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Abstract

We present a general approach to the FPGA technology
mapping problem that applies to any logic block composed of
lookup tables (LUTs) and can yield optimal solutions. The
connections between LUTs of a logic block are modeled by
virtual switches, which de�ne a set of multiple-LUT blocks
(MLBs) called an MLB-basis. We identify the MLB-bases
for various commercial logic blocks. Given an MLB-basis,
we formulate FPGA mapping as a mixed integer linear pro-
gramming (MILP) problem to achieve both the generality
and the optimality objectives. We solve the MILP models
using a general-purpose MILP solver, and present the re-
sults of mapping some ISCAS-85 benchmark circuits with a
variety of commercial FPGAs. Circuits of a few hundred
gates can be mapped in reasonable time using the MILP ap-
proach directly. Larger circuits can be handled by partition-
ing them prior to technology mapping. We show that optimal
or provably near-optimal solutions can be obtained for the
large ISCAS-85 benchmark circuits using partitions de�ned
by their high-level functions.

1 Introduction
Current FPGAs fall into two main types based on their

logic block structure: lookup table-based [1, 2, 11] and
multiplexer-based. An m-input single-output lookup table
(LUT) is a static RAM of 2m bits which can programmed
to implement any combinational logic function of at most
m inputs. Figure 1 illustrates a few LUT-based logic blocks
which serve as examples in this paper. The multiplexers
appearing in some logic blocks are used only for selecting
di�erent LUT con�gurations; they are not used for map-
ping purposes. FPGA logic blocks can also contain 
ip-
ops,
which are bypassed when implementing combinational logic.
In this paper, we will be concerned with mapping combina-
tional circuits using logic blocks composed of one or more
LUTs.

The technology mapping problem for FPGAs is to trans-
form a gate-level logic circuit into an equivalent circuit of

1This research was supported in part by the National Science
Foundation under Grant No. MIP{9503463.
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Figure 1: Combinational models of various FPGA logic
blocks: (a)-(d) the LUT-based Xilinx XC3000, XC4000,
XC5200, and AT&T ORCA, respectively.

logic blocks. The goal is to minimize area, which is mea-
sured by the total number of logic blocks. Figure 2 shows
a mapping of a small circuit using three 4-input LUTs. Ex-
isting mapping algorithms were designed speci�cally for the
XC3000 shown in Fig. 1a [10]. This logic block can be con-
�gured either as a 5-input LUT, or as two 4-input LUTs
where the total number of inputs is no more than 5. Most
algorithms were designed for the single-LUT con�guration of
the XC3000. Some, such as Chortle-crf [8], also handle the
two-LUT con�guration, but only as a post-processing step.
These algorithms employ heuristics which generate solutions
quickly, but whose results can be far from optimal.

We previously designed a technology mapping algorithm
for single-LUT logic blocks [4], which is exact when the LUT
size is monotone [5]. This paper extends the method of [4]
to general non-monotone circuits and to multiple-LUT logic
blocks. To achieve optimality, the FPGA mapping problem
is formulated as a mixed integer linear program (MILP). The
MILP problem is to minimize or maximize a linear objective
function of a set of integer or real variables while satisfying
a system of linear constraints. It can be stated in the matrix
notation as: Minimize cx + dy subject to Ax + Dy � b,
and x � 0, y � 0. Here c and d are cost vectors; A and
D are constraint matrices; x is a vector of integer variables;
and y is a vector of real variables.

We propose here a new and more general FPGA
technology-mapping approach which is MILP-based and ap-
plies to any logic block that is a well-formed combinational
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Figure 2: Technology mapping: (a) input circuit C; (b)
optimal mapping using three 4-input LUTs.

circuit of LUTs. We introduce the concepts of virtual switch,
multiple LUT block (MLB), and MLB-basis to represent the
possible con�gurations of a logic block. This makes it pos-
sible to formulate technology mapping as an exact MILP
optimization problem. The MILP formulation is extremely

exible, and can be solved in reasonable time using any stan-
dard MILP solver [3, 6]. We focus on area minimization,
but the approach can be easily modi�ed to optimize delay,
or a combination of area and delay, by changing the objec-
tive and adding some constraints [4]. The method applies
to most types of commercial logic blocks. Furthermore, it
generates near-optimal mappings for very large circuits via
partitioning the circuits and mapping each partition individ-
ually. Previous techniques are incapable of addressing such
a wide range of logic blocks and mapping objectives.

