
Wormhole Run-time Reconfiguration

Ray Bittner and Peter Athanas

Virginia Polytechnic Institute and State University
The Bradley Department of Electrical and Computer Engineering

Blacksburg, Virginia 24061-0111

ABSTRACT

Configurable Computing Machines (CCMs) are an
emerging class of computing platform which provide the
computational performance benefits of ASICs, yet retain the
flexibility and rapid reconfigurability of general purpose
microprocessors. In these platforms, computational "hardware"
is essentially swapped in and out of the platform as needed,
much like paging in virtual memory systems. For an efficient
platform, the swapping of the computational hardware (referred
to as Run-Time Reconfiguration, or RTR) must be rapid. Thus
far, the means of altering the configuration of CCMs has relied
on global control strategies that present a fundamental
bottleneck to the potential bandwidth of configuration
information flowing into the CCM. Wormhole Run-time
Reconfiguration is presented as a distributed control
methodology that is applicable not only to the problem of
device-level CCM reconfiguration, but to system-wide
concurrent computing as a whole. The Virginia Tech
Colt/Stallion integrated circuits are computational FPGAs
incorporating Wormhole RTR concepts, and are discussed as a
case study.

Keywords: Configurable computing, FPGA, digital
signal processing, data flow, VLSI

1. INTRODUCTION

Configurable Computing Machines (CCMs) achieve high
computational performance by creating custom data paths,
operators, and interconnection pathways for a given problem.
Run-time reconfiguration (RTR) is an implementation approach
which divides an application into a series of sequentially
executed stages, with each stage implemented as a separate
execution module [1]. Partial RTR extends this approach by
partitioning these stages into finer-grain sub-modules which are
constructed to be swapped into the platform as needed to
contribute towards a given computation. In such fashion, new
dimensions and processing capabilities are added to
configurable computing machinery, which would otherwise
simply function as “ASIC emulators.” Because of its unique
computing paradigm, RTR offers an opportunity to re-examine
many of the organizational assumptions of programming and
computation. Unlike conventional computers, the functionality
and organization of RTR systems are allowed to change

dynamically as a function of the data.

Contemporary CCMs rely upon RAM-based FPGAs as the
mechanism of achieving reconfigurability. Even though these
devices were not designed for computing, they have proven
quite effective in demonstrating the potential for high-
performance computing. One of the limitations of
contemporary FPGAs is the reconfiguration mechanism. There
are two primary approaches commonly adopted: serial
configuration and random access configuration. In devices
using serial configuration, such as the Xilinx 4000 series [2]
and the Altera FLEX 8000 line [3], the configuration storage
elements are connected as a large scan chain around the entire
chip. During configuration, the programming information is
loaded into the device and shifted throughout in a bit-wise
manner. While parallel loading of the configuration data is
possible with some devices, close examination of the timing
employed by these devices reveals an internally serial
architecture. Most often, the entire chip must be programmed
in such fashion before any part of it may be used to perform
useful computation.

In a run-time reconfigurable environment, the serial
method of configuration has a few disadvantages. For one, the
concept of partial reconfiguration is not supported. There are
many occasions in configurable computing when it is
advantageous to reconfigure part of a device while leaving the
rest intact. Changing the constant used in a particular
calculation is one good example. Also, the
configuration/execute cycle must be done sequentially due to
the fact that the entire device must be configured before any
part may be used for execution. In a run-time reconfigurable
machine, this configuration/execute cycle may be compared to
the Von Neumann fetch/execute cycle of a microprocessor. All
high speed microprocessors of today overlap the fetch and
execute cycles to some degree in an attempt to gain the
speedups offered by a more pipelined approach. It would seem
advantageous to barrow this concept and apply it to CCMs.
Moreover, the scheduling of multiple independent processes
onto a single device is also hampered by an all-or-nothing
configuration scheme. The ability to configure one region of a
chip while simultaneously executing within another region
would aid not only in pipelining the configuration/execution
cycle for a single process, but also in the multitasking of
several processes onto the same chip. This concept will
become increasingly valuable as the size and density of FPGA
devices increases. Further, as more full-sized CCM systems
are developed consisting of multiple devices, the ability to
share the same set of resources across multiple processes, or
different threads of the same process, will prove it’s worth.

