
Module Generation of Complex Macros for Logic-Emulation

Applications

Wen-Jong Fang1, Allen C.-H. Wu1, and Duan-Ping Chen2

1Department of Computer Science, Tsing Hua University

Hsinchu, Taiwan, 300, Republic of China
2Quickturn Design Systems, Inc., 440 Clyde Avenue

Mountain View, California, 94043-2232, U.S.A

Abstract
Logic emulation is a technique that uses dynamical-

ly reprogrammable systems for prototyping and design
veri�cation. Using an emulator, designers can realize
designs through a software con�guration process and
perform real-time design veri�cation before fabricating
the chip into silicon. However, converting designs in-
to an emulator involves the use of multi-phase design
tasks, which is a very time-consuming process. Hence,
shortening the Time-To-Emulation (TTE) is always
the main concern for the logic-emulation design pro-
cess. One approach to shorten the design processing
time is to replace portions of the design with macro
cells. This paper presents a module generator for logic-
emulation applications, which is able to generate macro
cells of arbitrarily complex functions described in High-
level Descriptive Languages (HDLs). Furthermore, the
module generator can e�ectively generate a multiple-
FPGA macro for large macros which can not �t in
a single FPGA chip. Experiments using the module
generator for logic emulation are reported. The results
demonstrate that the module generator can e�ective-
ly and e�ciently generate complex macros from their
Register-Transfer-Level (RTL) description. In addi-
tion, the results also show that the design processing
time is signi�cantly shortened when the module gener-
ation method is incorporated into the logic-emulation
design ow.

1 Introduction
Because of their reprogrammability, Field Pro-

grammable Gate Arrays (FPGAs) have become the
most popular Application-Speci�c Integrated Circuit-
s (ASICs) for rapid system prototyping. In addi-
tion, the development of recon�gurable systems by in-
tegrating FPGAs and Field Programmable Intercon-
nect Chips (FPICs) has become the new trend in
rapid prototyping and computation-intensive applica-
tions [1, 2, 3, 4, 5].

Logic emulation is the �rst technique to emerge that
uses dynamically reprogrammable systems for proto-
typing and design veri�cation [1, 4, 6]. A logic em-
ulator is a system consisting of hundreds and thou-
sands of FPGAs and FPICs, which is able to realize
designs through a software con�guration procedure. A
con�gured logic emulator is equivalent to the chip un-
der design, and can be used for real-time design veri-
�cation, software development, and prototyping before
fabricating the chip into silicon. Using logic emulation,
designers can run design veri�cation almost six orders-
of-magnitude faster than classical simulation [7]. In
addition, designers are also able to execute complex
system-level veri�cation tasks such as running correct-
ness tests, booting an operating system, and running
application programs before tapeout. In recent years,
many studies [4, 7, 8] have demonstrated that logic em-
ulation is a very e�ective methodology for shortening
the time-to-market of a design. Because of these ad-
vantages, logic emulation has been widely used as a
key design veri�cation methodology in many complex
CPU, telecom, multimedia, and system design projects
[4, 7, 8, 9].

Figure 1(a) depicts a typical design ow for logic-
emulation applications [10]. A design is usually de-
scribed as a mixed gate, logic, and Register-Transfer-
Level (RTL) description in High-level Descriptive Lan-
guages (HDLs) such as VHDL and Verilog. In the �rst
phase, a synthesizer is used to transform an HDL de-
scription into a gate-level netlist. In the second phase,
a partitioner decomposes the gate-level netlist into a
set of subnetlists such that each subnetlist can be real-
ized using an FPGA chip. In the third phase, a system
mapper �rst assigns the subnetlists into the FPGAs
on the system board and then performs system rout-
ing to realize the interconnections between the FPGAs.
In the fourth phase, a technology mapper converts the
gate-level subnetlists into CLB subnetlists. In the �fth
phase, a placer-and-router performs FPGA placement-
and-routing for each subnetlist. Finally, the design is
converted into a set of bit-stream �les and downloaded
into the target emulator.