2 Modeling Logic Blocks
Prior to technology mapping, the input logic circuit C is

synthesized by a technology-independent logic minimization
step performed using a logic synthesis package such as mis
[7]. The gates in C are usually decomposed into smaller gates
that can be mapped to the smallest component in the FPGA
logic block. We model C by a directed graph G(V; I;O;E)
called its circuit graph, where V and E are nodes and edges
that correspond to the gates and the interconnections of C,
respectively. The nodes in I correspond to the primary in-
puts of C, and the nodes in O correspond to the gates at
primary outputs of C. Note that O is a subset of V , while
I and V are disjoint. Figure 3a shows the circuit graph of
Fig. 2, where V = ff; g; h; k; o; pg, I = fa; b; c; d; eg and
O = fo; pg. The functionality of the nodes in G is ignored,
since an m-input LUT can implement any function of at
most m inputs.

An m-input LUT can map a connected subgraph
L(VL; IL;OL; EL) of a circuit graph G if and only if (i)
jILj � m; (ii) jOLj = 1; and (iii) for all v 2 VL and
(u; v) 2 E, then u 2 VL [ IL. (A LUT is assumed to
have a single output, unless stated otherwise.) We call such
a subgraph an L-graph of G, and denote it by Lv1;:::;vn if
OL = fv1; : : : ; vng. Figure 3b shows three L-graphs, Lf , Lo
and Lp, of the circuit graph of Fig. 3a. Here ILf = fa; bg,

ILo = ff; c;dg, ILp = ff; c; d; eg, VLf = ffg, VLo = fg; h; og

and VLp = fg; h; k; pg. For a circuit graph G and a LUT
L, technology mapping �nds a set of L-graphs which are
structurally equivalent to, or cover, G.

De�nition 1 A LUT cover or L-cover of a circuit graph
G(V; I;O; E) by an m-input LUT L is a set CL;G =
fL1; : : : ; Lqg of L-graphs of G that satis�es the following
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Figure 3: Technology mapping of the circuit of Fig. 2 using
4-input LUTs: (a) the circuit graph G; (b) an L-cover of G
consisting of 3 L-graphs.
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Figure 4: (a) XC4000 with its two virtual switches; (b) a
single XC4000 mapping the graph of Fig. 3a; and (c) four
MLBs obtained by programming the virtual switches. The
MLB-basis of the XC4000 is fM1;M2g.

conditions:

1. Graph connectivity: Every L-graph input is either a pri-
mary input of G or an output of some other L-graph. Simi-
larly, every L-graph output is either a primary output of G
or an input to some other L-graph.
2. Node covering: Every node belongs to at least one L-
graph.
3. Output uniqueness: Every node is the output of at most
one L-graph.
The area A(CL;G) of CL;G is q, since every L-graph con-
tributes one to the total area. 2

An area-optimal L-cover of the graph in Fig. 3 using 4-
input LUTs is given by fLf ; Lo; Lpg. Nodes can be repli-
cated in di�erent L-graphs if this leads to a smaller L-cover.
For example, the L-cover of Fig. 3b replicates nodes g and h

in Lo and Lp. An L-cover corresponds directly to an FPGA
implementation.

A LUT-based logic block can be used in various modes
(circuit con�gurations) depending on its programmability
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Figure 5: M-cover of the circuit graph of Fig. 3a: (a) MLB
M ; (b) M-graph Mo; (c) M-graph Mp.

[11, 2, 1]. Existing mapping techniques [10] were designed for
one speci�c con�guration, usually a single LUT, and so are
not fully applicable to many commercial designs. There is
thus a need for a general model to capture the various modes
of a multiple LUT logic block that is a small circuit of LUTs.
To address this need, we introduce the notion of a virtual
switch which, in e�ect, simulates an external programmable
connection to a LUT. Any connection between two LUTs or
from a fanout stem to a LUT can be a virtual switch. For
example, in the XC4000 logic block of Fig. 4a, A denotes
a virtual switch between a fanout stem and a LUT, while
B is virtual switch between two LUTs. A virtual switch is
turned on/o� by programming the internal switches of the
LUT. The circuit graph of Fig. 3a can be mapped using a
single XC4000 logic block as shown in Fig. 4a. Here virtual
switch A is turned o� by programming Lp to be indepen-
dent of input x, which means that p(0; y; z) = p(1; y; z) for
all values of y and z.