Another deficiency of the serial configuration method is a
lack of speed. The benefits gained from the use of a set of truly
parallel configuration lines is intuitively obvious. In CCMs,
speed of configuration often translates directly into
performance, particularly when multiple configurations must be
swapped in and out of a device in quick succession. Thus, it

would seem desirable to widen the data path used for
configuration information.

There are attempts to widen the configuration bottleneck
by incorporating a truly parallel data path for programming
information. The Xilinx XC6200 series [4] and the National
Semiconductor CLAy [5] series use a random access method for
reconfiguration. The configuration cells for these devices can
be accessed in a similar way as cells in a standard RAM. An
on-chip row/column address is presented to the device, and the
programming information is either read from or written to the
desired cells. This solves many of the problems associated
with serially configurable FPGAs. Partial reconfiguration is
supported, and, to an extent, configuration time is lessened
through the use of an 8-bit configuration path for the CLAy,
and a 32-bit configuration path for the XC6200. While these
improvements are welcomed, there are still shortcomings. One
fundamental limitation of the design is the implied used of a
centralized control scheme. Serially configurable devices suffer
from this downfall as well: only one controller at a time can
configure the device through the access port. While access to
that port can be time multiplexed there is still only one data
path used for configuring the device at any given time. Further,
in terms of silicon area, the infrastructure needed to support the
random access approach can be quite expensive due to the
global scope of the routing and control logic required.

What is needed is a distributed control scheme in which
multiple independent computational streams can configure the
system simultaneously through multiple access ports. One
advantage of a distributed scheme is scalability. The global
controller in a RAM-based or serial design becomes a
bottleneck for the system, being limited by the amount of time
needed to access the various configurable resources in the
system as well as the controller’s ability to simultaneously

schedule and program separate jobs effectively. As the size of
the system grows, the demands on a global controller become
greater and greater until it is the limiting factor in performance.
Further, the communication latency inherent in a large system
limits the speed with which configuration data can be
distributed using a RAM based approach.

2. WORMHOLE RTR

Wormhole Run-Time Reconfiguration (RTR) attempts to
address the weaknesses of FPGAs when used in a
computational environment, and to provide a framework for
implementing large-scale rapid run-time reconfigurable CCM
platforms. It is intended as a method of rapidly creating and
modifying custom computational pathways using a distributed
control scheme (data-driven partial run-time reconfiguration).
Similar to the data movement process in data-flow machines,
the onset or completion of computational streams are used to
instigate the process of reconfiguration. However, Wormhole
RTR is not limited to data flow computation and, as discussed
below, can be adapted to work with other computing
paradigms. The essence of the Wormhole RTR concept is
formed from independent self-steering streams of programming
information and operand data that interact within the
architecture to perform the computational problem at hand.
The method of computation itself can be compared to that of
Pipenets, as discussed by Hwang, et. al. [6], in which multiple
intersecting pipelines (streams) are formed within the processor
to perform a task. One application of Wormhole RTR would be
as a high speed configuration methodology for such a system.

Wormhole RTR is based on the stream concept, which is
an extension of the more common definition of the term. In
this case, a stream is a concatenation of a programming header
and operand data. The programming header is used to
configure a computational pathway through the system as well
as to configure the operations to be performed by the various
computational elements along the path. The stream is self-
steering and, as it propagates through the system, configuration
information is stripped from the front of the header and is used
to program the unit at the head of the stream; thus, the size of
the header diminishes as the stream propagates through the
system. The stream header is composed of an arbitrary number
of packets of programming information. Each packet contains
all the information needed to configure a designated unit in the
system. The composition and lengths of the packets are
variable so that different packet types may coexist within the
same stream header and hence heterogeneous unit types may be
traversed by a given stream. The term wormhole is used here,
as it is used in the computer networks community, to describe
the method in which data is passed from one computational
node to another (wormhole routing) [7].

