectors. This RISC microprocessor has
five different interrupt signals. A few interrupt signal pins are
connected to the FPGA card directly, the rest of the pins are
connected to switching devices on the main card via the connectors.

3.4Configuration
YARDS has great flexibility because almost all of its parts are

programmable. Its programming procedure is considered complex and
difficult. Therefore, an auto configuration procedure of YARDS is
pre-implemented in the BIOS-ROM. After the MPU is booted up, the
initial setup procedures are automatically performed. In the
procedure, the switching devices and the FPGAs are configured first.
Because they have physical level flexibility and may destroy the
system by an error.

For run-time programming of YARDS, some useful library
functions written in C language are provided for users. They can
easily program and control the FPGA card and switching devices
using this library.

4 Advantages
4.1Flexible Interconnection between MPU and FPGA

Most conventional hybrid systems that comprise MPU and
FPGAs employ a bus architecture [8]. They treat the FPGAs as a co-
processors or I/O devices as shown in Figure 9. This
interconnection style couples these devices tightly. However, there
are some problems that prevent harmonious cooperation between
them.

For example, immediate communication from FPGAs to an MPU
is difficult to implement using this interconnection style. In
addition, a local bus congestion problem caused by the
communication between an MPU and FPGAs is considered.
Therefore, using only the bus architecture, the applications of the
system will be restricted.

YARDS supports three different styles of connection between
FPGAs and MPU: a bus, a direct interrupt, and a 2-port SRAM
channel. These connection styles can be established using
programmable switching devices and are configured easily.
The bus style is the same as the conventional one. The direct
interrupt links connect the FPGA and the interrupt signal pins of
the MPU as shown in Figure 10. This connection style enables the
FPGA to interrupt and control the behavior of the MPU. In a
conventional FPGA/MPU hybrid system, the main device is an
MPU. That is, the main instructions are implemented as software and
executed by the MPU, and the FPGAs are considered as sub-
devices. However, by using these direct interrupt links, the FPGA
part is able to perform a leading role in the system. In such a system,
the main instructions are implemented as a logic circuit on FPGAs,



and the MPU performs a supporting role. The MPU is always ready
for an interrupt signal from the FPGAs. When the interrupt signal is
sent, a corresponding subroutine is invoked by the MPU. This
connection style aids in implementing some transport data
processing protocols which have data-driven operations such as a
frame synchronizer and transmission error handling.

4.22-Port SRAM Channel
Considering our main target applications, the transport data

processing operations, it is expected that the data communication
between the MPU and the FPGAs occurs very frequently and
asynchronously. In such a case, cooperation between the MPU and
FPGAs will cause local bus congestion and degrade the performance
of both. Using only the bus architecture, an implementation style of
our target system should be similar to Figure 11. The transport data
stream is input into the FPGA directly. The FPGA executes some
low layer protocol operations and transfers the results to the main
memory. Then the MPU accesses and reads the results from memory
while executing some high layer protocol operations. When those
operations are finished, the FPGA accesses the main memory, derives
the processed data from it and re-shapes the data as the output
transport data stream. In general, a local bus of MPU is usually
occupied by data transmission among the memories, the peripheral
devices and the MPU itself. Therefore, these repetitive data
transformations among the MPU, the FPGAs, and the memories
should block the local bus.

Moreover, if bus connections are used, both the MPU and
FPGAs must be synchronized with local bus timing and yield to
arbitration protocols. For FPGA in particular, a bus interface circuit
should be incorporated into it, however it would occupy a
considerable area in the device.

The 2-port SRAM channel is one of the remarkable features of
YARDS. As shown in Figure 10, the 2-port SRAMs on the main
card can be configured as channel devices between FPGAs and the
MPU. They perform asynchronous data transformation. This
mechanism aids in implementing applications that should work at
two or more different base clock speeds. Moreover, using this
communication style, the MPU and the FPGAs can devote
themselves to their respective tasks without influencing each other.
For example, multi-layer protocol operation which includes both
lower and higher layer protocol operations is one good application
for this connection style. In such an operation, each protocol
operation is executed in sequence for the same datagram. The
overhead of a data copy operation from one memory to another is a
considerable problem. Using this type of connection, the overhead
can be canceled because each device can share the same data in a 2-
port SRAM and access it independently.