There are 2s ways of con�guring the s virtual switches
of a logic block, but s is usually small. Each such cir-
cuit is called a multiple-LUT block (MLB) Mi. Figure 4b
shows the four MLBs of the XC4000 obtained by program-
ming its virtual switches A and B; LUTs whose outputs
are disconnected are deleted. Consider an MLB M with k

LUTs of fanin m1; : : : ;mk. An M-graph of G by M is a set
(L1; : : : ; Lk; IM ;OM ) of k L-graphs, where (i) IM � I1[: : :[
Ik is the set of inputs external toM ; (ii) OM � O1[ : : :[Ok

is the set of outputs; (iii) if Li feeds Lj , then Oi � Ij and
1 � jIj � Oij � mj � 1; and (iv) if Li and Lj share d in-
puts, then jIi [ Ijj � mi + mj � d and 1 � jIi \ Ijj � d.
Figures 5b and 5c show two M-graphs Mo and Mp for the
MLB of Fig. 5a, where Mo = fLf ; Lo; fa; b; c; dg; fogg and
Mp = fLf ; Lp; fa; b; c; d; eg; fpgg.

Two MLBs M1 and M2 are independent i� there ex-
ists at least one M-graph of M1 that is not an M-graph of
M2, and vice-versa. For example, a 2-input LUT and a 3-
input LUT are not independent. We model an FPGA logic
block by its independent MLBs, which we call an MLB-basis
B = fM1; : : : ;Mpg, p � 2s. If M1 and M2 are not indepen-
dent and M1 is subsumed by M2, then M1 is excluded from
the MLB-basis. As is evident in Fig. 4c, M3 and M4 are
subsumed by M2 and M1, respectively. Thus the MLB-basis
of XC4000 is fM1;M2g.

Figure 6 shows the MLB-bases of some other logic blocks.
The XC3000 logic block is used in two modes [11]; one is a
5-input LUT and the other is a pair of 4-input LUTs, these
modes correspond to M1 and M2 of Fig. 6a, respectively.
The two-output mode of the XC3000 has 6 virtual switches
in its primary inputs. If the appropriate virtual switches
are turned o�, the two LUTs of M2 can map independent
functions, resulting in MLB M3, also shown in Fig. 6a. Even
though there are 6 virtual switches, only two of the resulting
MLBsM2 andM3 are independent. Thus, the MLB basis for
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Figure 6: MLB-bases of other logic blocks: (a) XC3000, (b)
XC4000E, and (c) XC5200.

the XC3000 is fM1;M2;M3g. The logic blocks in all current
commercial FPGAs have very few LUTs, so their MLB-bases
are small. XC4000E is identical to XC4000 except that the
three LUTs are independent as shown in Fig. 6b. XC5200
has two identical half-blocks, where the basis of a half-block
is shown in Fig. 6c.

De�nition 2 An MLB cover or M-cover of G(V; I;O;E) by
a k-LUTMLBM is a set CM;G = fM1; : : : ;Mqg of M-graphs
of G, that satis�es the following conditions:
1. Graph connectivity: Every input of an M-graph is either
a primary input of G or an output of another M-graph, and
every output of an M-graph is either a primary output of G
or an input of another M-graph.
2. Node covering: Every node belongs to at least one M-
graph.
3. Output uniqueness: Every node is the output of at most
one M-graph.
The area A(CM;G) of CM;G is q. 2

An area-optimal M-cover fMo;Mpg of the circuit graph
of Fig. 3a by the MLB of Fig. 5a is shown in Figs. 5b and
5c. L-graphs can be replicated in di�erent M-graphs of an
M-cover. For example, the L-graph Lf is duplicated in the
M-graphs Mo and Mp, as shown in Figs. 5b and 5c.

Next we de�ne a B-cover as a generalization of M-cover
where every M-graph corresponds to one of the MLB types
in the basis.

De�nition 3 An MLB-basis-cover or B-cover
of G(V; I;O;E) by an MLB-basis B with p MLBs is a set
CB;G = fM1;1 ; : : : ;M1;q1

; : : : ;Mp;1 : : : ;Mp;qpg of M-graphs
of G (Mi;j is the jth M-graph of type i, 1 � i � p) which
satis�es the conditions from De�nition 2 of an M-cover. The
area A(CB;G) of CB;G is

P
p

i=1
qi. 2

Finally, we state the general technology mapping problem
for LUT-based FPGAs in a form suitable for MILP solution.

FPGA Technology Mapping Problem: Given an FPGA logic
block modeled as an MLB-basis B, �nd a B-cover of G that
optimizes area, where every MLB contributes unit area.

3 MILP Formulations
The MILP mapping technique for a general, multiple-

LUT logic block is presented in stages, starting with the
single-LUT case.