Targeted mainly at DSP-type operations, the Colt
integrated circuit is a prototype Wormhole RTR device which
adopts the stream processing paradigm. Colt is a coarse-grain
“FPGA” tailored to suit the computational operations and
pathways commonly associated with 1-D and 2-D signal
processing. This particular implementation contains a mixture
of 16-bit and 1-bit programmable datapaths.

Colt Port Config.
Colt Crossbar Config.

Colt FU #1 Config.

Colt Port Config.
Colt Crossbar Config.

Colt FU #2 Config.

Colt FU #3 Config.

Colt FU #4 Config.

Path/Configuration
Header

Data

Figure 1 - An illustration of the stream
format. A stream is composed of a header
segment (expanded on the right) and a data

segment.

Figure 1 shows a stream that may be used with the Colt
CCM (Figure 2), as fully described in another paper [8]. The
Colt prototype IC consists of six 16-bit bi-directional data ports,
a 4×4 toroidal mesh of Functional Units (FUs) and a 16-bit ×
16-bit multiplier producing 32-bit results; all of which are
connected through a “smart” crossbar network. Each of these
units strips a packet from the front of an arriving stream header
and stores configuration information from it. As shown, the
stream header contains packets to program the various units of
the computing platform in the order that they would be
encountered along a path. In this case, the first packet is used to
configure a data port, and then a crossbar packet that directs the
stream to a particular column of the mesh. Once in the mesh,
four separate packets configure Functional Units to perform
independent functions on the data section of the stream.
Finally, a second crossbar packet directs the stream out another
data port, which is configured with the last packet in the stream
header. Following the stream header is the data to be
processed along that path through the Colt.

Note that the stream can be of arbitrary length. Thus, the
path made through the system by the stream header can be
arbitrarily long, allowing deep pipelines to be easily formed
across multiple devices as shown in Figure 4. Likewise, the
data section of the stream can also be arbitrarily long (such as
could be found with the stream of values emanating from an
A/D converter); allowing a single configuration to process
multiple operand sets without reconfiguration. This ability
again can be likened to the fetch/execute cycle of a
microprocessor where the ratio of fetches to executions is
generally 1:1. However, in a system using stream processing
an 1:X ratio is achieved where X is the number of operand
pairs that may be processed without reconfiguration. This
represents a significant savings in overhead that would
normally be associated with fetching opcodes. Further, a
savings in power is realized because the state of the

configuration information need not change between operand
pairs.

The exact path taken by the stream through the system can
be determined at run-time, allowing several competing
processes to allocate resources as they become available. The
process of resource allocation is not unlike that found in
operating systems employing Banker’s Algorithm to allocate
I/O resources. A similar method could be used in this situation.
However, in order to maintain maximum flexibility, this was
not directly implemented on the Colt. Instead, this function
will be implemented externally by Stream Controllers that
arbitrate for resources both on and off-chip and substitute
parameters for the physical resources allocated at run-time into
the stream header. The process is similar to a normal operating
system loading an executable and substituting for relocatable
addresses. The design of such controllers is an area currently
under scrutiny at Virginia Tech.

3. DISTRIBUTED CONTROL

Because the streams independently guide themselves
through the system using the information contained in the
stream header, the configuration process is inherently
distributed. Multiple independent streams can wind their way
through the Colt chip simultaneously. The streams can all
originate from independent and distinct external controllers, or
streams can be initiated by the onset or completion of other
streams in the system through the Stream Controllers.
Likewise, part of the system can be used to process data
operands while any set of neighboring units can be accepting
configuration data from the header of one or more other
streams, thus allowing overlap of the configuration/execute
cycle and of process multitasking within the same system.

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

DP

SMART
CROSSBAR

Stream Port

Stream Port

DP

DP

DP

DP

DP

Stream Port Stream Port

Stream Port

Stream Port

Figure 2 - The basic architecture of the Colt CCM, including Interconnected Functional Units (IFUs), Data Ports (DPs) and the
Multiplier (MULT).