In addition, the 2-port SRAM devices on the main card are used
not only for channel elements between FPGAs and the MPU but
also for a normal memory device, an FIFO, or a STACK. Using
switching devices, various kinds of storage can be built as shown in
Figure 12. Furthermore, when the MPU accesses the SRAM through
the FPGAs, the combination of these devices is considered as a kind
of functional memory. In this case, the FPGA can be configured as pre
or post data access processing. For example, implementing a hash
function into the FPGA is useful for a table lookup operation.

4.3General Suggestion
In general, for the MPU/FPGA hybrid system, frequent data

exchange between the MPU and the FPGA (such as that shown in
Figure 11) is counter-productive towards achieving maximum
performance. This is because there are few applications which
overcome the data transmission overhead.

Most MPUs do not have direct I/O ports which handle
continuous data streams. This is a weak point of the device when it
is applied to telecommunication data processing systems. On the
other hand, FPGAs have many direct I/O ports and are suited to

handle real-time operations for continuous data streams. Therefore,
we employ FPGAs as an I/O pre or post processing element for
continuous streams and link the MPU and the FPGAs with shared
memory which can access each other independently. Consequently,
frequent and asynchronous data transfer between these devices can
be achieved with little overhead.

This style of implementation should be useful not only for
telecom applications but also for real-time and continuous data
operations.

5 Applications
5.1Advantages in Telecommunications Field

We have developed several types of telecommunication systems
using FPGAs [6]. From our experience, we discovered that a hybrid
system comprising MPUs and FPGAs is useful in the
telecommunications field.

Most of the telecommunications protocols can be easily divided
into hardware and software implementations. As is generally known,
telecommunications protocols form layers. The lower layer protocols
which require real-time high-throughput data operations are
implemented as dedicated hardware such as ASICs . On the other
hand, the higher layer protocols and network management
operations which include complex procedures are implemented as
software and are executed by the MPU. Originally they were
comprised of hardware parts and software parts. Thus, it is easy to
find the splitting point.

5.2ATM Network Termination Card
We also developed an ATM Network Termination (ANT) card as

a network interface device for YARDS. Using ANT card, YARDS
can be applied to several protocols and network management
operations in ATM easily. Figure 13 shows an overview of the card.
It is designed as a standard VME-Bus card and consists of the host
processor card and ATM network interface card. The host processor
card is a one-board type computer which contains a RISC
microprocessor and its basic peripheral devices. The ATM network
interface card is designed as a daughter card for the host processor
card and comprises a 155-MHz optical interface, ATM physical layer
device, and an ATM Segmentation And Re-assembly (SAR) layer
device. The function of the card is the same as commercial ATM
network interface cards for personal computers or workstations
except that it can directly input and output ATM cells.

5.3Application Examples
We selected OAM processing in the ATM network as one of the

effective applications for YARDS because some of the operations are
not completely standardized and require some degree of flexibility
[10][11]. Moreover, improvement in the processing performance is
most effective for achieving high quality telecommunication services
[12].

The OAM processing controls and manages the status of the
network. Figure 14 shows a typical model of the operations. In an
ATM network, two types of ATM cells are used for data
communication. One is a user cell which contains user data for
telecommunication services. The other is an OAM cell which
conveys control and management data for network nodes. Canonical
OAM procedures are picking up OAM cells from the data stream and
executing corresponding operations indicated in the cell. These
basic operations are: DISCARD (take and ignore the OAM cell),
DROP (take the OAM cell and invoke some operations instructed
by the cell), MONITOR (observe the OAM cell, invoke some
operations instructed by the cell) and THROUGH (the node does
not execute any operation by the cell, only forwards the cell to other
nodes).

Figure 15 shows the conventional implementation style of the
OAM processing on a network node [13]. The present network node
consists of a transport processing unit (hardware part) and a work



station. The transport processing unit handles the main data stream
and performs most low layer protocol operations. The work station
mainly executes the control algorithm. These two modules are
connected to a LAN such as Ethernet. When OAM cells are
terminated and extracted by the transport processing unit, they are
sent to the work station using Ethernet. The turn around time can
exceed 100 to 500 ms. This overhead causes a significant delay in
services. For example, path restoration at a network accident can take
a few minutes in such a condition [13]. According to previous
research, restoration should take 2 seconds at most to minimize the
damage to multimedia data communication using real-time video or
voice [12]. Thus, the bottleneck of the present system is the loose
coupling between hardware and software part of the system.