Two LUTs of an MLB M are of the same type i, and are
denoted by Li, if they have identical fanin and fanout. The
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Figure 7: Tree MLBs: (a) a single-output version of the
XC4000, and (b) a balanced tree with k levels.

single-output version of the XC4000 shown in Fig. 7a has
three LUTs, two of which are of type 2. For the balanced
binary tree with 2k � 1 LUTs shown in Fig. 7b, the number
of LUT types is equal to the number of levels. Similarly, two
virtual switches are of the same type, if they lie between two
LUTs of the same type. For example, in the MLB in Fig. 7a,
the virtual switches between L1 and each L2 are of the same
type, and are both on. Let k and s be the number of types
of LUTs and virtual switches in M , respectively. A routing
switch is associated with every primary input and output
of M , resulting in a total of s + 1 types of switches. An
MLB can be characterized by a fanin matrix [mi;j ] of size
(s+ 1)� k, where mi;j is the maximum number of switches
of type i which can feed a LUT of type j. For the MLB of

Fig. 7a, F =

�
1 4
2 0

�
, where the switches of type 1 and

2 are the routing and virtual switches, respectively. For an
MLB with one LUT of fanin m, F reduces to [m]. The MILP
formulation of the mapping problem depends on the circuit
graph G and the fanin matrix F of the logic block.

Single LUT: An MILP-based solution to the FPGA tech-
nology mapping problem is developed in [4] for the special
case where the logic block is a single LUT. This model de�nes
a binary external variable for every node of G. If external[v]
= 1 in the solution, then the node v is either a primary input
or the output of an L-graph, otherwise it is mapped inside
an L-graph. To ensure proper fanin for every L-graph, we
de�ne a size variable for every node v in G which counts
the number of L-graphs or primary inputs feeding it. By
de�nition, if v is an input of an L-graph, then size[v] = 1,
otherwise size[v] is obtained by summing the size variables
of its fanin nodes.

For every node-pair (s; t) with multiple paths from s to
t, called a reconvergent node-pair or RN-pair, we de�ne a
reconvergence variable to avoid multiple counting of size[s]
while evaluating size[t]. The circuit graph of Fig. 3a has two
RN-pairs (f; o) and (f; p). Here reconvergence[s; t] is set to
size[s] if the paths from s to t lie in the same LUT, and to
0 otherwise. Here we assume that there are two paths from
s to t. In case of multiple paths from s to t, we decompose
t at the preprocessing stage which does not a�ect optimal-
ity of the L-cover. The number of RN-pairs depends on the
interconnection structure of G. A fanout-free circuit has no
RN-pairs; at the other extreme, some circuits such as a grid
have O(jV j2) RN-pairs, so the number of such pairs can be
quadratic in jV j (the number of RN-pairs was incorrectly
stated in [4] to be jEj). We assign a reconvergence variable
to an RN-pair only if the pair can be merged in a single LUT.
Thus the number of reconvergence variables is reduced sig-
ni�cantly by considering only the mergeable RN-pairs. For
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Figure 8: (a) A non-monotone graph G, (b) an optimal L-
cover of G using 3-input LUTs obtained by solving MILP
Model 1.

the ISCAS-85 benchmark circuits, for example, we show the
number of mergeable RN-pairs to be less than 10% of the
number of gates present. Our preprocessing procedure to
�nd if an RN-pair (s; t) can be merged in an m-input LUT
combines all the nodes between s and t in the subgraph of
G rooted at t to form a composite node, and checks for a
cut of size m in the modi�ed subgraph. This procedure is
similar to the step of �nding a minimum-depth cut at every
node of G in the Flowmap algorithm [5].

An m-input L-graph of G is monotone, i� it has no sub-
graph which is an L-graph with more than m inputs [5]. For
example, the 3-input L-graph in Fig.8a is non-monotone,
since it has a subgraph which is a 4-input L-graph. G is
called monotone i� it has no non-monotone L-subgraph. We
have found that the number of non-monotone L-graphs in
the ISCAS benchmarks is less than 5% of the number of
gates. The MILP model, described in [4], applies to all cir-
cuit graphs, but is guaranteed to be optimal only for mono-
tone circuit graphs. Here, we extend that model to generate
optimal L-cover for any non-monotone circuit graph.