Considering that a typical medium-sized design
ranges between a hundred thousand and a half-million
gates, and a large design may well over a million gates.
Partitioning designs in such scales requires a tremen-

(a) (b)

Design downloading

HDL descriptions

Emulators

Place and route

FPGA mapping

System mapping

Partitioning

Synthesis
Mod1 Mod2

Mod3HDLs

Gate−level
 netlists

Gate−level
subnetlists

 CLB
subnetlists

Design downloading

HDL descriptions

Emulators

Place and route

FPGA mapping

System mapping

Partitioning

Synthesis

Module generation

Mod1 Mod2

Mod3HDLs
Gate−level
 netlists

Gate−level
subnetlists

 CLB
subnetlists

CLB−based
macro−cells

Mod1

Mod1

Mod1

Mod1

Figure 1: The design ow for logic-emulation applications.

dous computational e�ort which usually takes tens of
hours. Moreover, in order to resolve the hold-time vi-
olation [10], a very complex timing analysis procedure
has to be applied for path-delay analysis of the design
before performing the partitioning. However, the num-
ber of paths that must be searched is enormous. To
conduct path-delay analysis on such designs becomes
an extremely time-consuming task. As a result, the
above design process often su�ers in a long design pro-
cessing time, and how to shorten the time-to-emulation
is always the top priority for the logic-emulation design
process.

One possible approach to speeding-up the design
processing time is to use a module generation approach,
as shown in Figure 1(b). In this approach, some non-
timing-critical portions of the design can be extracted
and implemented as macro cells. Hence, we only need
to apply the timing-analysis and partitioning tasks on
the remainder of the design instead of the entire de-
sign. For example, in Figure 1(b), Mod1 is extracted
from the design and implemented as a macro cell. As
a result, we only need to apply the timing analysis and
partitioning tasks to the remaining circuits generated
byMod2 andMod3. By replacing portions of the design
with macro cells, the computational complexity as well
as the design processing time of the timing-analysis and
partitioning tasks can be reduced.

In general, there are two commonly used approaches
to implementing macro cells for logic-emulation appli-
cations. First, the macro cells can be developed manu-
ally by designers. However, this approach is a very time
consuming process. Second, an existing macro library,
such as the XACT macro library [11], can be used.
While macro libraries provide a large number of basic
components, such as adders, multiplexers, and coun-
ters, they don't provide macros for arbitrarily complex
functions.

In this paper, we present a module generator for
logic-emulation applications. This module generator is

able to generate macro cells of arbitrarily complex func-
tions described in HDLs. Moreover, the module gener-
ator can automatically provide a multiple-FPGA solu-
tion if a macro cell is too big to be realized by a single
FPGA chip. Experiments using the module generator
for logic emulation are reported. The results demon-
strate that the module generator can e�ectively and
e�ciently produce complex macros. Furthermore, the
design processing time is signi�cantly shortened when
the module generation method is incorporated into the
logic-emulation design ow.

The rest of paper is organized as follows. Section 2
discusses the considerations of module generation for
logic emulation. Section 3 presents the module gener-
ator. In section 4, we present the experimental results.
Finally, section 5 gives concluding remarks.

2 Considerations of module generation

for logic emulation
In this section, we discuss the characteristics of

macros and the requirements of module generation for
logic-emulation applications.

For logic-emulation applications, a pre-de�ned
macro may contain a simple function or an arbitrarily
complex function which can be described in HDLs at
RT, logic, and gate levels. For example, a pre-de�ned
macro can be a 32-bit 20-to-1 multiplexer, a custom-
designed component with 5 arithmetic and logic func-
tions, a 64-bit datapath, a multiplier, or even a stand-
alone controller. As indicated in [8], gate-level descrip-
tions of macros may not be available at the early de-
sign emulation stage. However, the RTL descriptions of
macros are usually available for simulation use. In cur-
rent practice, a functionally equivalent gate-level de-
scription must be created solely for emulation purpos-
es. This will later be replaced by the actual gate-level
description. Therefore, the module generator should be
capable of transforming an RTL description of a macro
into a gate-level description for emulation use. Another
requirement stems from the fact that most emulation
systems use commercial FPGA components to imple-
ment logic functions of the design. For example, Xilinx
XC3090 and XC4013 chips are currently used in a vari-
ety of emulation systems. Hence, it is bene�cial to the
emulation design process if the module generator can
produce a CLB-level description instead of a gate-level
description.