These possibilities are all offered due to the distributed nature
of Wormhole RTR.

The distributed control scheme offered by Wormhole RTR
also provides advantages for system scalability.
Communication operations during both phases (configuration
and execution) of stream processing are localized in nature.
Thus, long latencies between distant units within the system
can be effectively hidden through natural pipelining, thus
allowing the overall speed of the system to increase over that of
a centrally controlled machine.

4. IMPLEMENTATION EXAMPLE

As an example of how Wormhole RTR can be used with
the Colt CCM to perform useful computational functions, the
implementation of a floating point multiplier is briefly

discussed here. The format to be used for the floating point
computations is represented by two 16-bit words, which can
neatly be routed through the data paths of the Colt CCM. The
first word contains a leading sign bit that is set to 0 for positive
numbers and 1 for negative quantities. The remainder of the
first word contains a 15-bit unbiased two’s complement
exponent. The second word contains a 16-bit mantissa. Note
that this is only one possible representation and others may be
used at the discretion of the programmer through the creation of
other configurations.

Figure 3 shows an overview of the configuration paths
used to program the floating point multiplier. Data ports 1 & 2
are used to inject the exponent and mantissa words,
respectively, of the “left” floating point operand. Data ports 3
& 4 are used to inject the exponent and mantissa words of the
“right” operand and the computed result is routed out of data
ports 5 & 6. There are four streams shown: A, B, C and D;
each of which consists of multiple packets of configuration
information. Each of the units traversed by a stream is
represented by a single box. The type of unit traversed is
labeled, and the stream that configures that unit is indicated by
the label in parenthesis; giving the letter of the stream that
configures it and the number of the specific packet within the
configuration header that will perform the configuration. This
number gives the order that the packets appear in the
configuration header, however, due to the pipelined nature of
the configuration process, this may not necessarily indicate the
specific order in which configuration takes place.

The multiplier implemented by this example is fully
pipelined and can produce a new result on each clock cycle,
giving an overall performance of 50 MFLOPs with the Colt
CCM.

5. VERSATILITY OF UNIT COMPOSITION

The flexibility of the packet format within the stream
header allows the Wormhole RTR concept to be applied to a
much broader range of computing than simply CCMs. The
information carried within a packet can vary from several dozen
bits needed to program a computational element within an
FPGA to an entire program to be executed on a standard
microprocessor. Thus, the types of units along the path
traversed by the stream through the system may be very
diverse. The stream is a conduit for control information and
data that can independently guide itself and perform a
computational task in a heterogeneous computing environment.
The localization of the operations to be performed to data items
contained within the stream itself, or between several
interacting streams, simplifies not only the burden of
communications overhead, but also eases the task of integrating
normally estranged technologies to achieve optimal
computational performance. In this sense, Wormhole RTR
could also be applied to a Macro Data Flow system as
presented by Gaudiot, et. al. [9], in which a data flow graph
topology is mapped onto a computational system consisting of a
heterogeneous set of computational nodes of varying
granularity.

Prod LProd H

Result Exponent
Data Port 5

(C12)

Mult

IFU
 (A3)

IFU
 (A4)

IFU
 (A5)

IFU
 (A6)

IFU
 (C3)

IFU
 (C4)

IFU
 (C5)

IFU
 (C6)

IFU
 (C7)

IFU
 (C8)

IFU
 (C9)

IFU
 (C10)

IFU
 (D4)

IFU
 (D5)

IFU
 (D6)

IFU
 (D7)

Crossbar
(C11)

Result Mantissa
Data Port 6

(D9)

Crossbar
(D8)

Left Exponent
Data Port 1

(A1)

Crossbar
(A2)

Right Exponent
Data Port 3

(C1)

Crossbar
(C2)

Crossbar
(B3)

Crossbar
(D3)

Left Mantissa
Data Port 2

(B1)

Right Mantissa
Data Port 4

(D1)

Crossbar
(B2)

Crossbar
(D2)

Figure 3 - Stream paths used to
configure the floating point multiplier.