If a node s is internal in an L-cover, then the subgraph
rooted at s is implicitly replicated for all its fanout nodes.
However, in the case of a non-monotone graph, if s is exter-
nal, then Ls might have to be duplicated for a node t in its
transitive fanout. For example, in the area-optimal L-cover
of Fig.8b using 3-input LUTs, e is external, but Le is dupli-
cated for Lh. We call such a node-pair (e; h) a duplication
node-pair or a DN-pair. We de�ne a binary duplication vari-
able for every DN-pair (s; t), where duplication[s; t] is 1, only
if both s and t are external (constraints (1)-(2)), and Ls has
to be duplicated for Lt. If the duplication variable of Fig.8a
is ignored, then the smallest L-cover has four LUTs, which is
one more than optimal. Let input-size[s] be the sum of the
size variables of the fanin nodes of s, taking into account the
reconvergence and duplication variables. (As de�ned earlier,
size[s] is equal to input-size[s] if s is internal, otherwise it
is set to 1.) For a general non-monotone G, input-size[t] is
calculated by the constraint set (3) given below.

duplication[s; t] � external[s] (1)

duplication[s; t] � external[t] (2)

input-size[s] =
P

(u;t)2E
size[u]

�
X

(s;t)2RN

reconvergence[s; t]

+
X

(s;t)2DN

duplication[s; t] � (input-size[s]� 1) (3)

Here, RN and DN stand for the set of RN-pairs and DN-
pairs of G respectively. Note that the last term in constraint



(3) is non-linear, but it can be linearized using the fact that
input-size[s] is bounded by m.

The preprocessing procedure to �nd the DN-pairs of G
uses a max
ow-mincut network 
ow technique similar to the
Flowmap algorithm [5]. Like the RN-pairs, the number of
DN-pairs is a very small fraction of the total number of nodes
for the ISCAS benchmarks. The problem of �nding an area-
optimal L-cover can be formulated as follows.

MILPModel 1 Assign the external variables of G to f0; 1g
to satisfy the constraints described in [4] along with the con-
straints (1)-(3). The resulting assignment de�nes an L-cover
CL;G of G by L. An assignment with the minimum value ofP

v2V
external[v] is an area-optimal CL;G. 2

Tree MLB: We next consider an MLB Mt whose LUTs
form a tree structure with no internal fanout. There is a
one-to-one correspondence between the LUT types and the
switch types of Mt, i.e. k = s+ 1, since every internal LUT
has a single output which corresponds to a speci�c virtual
switch, while the root LUT connects to LUTs in other logic
blocks by routing switches.

The MILP formulation de�nes a binary externali[v] vari-
able for every node v of G and every LUT type i. If
externali[v] = 1 in the solution, then the node v is the output
of an L-graph which belongs to an M-graph of the M-cover
corresponding to the solution. The root LUT is assumed to
be of type 1. If external1[v] = 1, then v is either a primary
input of G or output of an M-graph. As in the single-LUT
case, we de�ne a sizei[v] variable to count the number of
switches of type i feeding v. The MILP constraints closely
follow the conditions on an M-cover, its M-graphs, and their
L-graphs.

Conditions on M-cover: external1[v] = 1 for all v 2 I [ O

(node covering). The following constraint ensures that if
a node v is external of type 1, then size1[v] = 1 (graph
connectivity).

externali[v] � sizei[v] � externali[v]

+(max
k

j=1mi;j) � (1�

kX
j=1

externalj [v]) (4)

Conditions on M-graphs in the M-cover: For an M-graphMi,
OMi = Oi;1 since the root LUT is of type 1. If mi;j switches
of type i feed a LUT of type j, thenmi;j is used in calculating
sizei as described below by constraint (7) corresponding to
condition (iii) of the M-graph de�nition.

Conditions on L-graphs of an M-graph: We de�ne a variable
reconvergencei[s; t] for every RN-pair (s; t) ofG, which is set
to sizei[s] if s and t are in the same LUT, and 0 otherwise.
Here we assume that there are at most two paths between
any pair of nodes, similar to the assumption in MILP Model
1. If a node v in a path from s to t is external, then s

and t are in di�erent LUTs, which gives the following set of
constraints.

0 � reconvergencei[s; t]

� (max
k

j=1mi;j) � (1�

kX
j=1

externalj [v]) (5)

reconvergencei[s; t] � sizei[s] (6)

The fanin constraint of an L-graph is ensured by the fol-
lowing constraint set for all v 2 V and for every LUT type

Minimize ext1[f ] + ext1[g] + ext1[h] + ext1[k] + ext1[o]
+ ext1[p] subject to :

Boundary conditions:

ext1[v] = 1, for all v 2 fa; b; c; d; e; o; pg;