Since an emulation-based macro may contain an ar-
bitrarily complex function, a single FPGA chip may
not be an adequate implementation. Thus, the module
generator should be able to decompose a large macro
into a set of FPGA chips. One way is to apply an
existing traditional circuit-level partitioning algorith-
m such as the RFM [14] to decompose a large CLB
netlist into a set of subnetlists. However, the problem
of FPGA-based partitioning is quite di�erent from the
classical ASIC partitioning problem. FPGA chips have
�xed and limited amounts of logic units and I/O pins.
In certain common cases, the circuit-level partitioning
method produces partitions with high I/O-pin utiliza-
tion but low logic utilization. When macros contain a
set of multi-bit data-processing components, the I/O
limitation of the chip becomes the bottleneck and a

 Logic
 synthesizer

Synthesis
 (EmSyn)

Partitioning
 (EmPar)

HDL descriptions

HDL CLB-level
 descriptionsXNF files

Component
 library

EmGen
 Compilation
(V_Compiler)

 Function
generator

Figure 2: The system block diagram of the module gener-
ator EmGen.

high logic-utilization partitioning can not be achieved
using the traditional circuit-level partitioning method.
This is undesirable for emulation purpose because de-
signs with low logic utilization will increase the emu-
lation cost while high I/O utilization will decrease the
ability to probe the design.

From the above discussion, we can conclude that an
emulation-based module generator should be able to
generate CLB-based macro cells from their RTL de-
scriptions in HDLs. In addition, the module generator
should also be able to decompose a large macro cell into
a set of FPGA chips with high logic and low I/O-pin
utilizations. In the following section, we will present
an emulation-based module generator which provides
all of the above features.

3 EmGen: an emulation-based module

generator
Figure 2 depicts the system block diagram of the

module generator EmGen which consists of three ma-
jor components: a Verilog compiler (V Compiler),
an RTL synthesizer (EmSyn), and a partitioner
(EmPar). EmSyn interfaces to a set of logic mini-
mization/technology mapping procedures and a com-
ponent library. The input to the generator is a Verilog
description of the design. V Compiler performs HDL
compilation and converts the Verilog design description
into an intermediate design format. EmSyn �rst per-
forms RTL synthesis to generate a structural design.
Then, EmSyn invokes logic minimization and technol-
ogy mapping procedures embedded in the logic synthe-
sizer to convert the structural design into a CLB-based
design. The component library provides the synthe-
sizer with a set of generic RTL components, such as
adders and subtractors, to support the RTL synthe-
sis. In addition, the function generator can dynami-
cally generate a set of bit-level logic sub-functions for
bit-sliced components. If the generated macro can not
�t into a single FPGA chip, then a partitioner EmPar
is used to decompose the macro into multiple-FPGA
chips. Finally, the module generator outputs both an
XNF and Verilog description of the macro.

4 Module generation
In our module generation, we use a new RTL syn-

thesis and partitioning method [16] to fully exploit the

structural hierarchy of designs for multiple-FPGA im-
plementations. The module generation consists of four
steps: (1) synthesis, (2) component partitioning, (3)
function-tree construction, and (4) functional parti-
tioning. In the �rst step, the RTL description of a
macro is coverted into a structural design. In the sec-
ond step, the RTL components of the structural de-
sign are partitioned into two groups: bit-sliced and
random-logic components. In the third step, a bit-level
function-tree is constructed according to the structural
characteristic of the design. In the �nal step, a func-
tional partitioning method is applied to decompose the
design into multiple FPGA chips.

4.1 Synthesis
In our approach, we use the FSMD (Finite State

Machine with a Datapath) model [12] as our target
architecture. We use the FSMD model to describe
design behaviors on the register-transfer level. The
Verilog compiler �rst transforms a Verilog RTL de-
scription of the design into an intermediate design
format. The synthesizer performs unit selection, u-
nit/storage/interconnection binding, control synthesis,
and outputs a structural design. The structural de-
sign consists of a control unit (CU) and a datapath
(DP). The control unit contains a set of random-logic
functions for every datapath control signals. The data-
path contains a set of interconnected RTL components
including functional units, storage elements, and inter-
connect units. Each RTL component is represented as a
set of logic functions in the Berkeley Logic Interchange
Format (BLIF) and EQN (Boolean equation) format.
During logic synthesis, the synthesizer invokes the log-
ic minimizer and technology mapper [13] to generate
CLB-based netlists of macros.

4.2 Component partitioning
The purpose of component partitioning is to deter-

mine the component style, bit-slice or random-logic, for
each register-transfer component. The component style
depends on the component type and the component's
connectivity. First, components must be partitioned by
type since some components, such as counters, regis-
ters and ALUs, are sliceable while others like, decoders
and encoders are not. Second, small size components
can be implemented in two ways. For example, a 2-bit
ALU can be implemented as a random-logic or as a
bit-sliced unit. The implementation decision for such
a component depends on the component's connectivi-
ty. For example, if a component in question is strongly
connected to other random-logic components, then a
random-logic style may be more suitable for this com-
ponent in order to reduce the interconnections between
bit-sliced and random-logic modules.