The Colt CCM itself is an amalgamation of different
computational resources. Essentially, the basic elements of the
Colt are standalone units that may be connected in a variety of
ways by a stream. The crossbar is used to facilitate these
connections and to maximize the flexibility given to the
programmer as to the exact data flow graph implemented.
There are no inherent interdependencies between the design of
the different units of the Colt, however, and the combinations
of use are limited only by the programmer’s imagination.
Linked with the data flow concept of expressing the graph such
that only the computational dependencies of the algorithm are
required, the Colt programmer may create an optimally parallel
implementation of the algorithm. This is, of course, subject to
the availability of resources, but in a full scale system resource
restraints need not play a factor while, at the same time, all the
inherent advantages of the Wormhole RTR methodology will
still apply.

6. STREAM DESIGN PRINCIPLES

Indeed, the design of an architecture based around
Wormhole RTR is conducive to concurrent processing since the
units can be designed independently of one another. Unlike the
slave-like execution of units in a microprocessor, the design of
units for use in a Wormhole RTR architecture must be designed
with a degree of intelligence in order to support the feed
forward control strategy. This concept is best illustrated by the
crossbar of the Colt. New stream(s) may enter any or all of the
12 inputs to the Colt crossbar at any time. Thus, the control
mechanism of the crossbar must be a distributed system
capable of simultaneously switching any set of inputs to a set of
outputs, as well as supporting broadcast modes. To accomplish
this, each of the crossbar outputs is assigned a unique address.
Each switching point from input to output in the crossbar is
designed with a small state machine. The state machine
monitors the input to the crossbar for a stream header
containing a packet designated for the output address that it is

associated with. Upon receipt of such a packet, the state
machine triggers the switching mechanism between the input
and output and allows the remainder of the stream to propagate
through. Because the state machines act independently of one
another, the nightmare of coordinating all possible switching
combinations is neatly avoided. The only point of common
communication between the state machines occurs when an
input has a pre-existing switch connection to a given output.
Only one input may be forwarded to a given output at a time,
thus when a new input requests the use of that output a clearing
signal is sent to all state machines associated with that output,
allowing the new input to gain exclusive control of the crossbar
output. There are 156 such state machines in the Colt CCM.
These are, however, quite small and reside compactly
underneath the crossbar routing.

Thus, the concept of addressing was not totally forgone in
the design of the Colt CCM. Theoretically, a Wormhole RTR
system could be wholly designed around a relative addressing
scheme. A relative addressing scheme in the mesh, for
example, would use local cues for the direction of stream
propagation from a given Functional Unit, such as north, south,
east or west, or a combination of these. Obviously, the crossbar
consists of 16 “cardinal” directions from which to proceed from
input to output, but again, relative addressing could have been
used. The advantage of a relative addressing scheme would be
the same as that of relocatable code in a microprocessor. A
stream could be injected into the Colt CCM and it could then
map itself onto the hardware starting from any point. Care
would need to be taken that independent streams did not
collide by allocating the same resources in the process.

Though the Wormhole RTR concept can incorporate a
relative addressing design strategy, it was decided that an
address that was unique throughout the chip would be given to
each unit. These addresses are used to distinguish units on a
local basis, in contrast to a global strategy such as is used in a
RAM. A unit will only respond to a packet containing either its
unique address or the broadcast address. This was done to

Stream
Controller

Stream
Controller

Stream
Device #1

Stream
Device #2

Stream
Device #3

Principle
Output

COLT / STALLION

COLT / STALLION

COLT / STALLION

Principle
Input

Figure 4 - The generalized wormhole RTR stream processing concept utilizing the
Colt/Stallion integrated circuits. The small squares within the Colt/Stallion boxes represent

resources allocated by the computational stream.

better support and control the idea of broadcast programming
and divergent streams. A divergent stream is created by
configuring a unit to forward the stream in more than one
direction simultaneously. The addresses of following packets
in the stream header are carefully chosen to program selected
units along the paths that have been newly created. This is one
method through which a single stream can program multiple
data paths. Though the stream is forwarded in multiple
directions, the addresses allow the programmer to direct
packets to specific units along the paths; thus, maintaining
control over the individual configuration of each unit.
Broadcast programming allows a single stream to diverge into
two or more streams by programming units that are adjacent in
the network with the same packet. This is useful for
programming repetitious structures quickly. The addressing
mechanism then allows the programmer to control the path that
the stream will take to exit the structure once it has been
configured.