LUT fanin constraints: For all v 2 ff; g; h; o; k; pg,

ext1[v] � size1 [v] � ext1[v] + 4 � (1� ext1[v]� ext2[v]);
ext2[v] � size2 [v] � ext2[v] + 2 � (1� ext1[v]� ext2[v]);

size1 [a] + size1 [b] � size1 [f ] + 4 � ext2[f ];
size2 [a] + size2 [b] � size2 [f ] + 2 � ext1[f ] � ext2[f ];
size1 [c] + size1 [f ] � size1 [g] + 4 � ext2[g];
size2 [c] + size2 [f ] � size2 [g] + ext1[g] � ext2[g];
size1 [d] + size1 [f ] � size1 [h] + 4 � ext2[h];
size2 [d] + size2 [f ] � size2 [h] + ext1[h] � ext2[h];
size1 [g] + size1 [h] � recon1[f; o] � size1 [o] + 4 � ext2[o];
size2 [g] + size2 [h] � recon2[f; o] � size2 [o]

+ 2 � ext1[o] � ext2[o];
size1 [g] + size1 [h] � recon1[f; k] � size1 [k] + 4 � ext2[k];
size2 [g] + size2 [h] � recon2[f; k] � size2 [k]

+ 2 � ext1[k] � ext2[k];
size1 [k] + size1 [e] � size1 [p] + 4 � ext2[p];
size2 [k] + size2 [e] � size2 [p] + 2 � ext1[p] � ext2[p];

Reconvergence constraints: For t 2 fo; kg and v 2 fg; hg,

recon1[f; t] � 4 � (1� ext1[v]� ext2[v]);
recon2[f; t] � 2 � (1� ext1[v]� ext2[v]);

0 � reconi [f; t] � sizei [f ], for all i 2 f1;2g;

Integrality constraints: For i = 1::2, exti[v] 2 f0;1g,

for all v 2 ff; g; h; kg;

Figure 9: MILP Model 2 to �nd an area-optimal cover of
the graph in Fig. 3a by the tree MLB of Fig. 7a. (Here ext
and recon stand for external and reconvergence variables.)

i. Here, input-size is evaluated using constraint (3) de�ned
for every LUT type i.X

(u;v)2E

sizei[u]�
X

(w;v)2RN

reconvergencei[w; v]

�
X

(w;v)2DN

duplication[w;v] � (input-sizei[w]� 1)

� sizei[v]� externali[v] +

kX
j=1

mi;j � externalj [v] (7)

If externali[v] = 1, then sizei[v] = 1 from constraint (4),
which implies that the fanin of the L-graph is no more than
mi;i. Similarly, if externalj [v] = 1 and i 6= j, then the fanin
of Lv of type i is no more than mi;j. If externalj [v] = 0 for
all j, then sizei[v] is bounded by the size of its fanin nodes,
which implies that if v 2 VL; (u; v) 2 E, then u 2 VL [ IL.

MILP Model 2 Assign the externali, 1 � i � k, variables
of G to f0; 1g to satisfy the constraints of MILP Model 1
(de�ned for every LUT type i) along with the constraints
(4)-(7). The resulting assignment de�nes an M-cover CMt;G

ofG by the tree MLBMt. An assignment with the minimum
value of

P
v2V

external1[v] is an area-optimal M-cover of G

by Mt. 2

The MILP model of an optimal cover of the graph in Fig. 3a
by the tree MLB of Fig. 7a is given in Fig. 9. Note that the
graph in Fig. 3a does not have any DN-pairs.

General MLB: We now extend the MILP formulation to
apply to any MLB M which can have LUTs that fan out to
one or more lines. The sub-block rooted at every LUT with
multiple fanout is replicated to obtain a corresponding tree
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Figure 10: An MLB example: (a) logic block M with two
outputs, (b) the tree network Mt rooted at the two outputs,
and (c) the 2-output LUT L1;1 in the set Mm.

MLB Mt. Consider a LUT Li which fans out to r LUTs
of types j1, j2, : : :, jr, which need not be distinct. These r
LUTs are combined to produce an r-output LUT L(j1;:::;jr)

.
Let Mm be the set of all such multi-output LUTs of M .
Thus, M is the union of Mt and Mm. For the 2-output
logic block of Fig. 10a, Mt shown in Fig. 10b is similar to
the tree MLB of Fig. 7a, while Mm consists of the 2-output
LUT of type (1; 1) shown in Fig. 10c. The MILP model for
M combines the constraints of Mt and every multi-output
LUT of Mm.