A weighted and undirected hypergraph G = (V;E)
is formed from the RTL netlist. V = fvig; i = 1::n,
denotes a set of components in the netlist, and type(vi)
denotes the component type of vi, RL (Random Logic)
or BS (Bit Slice). uj(vi), j = 1::m, denotes the ports
of vi, while port(uj(vi)) denotes the port type of uj(vi),
control port or data port. E = feij;klg denotes a set of
edges where eij;kl is the edge between uj(vi) and ul(vk).
In addition, w(eij;kl) denotes the weight of eij;kl which

is the number of wires between uj(vi) and ul(vk). For
example, in Figure 3(a), node v1 has 4 ports where
p1(v1), p2(v1), and p4(v1) are data ports, while p3(v1)
is the control port. The number of wires between p4 of
v1 and p2 of v2 is 6; i.e., wfe14;22g=6.

Two linking costs, Ccontrol(vi) and Cdata(vi), are
used to evaluate the connectivities between compo-
nents. The linking costs of node vi are computed as
below:
Ccontrol(vi) =

P
w(eij;kl) where port(ul(vk))=control

and j = 1::m, and
Cdata(vi) =

P
w(eij;kl) where comp(vk)=BS and

port(ul(vk))=data.
The linking cost Ccontrol(vi) is the number of wires

connected to vi from other RL nodes or from control
ports of other BS nodes, while Cdata(vi) is the number
of wires connected to vi from data ports of other BS
nodes.

The component partitioning is divided into two step-
s: (1) initial component type assignment and (2) type
assignment for the undecided nodes. In the �rst step,
if bit-slice implementations are not available for the n-
odes, the algorithm �rst labels such nodes as RL. Oth-
erwise, the nodes that meet the following two condi-
tions are labeled as BS: (1) the component can be
implemented as a bit-slice and (2) the component's
bit widths are larger than a user speci�ed threshold
(BWthreshold). If these conditions are not met, the
algorithm will label nodes as undecided type. Since
the undecided nodes can be implemented as a bit-slice
or a random-logic component, the algorithm takes in-
to account the connectivity by calculating the linking
cost of undecided nodes. For an undecided node vi, if
Ccontrol(vi) > Cdata(vi) then node vi is labeled as RL.
Otherwise node vi is labeled as BS.

The pseudo code of the algorithm is shown below.
The algorithm takes an input of an RTL netlist and
outputs a random-logic and a datapath components
sets.
ALG. Component Partitioning(G)f

for (i = 1 to n)f

if (vi is not sliceable) then

comp(vi) = RL;

else if (vi is sliceable and

bit width(vi) > BWthreshold) then

comp(vi) = BS;

else

comp(vi) = undecide;

g

for (i = 1 to n)f

if (comp(vi) == undecide) thenf

Calculate Ccontrol(vi) and Cdata(vi);

if (Ccontrol(vi) > Cdata(vi) then

comp(vi) = RL;

else

comp(vi) = BS;

g

g

g

Complexity analysis: Let n and m be the number of
nodes and edges in the netlist. It takes O(n) and

(a)

Mux1[0:7]

Adder[0:7]

I1 I2 I3 I4 I5

O1

c1
c2

c3

Mux2[0:5]

I6

c4

Root RL

DP

(c1)f
(c2)f

(Mux1[0])f

(Adder[0:7])f

(Mux1[7])f

(Mux1[0:7])f

(Adder[0])f

(Adder[7])f
(b)

(c3)f
(c4)f

(Mux2[0])f

(Mux2[5])f

(Mux2[0:7])f

Root RL

DP

(c1)f
(c2)f

(Mux1[0])f

(Mux1[7])f

(Adder[0])f

(Adder[7])f

(d)

(c4)f

DP[0]

DP[7]

(Mux2[0])f

(c3)f

Mux1

Mux2

Adder

[0] [7]
c1
c2

c3

c4

(c)

RL

DP

Bit0 7

A

B

D
P

[1
]

f1

f2

f3

f1
f2

f3

Control
 lines

m2

I/Os I/Os

Bit 1 n n+1

Con

m1

m3

B
it-

sl
ic

e(
r

C
LB

s)

B
it-

sl
ic

e(
r

C
LB

s)
(e)

Chip1 Chip2

#CLBs #CLBs
#IOs #IOs

f(c1)
f(c2)

f(c3)
f(c4)

(f)

[5]

[5]

[5]

DP

RL

(v1)

(v2)
p1 p2

p3
p4

p1 p2
p3

p4

6

Figure 3: Functional structuring and partitioning: (a)
an RT example, (b) the hierarchical function-tree, (c) the
topological oorplan of the function-tree, (d) the bit-level
function-tree, (e) functional packing for datapath compo-
nents, (f) functional packing for random-logic components.