7. OBJECT ORIENTED STREAMS

The localized nature of the communications involved with
Wormhole RTR allow different sections of the data flow graph
being implemented to expand or contract dynamically at run-
time to utilize as much hardware as the current algorithm and
existing system constraints allow. As different processes
compete for hardware resources and the size of the physical
machine increases or decreases, different portions of a given
data flow graph could be implemented directly in hardware.
For instance, if more hardware were added to a given system it
could be detected by the Stream Controllers and used to
configure more of the data flow graph directly in hardware,
realizing an instant speedup with no modification or
recompilation of the data flow “program” itself. As another
example, the amount of physical resources in the system may
remain the same, but a new process may be introduced.
Existing processes on the machine could dynamically shrink the
amount of code that is directly implemented in hardware to
allow room for the new process to execute in a reasonable
amount of time.

Figure 5 shows the extension of this concept of dynamic
process expansion and shrinking to allow the possibility of
object oriented streams in which the stream header simply
contains “opcodes,” each of which indicate the type of
operation to be performed without necessarily dictating the
exact piece of hardware to be used for implementation. A
Stream Controller could receive such a stream, compare the
opcode against a library of possible physical implementation
strategies and then implement the most efficient method
possible given available hardware resources by substituting the
appropriate implementation into the stream header in place of
the opcode.

In this way, a Wormhole RTR system could also
implement the concept of generalized hardware in which the
exact hardware to be utilized at run-time need not be known at
compile time. This applies not only to hardware resource
availability, such as would be used for the dynamic expansion
and shrinkage discussed, but it also opens the possibility of
running a program on future hardware that has yet to be added
to the system, or has yet to even be invented, without having to
recompile or recode. All that would be required is the addition
of the implementation library for the new hardware to the
system; dynamic stream to hardware mapping by the Stream
Controllers could then immediately utilize it at run-time.

8. CONCLUSIONS

The immediate benefits of Wormhole RTR can be seen in
the implementation of the Colt CCM. Running at 50 MHz, the
six 16-bit data ports of the Colt can all be used to
simultaneously transfer 4.8 billion bits of configuration
information per second through the I/O pins. In comparison,
the Xilinx XC4025 is capable of 10 million bits per second and
the Xilinx XC6216 can transfer 800 million bits per second.
This high speed is owed to three major improvements of the
Colt architecture over previous CCM and FPGA type devices.
The first of these is the truly word-wide configuration path
made feasible by the Wormhole RTR concept of transmitting
configuration data over the same signal paths used for operand
data. While a word-wide configuration path could be used to

Addition

Multi ply
Dot Product

Board XBar Config

Colt Port Config
Colt XBar Config

FU #1 Config

FU #2 Config

FU #3 Config

Edge Detector

Object Tracker

Target Acquisition

Missile Guidance

Implementation
Library

Allocation
Management

Stream
Controller

Object Stream “Mapped” Stream

Figure 5 - Object oriented stream concept.

configure other devices, Wormhole RTR eases the burden by
allowing the same signal path to be used, saving silicon area
over the alternative of implementing twin bus structures, one
for configuration and one for operand data. The second major
reconfiguration speedup is derived from the high clock rate
possible due to the localized nature of communications within
the Colt CCM. A global control strategy, such as a random-
access based approach, requires a large network of signals to
allow any part of the chip to be accessed at any given time from
the point of centralized control. By limiting the access to a
localized region of the device, shorter propagation times can be
achieved and higher clock rates realized. The third benefit of
Wormhole RTR that contributes to the performance of the Colt
CCM is distributed control which allows all six data ports to be
used to configure the device simultaneously. By alleviating the
bottleneck of a single injection point for configuration data, all
the advantages of parallelism come into play. It should be
stressed that the Colt is the first prototype of its kind and that
the benefits reaped from all these factors will be magnified in
planned devices.