We now describe the constraints for an r-output LUT
of type (j1; j2; : : : ; jr), which corresponds to condition (iv)
in the de�nition of M-graph. Let mi;(j1 ;:::;jr)

be the num-
ber of switches of type i feeding the r-output LUT. A bi-
nary variable externalj1;:::;jr is de�ned for every ordered
group, Vr = (v1; : : : ; vr), of r nodes of G which can be
mapped to L(j1 ;:::;jr)

. Here externalj1;:::;jr [Vr] = 1, only
if the nodes v1; : : : ; vr are mapped to the LUTs of types j1,
: : :, jr, respectively, which is ensured by the following set of
constraints.

externaljq [vq] � externalj1 ;:::;jr [Vr] for 1 � q � r (8)

We also de�ne reconvergence variables for every pair consist-
ing of a source node s and a sink node group T . The LUT
fanin constraints for mapping a node group Vr to L(j1;:::;jr)

are as follows.
rX

q=1

sizei[vq]�
X

(s;Vr)2RN

reconvergencei[s; Vr ]

�
X

(s;Vr )2DN

duplication[s; Vr ] � (input-sizei[s]� 1)

� mi;(j1 ;:::;jr)
� externalj1 ;:::;jr [Vr]

+ (

rX
q=1

mi;jq) � (1� externalj1 ;:::;jr [Vr]) (9)

MILP Model 3 Assign the externali variables for the tree
Mt and the externalj1 ;:::;jr variables for every multi-output
LUT ofMm to f0; 1g to satisfy all constraints of MILP Model
2 and constraints (8)-(9) for multiple-output LUTs. The re-
sulting assignment is an M-cover CM;G of G by M . 2

The MILP model for the MLB cover of the graph of Fig. 3a
using the MLB in Fig. 10a, which has internal fanout, is
obtained by adding the constraints for the LUT of type (1; 1)
to the tree model of Fig. 9. The resulting MILP Model 3 for
the MLB cover is presented in Fig. 11.

Minimize ext1[f ] + ext1[g] + ext1[h] + ext1[k] + ext1[o]
+ ext1[p] � ext1;1[o; p] � ext1;1[o; k] � ext1;1[g;h]

subject to

Constraints for LUT tree Mt: see Fig. 9;

LUT fanin constraints:

size1 [o] + size1 [p] � recon1 [g; (o; p)] � recon1[h; (o; p)]
� 2 � ext1;1[o; p] + 2 � (1� ext1;1[o; p]);

size2 [o] + size2 [p] � recon2 [g; (o; p)] � recon2[h; (o; p)]
� 3 � ext1;1[o; p] + 4 � (1� ext1;1[o; p]);

size1 [o] + size1 [k] � recon1[g; (o; k)] � recon1[h; (o; k)]
� 2 � ext1;1[o; k] + 2 � (1� ext1;1[o; k]);

size2 [o] + size2 [k] � recon2[g; (o; k)] � recon2[h; (o; k)]
� 3 � ext1;1[o; k] + 4 � (1� ext1;1[o; k]);

size1 [g] + size1 [h] � recon1[f; (g; h)]
� 2 � ext1;1[g; h] + 2 � (1� ext1;1[g; h]);

size2 [g] + size2 [h] � recon2[f; (g; h)]
� 3 � ext1;1[g; h] + 4 � (1� ext1;1[g; h]);

Reconvergence constraints: For all s 2 fg;hg,

recon1[s; (o; p)] � 4 � (1� ext1[k]� ext2[k]);
recon2[s; (o; p)] � 2 � (1� ext1[k]� ext2[k]);
0 � reconi [s; (o; p)] � sizei [s], for all i 2 f1;2g;
0 � reconi [s; (o; k)] � sizei[s], for all i 2 f1;2g;

0 � reconi [f; (g;h)] � sizei [f ], for all i 2 f1;2g;

Integrality constraints: For (u; v) 2 f(o; p);(o; k);(g;h)g,

ext1;1[u; v] 2 f0;1g;

ext1[u] � ext1;1[u; v]; ext1[v] � ext1;1[u; v];

Figure 11: MILP Model 3 to �nd an optimal M-cover of the
graph in Fig. 3a by the 2-output MLB of Fig. 10.
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Figure 12: High-level model of c880 benchmark circuit [9]
showing its two cuts.

MLB-Basis: The modeling technique from the previous
section can be used to model any logic block by an MLB-
basis B, which contains p independent MLBs. The MILP
model for B will then consist of p di�erent sets of external,
size and reconvergence variables. Since the p MLBs of B are
independent, the MILP Model for B is obtained by combin-
ing the constraints for the MILP Models 3 for the p MLBs
of B.

4 Experimental Results
The preceding MILP models cover the logic blocks of

Fig. 1, several of which are modeled as MLB-bases in Figs. 4b
and 6. We have implemented the MILP models described
in the previous section for general monotone circuits and a
variety of MLB-bases. We have solved these models using
various MILP solvers [6, 3], and found that cplex is the most
e�cient. Note that all these packages can generate optimal
solutions, but their execution times vary considerably.