O(n+m) time for initial type assignment and type as-
signment for undecided nodes, respectively. Therefore,
the complexity of component partitioning algorithm is
O(n+m).

4.3 Function-tree construction
Function-tree construction consists of three steps:

(1) function decomposition, (2) function restructuring,
and (3) CLB and IO-pin estimations.

In the �rst step, the generator invokes the
function generator to decompose the functionalities
of the RT components into a set of sub-functions. The
logic function of a datapath component is decomposed
into a set of bit-level sub-functions. Each sub-function
represents one-bit of the component. On the other
hand, the logic function of a random-logic component
is realized using a set of Boolean equations. A hierar-
chical function-tree is constructed by decomposing the
functionality of the design in a top-down fashion. For
example, Figure 3(b) shows the corresponding hierar-
chical function-tree of the design shown in Figure 3(a).

In the second step, a hierarchical function-tree is re-
constructed into a bit-level function-tree by performing
bit-alignment and topological placement of the data-
path components. A datapath may contain compo-
nents with varying bit widths. For such an irregularly-
shaped datapath, the components are aligned accord-
ing to their connectivities. For example, in Figure 3(a),

the datapath contains an 8-bit adder, an 8-bit multi-
plexer Mux1, and a 6-bit multiplexerMux2, in which
Mux2 is connected to the least-signi�cant 6-bit of the
Adder. The topological oorplan of the datapath is
shown in Figure 3(c). According to the topological
oorplan of the datapath, the �rst bit of the datap-
ath contains three one-bit logic functions of Adder[0],
Mux1[0], and Mux2[0], as shown in Figure 3(d). On
the other hand, the eighth bit of the datapath con-
tains only two one-bit logic functions of Adder[7] and
Mux1[7].

In the third step, we compute the required CLBs and
I/O pins for each node of the function-tree. To obtain
such information, we �rst perform FPGA synthesis to
generate CLB netlists for the leaf nodes of the function-
tree. For example, for the leaf-node of f(Mux1[0]) in
Figure 3(d), we can obtain its CLB netlist by invoking
the logic minimizer and technology mapper [13] with
the logic function of f(Mux1[0]). After generating the
CLB netlists for all the leaf nodes, we can generate the
CLB netlists for intermediate nodes of the function-
tree by applying the collapsing technique described in
[13]. Consequently, the required CLBs and I/O pins
of nodes in the function-tree can be determined. Fur-
thermore, the number of interconnections between two
nodes can be computed by matching the I/O pins of
these two nodes. If the design can be �t into a single
FPGA chip; that is, the number of CLBs and IO pins
of the Root node satis�es the CLB and IO-pin con-
straints of the chip, then the macro generation termi-
nates. Otherwise, a functional partitioning procedure
will be invoked which will be discussed in the next sec-
tion.

Let R and DP denote the random-logic and data-
path component sets, respectively. f(R) and f(DP)
denote the logic-function sets of the random-logic and
datapath components. In addition, CLB and IOP
represent the CLB and IO-pin constraints of the F-
PGA chip. The pseudo code of the function-tree-
construction procedure is listed as follows.

ALG: Function Tree Construction(G; R;DP)f

f(R) = Function Generation(R);

f(DP) = Function Generation(DP);

Bit Alignment(G;DP);

T = Bit Level Function Tree(f(R),f(DP));

CLB IO Estimation(T);

if (Clb(Root(T)) � CLB and IO(Root(T)) � IOP) then

Macro = Netlist(Root(T));

else

Functional Partitioning(T);

g

Procedure Function Generation generates bit-level
logic functions for datapath and random-logic com-
ponents. Procedure Bit Alignment performs bit-
alignment of the datapath components. Procedure
Bit Level Function Tree builds up the function-tree
according to the bit-alignment of the datapath compo-
nents. Procedure CLB IO Estimation invokes logic
minimization and technology mapping algorithms to
convert the logic functions into CLB-based designs. If
the design can be �t into a single chip, then the CLB

netlist at the root of the function-tree is assigned to a
chip Macro. Otherwise, the Functional Partitioning
procedure will be invoked to decompose the design into
multiple chips.
Complexity analysis: Let BW be the average bit
widths of all of the components in R and DP , n
the number of nodes in the netlist, m the number
of edges in the netlist. The Function Generation,
Bit Alignment, and Bit Level Function Tree proce-
dures take O(BW � n), O(m + n), and O(BW � n)
time, respectively. The CLB IO Estimation proce-
dure performs logic minimization and technology map-
ping for each node in the function-tree. The computa-
tional complexity of this procedure is dependent upon
the logic minimization and technology mapping algo-
rithms used.