Figure 16 shows the function block diagram of the OAM cell
processing. It comprises three parts. The first is cell operation part-1,
which treats the main data stream and performs transport data
processing such as ATM cell termination and generation. The
second is cell operation part-2, which treats only OAM cells
extracted from the main data stream. This part examines the message
type included in the OAM cell and determines the appropriate
action for itself, i.e., discard, drop, monitor, or through. CRC-10 error
detection is also performed in this part. The last is the algorithm part,
which is implemented as a software program in a work station. Its
main tasks are accessing the database of the network and determining
the actual control method. This implementation is reasonable but
there is a considerable gap between software and hardware and the
communication delay between them is large in conventional
systems. Consequently, we cannot achieve a quick response for
controlling the network.

The OAM cell processing with our system is shown in Figure
17. Cell operation part-1 is implemented using ANT. Cell operation
part-2 is implemented with an FPGA card on YARDS. Furthermore,
a high level of performance is needed in this part. The algorithm part
is implemented as software running on the MPU.

The proposed system architecture bridges the gap between
hardware and software. The remarkable difference from the old
architecture is the data sharing mechanism using the 2-port SRAM
channel. As shown in Figure 17,  the FPGAs write the data of the
OAM cells into the dual-port SRAM data channel. At this time, the
data needed for network control, which is encapsulated in the OAM
cells, are arranged and transformed to permit easy MPU access. For
each data block, the timing and information type are added as a tag.
Thus the software running on the MPU can distinguish the data and
invoke the network control algorithm immediately. The generation
of the data structure by the FPGAs is the key point of the software-
hardware bridging. The transformed data structure corresponds to the
data type as directly defined by C language. From the software
programmer's viewpoint, this information looks similar to a simple
variable. Furthermore, FPGAs and the MPU can asynchronously
access the SRAM any time and memory access time is quite fast, thus
communication overhead is negligible. This process cycle requires
only the execution time of the algorithm and so we can expect to
achieve response within several hundreds of microseconds.

In addition, using run-time programmability of the system, we
implemented a dynamic reconfiguration protocol which updates or
changes the function of the system itself. The procedure of the
protocol is shown in Figure 18. This protocol performs as a client-
server model. In Figure 18, there are program distribution servers (P-
Servers) and programmable clients (P-Clients). Based on the
protocol, they exchange several requests and acknowledgments
encapsulated in the OAM cells. During those handshake periods,
the P-Client and the P-Server confirm their statuses with each other.
Then, the configuration data, i.e. program is segmented, encapsulated
in OAM cells, and sent from the P-Server to the P-Client. The P-
Client re-assembles and restores the data. After the closing
handshake to confirm that the data transformation has successfully

terminated, the P-Client re-configures its own function with the data.
These series of procedures can be performed without any interruption
of the main transport processing task. This is because almost all
transport data processing systems are constructed as "duplex
systems" for reliability. Therefore, while one part of the system
performs, the other part can be configured concurrently as shown in
Figure 19. Using this configuration and protocol, remote
maintenance and upgrade for already installed systems which are
remotely located from the operation center can be performed.
Moreover, dynamic and adaptive protocol reconfiguration can be
achieved on the system as well as effective data transportation,
according to the circumstances. We have implemented this dynamic
reconfiguration protocol on YARDS and verified that the
configuration process is completed.

6 Conclusion
We developed a novel architecture for a high-performance and

flexible transport data processing system. It comprises tightly
coupled FPGAs and an MPU. This system also has programmable
switching devices and 2-prot SRAMs. It supports various types of
connection styles between FPGAs and the MPU. We implemented
practical applications for OAM processing in an ATM network and
examined its behavior and performance. This type of system proved to
be useful for implementing transport data processing operations
which require both high-throughput and complex algorithms. It is
expected to become a key architecture in the telecommunications
systems of the future.
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