Prior to technology mapping, the circuit nodes are de-
composed such that every node can be mapped to at least



one LUT in the MLB, unlike our prior work [4] and that
of a few others [10], where every node is decomposed into
2-input nodes. This has the advantage of reducing the time
to solve the MILP model, since the time roughly depends on
the number of binary variables in the formulation which in
turn depends on jV j. As a preprocessing step, we have devel-
oped algorithms for �nding the mergeable RN-pairs of G as
well as the DN-pairs of G, both of which have a complexity
of O(m � jV j2 � jEj).

We have mapped some representative ISCAS-85 bench-
mark circuits with the logic blocks of Fig. 1 using the MILP
approach. The benchmarks c432, c499, c880 and c6288 have
196, 392, 347 and 2406 gates, respectively. These bench-
marks are partitioned using their high-level models from [9];
the same partitions are also used in [4]. Most practical cir-
cuits have well-de�ned high-level models, which can produce
suitable partitions. The cuts used for c880 benchmark are
shown in Fig. 12. The number of cuts needed for a logic
block depends on the number of LUTs and interconnections
it contains. For example, more cuts are required to map a
circuit by the XC3000, XC4000 and ORCA logic blocks than
by the XC4000E and XC5200 logic blocks. The number of
cuts to partition the selected benchmarks are shown in Ta-
ble I along with the number of gates they contain. For every
circuit and logic block pair, the MILP solution obtained is
given in Table II. An important feature of our method is
that it also gives tight lower bounds on the optimum area,
which are shown in Table III. The lower bound is the small-
est unexplored LP solution in the branch-and-bound search
tree, since an unexplored LP solution can lead to an MILP
solution.

Since prior work on FPGA technology mapping is re-
stricted to the single-LUT case, we cannot compare the
MILP results obtained here with prior results. Instead we
compare the various logic blocks with one another based on
the MILP results for the selected benchmarks. Using the
MLB-basis of the XC3000 shown in Fig. 6a, area is reduced
by about 20-50% compared to using only its single-LUT
MLB M1. The benchmarks require 15-20% fewer XC4000
logic blocks compared to the XC3000; this can be attributed
to XC4000's larger fanin. The XC4000E gives a further 25-
33% improvement for these benchmarks, since it has an ad-
ditional output. Results for the XC5200 and ORCA logic
blocks are similar, except that the ORCA has lower fanin
since its two 4-input LUTs share three inputs. Our results
for the XC5200 are better than for the ORCA by up to
30%. The lower bounds obtained are quite close for simple
logic blocks such as the 5-input LUT, XC4000E and XC5200;
this is not the case for other complex logic blocks such as
XC3000 and XC4000. The di�erence between the MILP so-
lutions and the lower bounds depends on the cut-size of the
partition. The lower bounds are within one-third of the op-
timal solutions. Since the XC3000 and XC4000 require more
cuts, we obtain loose lower bounds in these cases compared
to other logic blocks.

5 Conclusions
We have designed and implemented a general FPGA tech-

nology mapping methodology that applies to any combina-
tional LUT-based logic block. The method �rst models a
logic block by a complete set of independent MLBs, and then
constructs an MILP formulation for the mapping problem.
We have generated MILP formulations for various commer-
cial logic blocks. The MILP-based approach can optimally
map circuits with hundreds of gates. Much larger circuits
can be partitioned into sub-circuits of a few hundred gates
to facilitate mapping.

The MILP method has been applied here to minimize
area only. It can be extended to minimize any combination
of area and delay, where the delay can be measured by the
number of topological levels in the logic block cover. It is
also useful for evaluating the relative mapping e�ciencies
of di�erent FPGA families. Thus our methodology is quite
general in that it can be applied to any current or projected
LUT-based logic block to address a wide range of design
objectives.

5-input Xilinx AT&T

Cct. LUT 3000 4000 4000E 5200 ORCA

c432 1 2 2 1 1 2

c499 1 2 1 2 2 2

c880 1 2 2 1 1 2

c6288 4 7 7 4 4 7

Table I: Number of cuts used for various logic blocks.

5-input Xilinx AT&T

Cct. LUT 3000 4000 4000E 5200 ORCA

c432 77 54 48 35 25 27

c499 66 48 41 31 19 24

c880 104 83 67 45 34 42

c6288 479 248 249 201 120 124

Table II: Number of logic blocks (area) obtained.

5-input Xilinx AT&T

Cct. LUT 3000 4000 4000E 5200 ORCA

c432 72 44 36 30 23 22

c499 61 44 35 27 16 22

c880 86 56 42 37 23 28

c6288 355 216 184 179 92 108

Table III: Lower bounds on area from MILP approach.
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