4.4 Functional partitioning

The functional partitioner partitions datapath com-
ponents and random-logic components into FPGAs.
The partitioner uses a bit-slice as the basic unit and
packs the bit slices into FPGAs, followed by pack-
ing portions of the logic functions of one bit-slice in-
to FPGAs. The objective is to maximize the CLB-
utilization of the FPGA chips subject to satisfying the
CLB-capacity and I/O pin constraints of the chips. For
example, one bit-slice in Figure 3(e) contains r CLBs,
m1 I/O pins, and m2 control pins. By assigning one
bit-slice into an FPGA, it uses m1 +m2 I/O pins. By
packing n bit slices into one FPGA, it will use up to
r � n CLBs and (n�m1) +m2 I/O pins, as shown in
Figure 3(e). Assume that we can not pack the n+1 bit-
slice further because of the CLB-resource constraint.
However, we may be able to pack a portion of the log-
ic functions in one bit-slice into the FPGA to improve
the CLB utilization, as shown in Figure 3(e). The par-
titioner uses the bin-packing algorithm to pack logic
functions into clusters and then performs iterative im-
provement using a pairwise exchange procedure. The
packing procedure �rst partitions the datapath com-
ponents into FPGAs one chip at a time, followed by
packing partial logic functions of single bit-slices into
FPGAs to improve their CLB utilization. After pack-
ing the datapath components into FPGAs, the unused
logic and IO-pin resources of these FPGAs are then
computed. Finally, the procedure packs the logic func-
tions of the random-logic components into FPGA chip-
s, as shown in Figure 3(f). The procedure terminates
when all the components are assigned to FPGA chips.

Let TDP and TRL be the datapath and random-
logic sub-function-trees. C denotes a set of chips used.
f(BS), f(BT), and f(rl) represent a set of logic func-
tions of bit slices, portions of one bit-slice, and random-
logic, respectively. The pseudo code of the functional
partitioning algorithm is listed as follows. Procedure
Bit Slice Packing determines the maximum number
of bit slices which can �t into one chip. Procedure
Bit Packing returns portions of one bit-slice which can
be packed into the chip. Procedure Unused Resource
computes the left-over resources of the chips. Proce-
dure Random logic Packing packs logic functions of
random-logic components into chips one at a time. If
there some logic functions can not �t into any chips,

then a new chip is allocated. The algorithm terminates
when all of the logic functions in the function-tree are
assigned into chips.
ALG: Functional Partitioning(T)f

/*Datapath Packing*/

C = �; i = 1;

while (TDP 6= �)f

f(BS) = Bit Slice Packing(T);

f(BT) = Bit Packing(T);

ci f(BS) [f(BT);

TDP = TDP - (f(BS) [f(BT));

C = C [ci; i++;

g

/*Random-Logic Packing*/

Unused Resource(C);

while (TRL 6= �)f

ff(rl),cjg = Random Logic Packing(TRL;C);

if (f(rl) 6= �) thenf

cj f(rl);

Unused Resource(cj);

TRL = TRL - f(rl);

g

elsef

C = C [ci; i++;

Unused Resource(C);

g

g

g

Complexity analysis: Let n1 and n2 be the number of
logic-function nodes of one bit-slice and random-logic,
respectively. Procedure Bit Slice Packing takes O(1)
time, while Bit Packing takes O(n1) time. In addi-
tion, the random-logic packing procedure takes O(n2)
time.

5 Experiments
We have implemented the module generator in the C

programming language running on SUN and HP work-
stations. Currently, we have targeted two technologies:
the Xilinx 3000 series and the Xilinx 4000 series chips.
Using the module generator, we have generated a large
set of user-de�ned CLB-based macro cells including
multiplexers, decoders, encoders, adders/subtractors,
ALUs, comparators, shifters, and logic units. Figure 4
shows the results of three ALU macros with various
bit widths targeted to XC4000 chips. The �rst ALU
contains 8 arithmetic and logic functions including ad-
dition, subtraction, increment, decrement, inversion,
and, or, and 1's complement addition. The second
and third ALUs contain 6 and 4 functions, respectively.
The run time for generating a 32-bit ALU is less than
2 minute.