The net result of going to a word-oriented approach over a
bit-oriented approach is a gain in computational density over
traditional bit-oriented FPGAs. The gain in density is partly
spatial, owing to the fact that fewer switches, storage elements
and control logic circuits are required. The gain is also
temporal, in that fewer configuration bits are required allowing
faster reconfiguration times. Finally, because fewer switching
elements need to be traversed to perform a computation, the
raw clock speed of the Colt can be higher, boosting the
computing power even further. This is not to imply that word-
oriented approaches are inherently superior to bit-oriented
approaches; there are numerous instances and applications
where bit-oriented solutions are obviously better.

Further information can be found in Bittner’s dissertation
covering Wormhole RTR, the Colt CCM and related material
[10].

Figure 6 - A picture of the Colt configurable
computing integrated circuit.

9. ACKNOWLEDGMENTS

The authors would like to thank the students who
contributed to this project, including Mark Cherbaka, Brian
Kahne, Mark Musgrove, Tsung-Han Yang, and Scott Harper.
This work was funded by grant J-FBI-94-219 from the DARPA
Information Technologies Office.

10. REFERENCES

[1] J. Eldredge and B. Hutchings, "Density Enhancement of a
Neural Network Using FPGAs and Run-Time Reconfiguration,"
in Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, edited by D. Buell and K. Pocek, Napa,
CA, pp. 180-188, April 1994.

[2] The Programmable Logic Data Book. Xilinx
Incorporated, San Jose, California, pp. 2-4 - 2-43, 1994.

[3] Altera 1995 Data Book. Altera Corporation, San Jose,
California, pp. 37-93, 1995.

[4] A. Stansfield and Ian Page, “The Design of a New FPGA
Architecture,” in Proceedings of the Forth International
Workshop on Field Programmable Logic, Oxford, England,
Springer-Verlag, New York, New York, September, 1995.

[5] C. Rupp, “CLAyFun Reference Manual,” National
Semiconductor Corporation, Santa Clara, California, July 1995.

[6] K. Hwang, Advanced Computer Architecture, pp. 442-446,
McGraw-Hill, New York, New York, 1993.

[7] W. Dally, C. Seitz, “Deadlock-free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Transactions
on Computing, C-36, no. 5, pp. 547-553, May 1987,

[8] R. Bittner, M. Musgrove, P. Athanas, “Colt: An
Experiment in Wormhole Run-Time Reconfiguration,” to
appear at Photonics East, Conference on High-Speed
Computing, Digital Signal Processing, and Filtering Using
FPGAs, Boston, MA, November, 1996.

[9] J. L. Gaudiot and M. D. Ercegovac. Performance Analysis
of a Data-Flow Computer with Variable Resolution Actors,
Proceedings of the 4th International Conference on Distributed
Computing Systems, The Institute of Electrical and Electronics
Engineers, Inc., Piscataway, NJ, pp. 2-9, 1984.

[10] R. Bittner, “Development and VLSI Implementation of a
High Speed Data Flow DSP Computing System,” Ph.D.
Dissertation, Bradley Department of Electrical and Computer
Engineering, Virginia Tech, 1996, work in progress.

[11] P. Athanas, I. Howitt, T. Rappaport, J. Reed, and B.
Woerner, "A High Capacity Adaptive Wireless Receiver
Implemented with a Reconfigurable Computer Architecture",
ARPA GloMo Principle Investigators Conference, San Diego,
CA, November 1995.

[12] M. Bove, J. Watlington, “Cheops: A Reconfigurable Data-
Flow System for Video Processing,” IEEE Trans. on Circuits
and Systems for Video Processing, no. 5, pp. 140-149, April
1995.

	CD-ROM Home Page
	FPGA97
	Front Matter
	Table of Contents
	Session Index
	Author Index