We have also tested the module generator on two
benchmarking circuits and two industrial designs Ckts
1, 2, 3, 4 which are an ALU, the elliptic �lter, a data-
path, and a oating-point multiplier, respectively. The
bit-width of the four macros is 32 bits. We have tar-
geted three Xilinx chips used in the emulation systems
[18]: (1) XC3090 with 144 IO pins and 320 CLBs, (2)
XC4010 with 160 IO pins and 400 CLBs, and (3) X-
C4013 with 192 IO pins and 576 CLBs. Table 1 shows
the characteristics of the four macros, in which #IOs,

50

100

150

200

250

280
#CLBs

Bit-width

2 4 8 16 20 24 32

ALU(8-func)
ALU(6-func)
ALU(4-func)

Figure 4: The results of ALU macros

Table 1: Characteristics of the benchmarking circuits.

Ckts #IOs #CLBs(A/B) #Pins(A/B) #Nets(A/B)

1 47 849/694 5321/6982 1275/1519
2 117 2223/1549 12857/14582 2739/3179
3 46 1134/861 6635/7826 1378/1798
4 109 1752/1150 9839/11590 1953/2370

A: XC3000, B: XC4000.

#CLBs, #Pins, and #Nets represent the number of
IOs, CLBs, equivalent gate counts, pins, and nets of
the macros.

We have compared the partitioning results produced
by our approach and a traditional approach. In the tra-
ditional approach, we �rst used EmSyn to generate a
attened CLB netlist. Then we applied the RFM al-
gorithm to partition the attened netlist into multiple-
FPGA chips. Table 2 shows a comparison of the re-
sults with our new approach. #P , IOU , and CLBU
represent the number of partitions, the average I/O
utilization, and the average CLB utilization, respec-
tively. The results show that our approach produced
partitions with lower IO-utilization and higher CLB-
utilization compared to that produced by the tradi-
tional approach.

We have also tested the two logic-emulation design
approaches depicted in Figure 1 on an industrial de-
sign. The design is described in Verilog with 36 mod-
ules and 6,400 lines of Verilog code. In the �rst ap-
proach, we used the HDL-ICE [17] to synthesize the
design into a gate-level netlist. Then, we used the

Table 2: Comparisons between EmGen and RFM.

Ckts T EmGen RFM
#P IOU CLBU #P IOU CLBU

1 A 3 .45 .88 7 .93 .38
2 A 7 .57 .99 13 .91 .53
3 A 4 .62 .89 4 .83 .89
4 A 7 .70 .78 7 .82 .78
1 B 2 .58 .87 3 .93 .58
2 B 4 .63 .98 12 .95 .32
3 B 3 .63 .72 4 .93 .54
4 B 5 .88 .58 8 .96 .36
1 C 2 .44 .60 3 .90 .40
2 C 3 .53 .89 12 .96 .22
3 C 2 .57 .75 3 .83 .50
4 C 3 .85 .66 6 .97 .33

A: XC3090, B: XC4010, C: XC4013.

Table 3: Comparisons of two logic-emulation design methods.

Method #Gates #Macros #Chips HDL-ICE EmGen Quest Total Ratio

1 27,190 0 11 00:28:50 00:00:00 00:47:19 01:16:09 1.33

2 18,615 1(1045 CLBs) 11 00:12:34 00:12:40 00:32:06 00:57:20 1.00

Quest [18] design system to perform the partitioning
and system-mapping tasks. In the second approach, we
manually extracted two modules from the design de-
scription. Then, we used EmGen to generate a macro
cell of these two modules, while the rest of the design
description was synthesized into a gate-level netlist us-
ing HDL-ICE. Finally, we used Quest to perform the
partitioning and system-mapping tasks. Table 3 shows
the comparisons of the two methods. The results show
that the �rst approach results in total gate count of
27,190 which can be implementedwith 11 XC4013 chip-
s. Using the second approach the extracted portions of
the design were implemented as a macro cell using t-
wo XC4013 chips with 1,045 CLBs. The gate count
for the rest of the design is 18,615 requiring 9 chip-
s, for a total of 11 XC4013 chips to implement the
design. The results show that the run times of HDL-
ICE and Quest using the second approach are 130%
and 47% faster than that of using the �rst approach
not taking into account macro generation. This gain is
mainly achieved by applying synthesis and partitioning
tasks to smaller-sized of designs, which drastically re-
duces the computation complexity of the synthesis and
partitioning tasks. Macro generation in the second ap-
proach takes just over 12 minutes, thus out-performing
the �rst approach by 33% in total run time.

6 Conclusions
In this paper, we have presented a module genera-

tor which is able to generate macro cells of arbitrarily
complex functions described in HDLs. In addition, the
module generator can e�ectively generate a multiple-
FPGA macro for large macros which are not able to �t
on a single FPGA chip. Using this module generator,
designers are able to generate complex macros on the
y which can signi�cantly reduce the design develop-
ment time and cost.

We have conducted a series of experiments to
demonstrate the e�ectiveness of the module genera-
tor. Furthermore, we have tested the module gen-
eration method for logic-emulation applications. We
have shown that using the module generator to gener-
ate macros for portions of the design can signi�cantly
reduce the logic-emulation design processing time. The
results demonstrate that the design processing time is
shortened by 33% on a medium-sized industrial design
when the module generation method is incorporated
into the logic-emulation design ow. We believe that
the run-time improvement on large designs will be to
a correspondingly greater degree.

Currently, our module generator focuses on the ef-
�ciency of logic and I/O-pin utilizations of macros,
which is most applicable to low-speed logic emulation
applications. Further study of timing issues would be
bene�cial for high-speed applications. Furthermore,
in order to achieve viable partitioning solutions, fur-

ther study is needed of the practicality of considering
routability issues during the partitioning process.

Acknowledgments

This work was supported in part by the National
Science Council of R.O.C. under Grant NSC 86-2221-
E-007-047 and by a grant from the Quickturn Design
Systems Inc. The authors also like to thank Dr. K.
C. Chu and Dr. T. C. Lin for their helpful discussions
and support.

References
[1] M. Butts, J. Batcheller, and J. Varghese, \An E�cient Logic

Emulation System," Proceedings of ICCD92, pp. 138-141, 1992.

[2] C. E. Cox and W. E. Blanz, \GANGLION- A Fast Field-
Programmable Gate Array Implementation of a Connectionist
Classi�er," IEEE Journal on Solid-State Circuits, vol. 27, pp.
288-299, March 1992.

[3] P. K. Chan, M. Schlag, and M. Martin, \BORG:A Recon�g-
urable Prototyping Board Using Field-Programmable Gate Ar-
rays," in Proceedings of 1st International ACM/SIGDA Work-
shop on Field-Programmable Gate Arrays, pp. 47-51, 1992.

[4] S. Walters, \Computer-Aided Prototyping for ASIC-Based Sys-
tems," IEEE Design and Test of Computers, pp. 4-10, June 1991.

[5] D. E. Van den Bout, \The Anyboard: Programming and En-
hancements," Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines 1993, pp. 68-77, 1993.

[6] J. Gateley, \Logic Emulation Aids Design Process," ASIC &
EDA, July, 1994.

[7] J. Kumar, N. Strader, J. Freeman, and M. Miller, \Emulation
Veri�cation of the Motorola 68060," Proceedings of ICCD, pp.
150-158, 1995.

[8] J. Gateley et al., \UltraSPARC-I Emulation," Proceedings of the
32nd DAC, pp. 13-18, 1995.

[9] G. Ganapathy, R. Narayan, G. Jorden, D. Fernandez, M. Wang,
and J. Nishimura, \Hardware Emulation for Functional Veri�ca-
tion of K5," Proceedings of the 33rd DAC, pp. 315-318, 1996.

[10] M. Butts, \Future Directions of Dynamically Reprogrammable
Systems," Proceedings of CICC, 1995.

[11] XACT libraries guide, Xilinx, Inc., 1994.

[12] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis,
Kluwer Academic Publishers, 1992.

[13] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, \Improved Logic Synthesis Algorithms for Table Look
Up Architectures," Proceedings of ICCAD91, pp. 564-567, 1991.

[14] C. M. Fiduccia and R. M. Mattheyses, \ALinear TimeHeuristic
for Improving Network Partitions," Proceedings of 19th DAC, pp.
175-181, 1982.

[15] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai, and R. Lin-
delof, \Circuit Partitioning for Huge Logic Emulation Systems,"
Proceedings of the 31st DAC, pp. 244-249, 1994.

[16] W.-J. Fang and A. C.-H. Wu, \A HierarchicalFunctional Struc-
turing and Partitioning Algorithm for Multiple-FPGA Implemen-
tations," ICCAD96, pp. 638-643, 1996.

[17] HDL� ICE User0s Guide, Version 1.0, January 1995, Quick-
turn Design Systems.

[18] Quest User
0
s Guide, Version 4.0, January 1995, Quickturn De-

sign Systems.

	CD-ROM Home Page
	FPGA97
	Front Matter
	Table of Contents
	Session Index
	Author Index

