
I/O and Performance Tradeo�s with the FunctionBus

during Multi-FPGA Partitioning

Frank Vahid

Department of Computer Science

University of California, Riverside, CA 92521

vahid@cs.ucr.edu, www.cs.ucr.edu

Abstract
We improve upon a new approach for automatically

partitioning a system among several FPGA's. The new
approach partitions a system's functional speci�cation,
now commonly available, rather than its structural im-
plementation. The improvement uses a bus, the Func-
tionBus, for implementing function calls among FPGA's.
The bus can be used with any number of FPGA's, and
its protocol uses only a small amount of existing FPGA
hardware, requiring no special hardware. While func-
tional rather than structural partitioning can substan-
tially reduce the number of input/output pins (I/O), us-
ing the FunctionBus takes such reduction even further.
In particular, performance and I/O can be traded-o� by
varying the bus size, as demonstrated using several ex-
amples.

1 Introduction

Partitioning a system among multiple FPGA's has
attracted extensive investigation [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11]. These approaches share one common feature:
they each partition a system's structural implementa-
tion (i.e., a netlist).

In [12], we demonstrate substantial advantages of au-
tomatically partitioning a system's functional speci�ca-
tion rather than its structural implementation. A func-
tional speci�cation is essentially a sequential-program
description of a system's desired behavior. Automated
functional partitioning was enabled, and began to ap-
pear as a viable alternative to structural partitioning,
in the early 90's when top-down methodologies using
machine-readable functional speci�cation languages (e.g.,
VHDL and Verilog) gained popularity. Figure 1 illus-
trates the di�erence between structural and functional
partitioning. In structural partitioning, one �rst synthe-
sizes a custom-processor hardware structure and then
partitions the structure among parts, whereas in func-
tional partitioning, one �rst partitions the speci�cation
into smaller parts, and then synthesizes a custom pro-
cessor for each part. Functional partitioning's advan-
tages include: (1) tremendously reduced I/O, (2) im-
proved circuit performance, (3) partitioning runtimes in
the seconds or minutes rather than hours, (4) order-of-
magnitude reductions in behavioral and logic synthesis
runtimes, (5) independently readable (and hence simu-

0

Control

unit
Datapath

Control

unit
Datapath

path

rol

it

Cont

un

Data

(a) (b)

Synthesis

Partitioning

Partitioning

Synthesis

Control Datapath
unit cationSpecifi

Functional specification Functional specification

Fig. 1: Partitioning: (a) structurally, (b) functionally.

latable and debuggable) parts, and (6) a consistent tech-
nique for both hardware and hardware/software par-
titioning, recognizing that software and custom hard-
ware are logically equivalent, merely representing dif-
ferent implementation options. These advantages come
at the cost of a small increase in gates, and signi�cantly
more complex partitioning and estimation tools. Fig-
ure 2 highlights two-way partitioning experiments in
[12], showing the reductions in I/O (maximum on either
part, and total on both parts) obtained when using func-
tional partitioning instead of structural partitioning.

Several early functional partitioning approaches fo-
cused on partitioning arithmetic-level data and control
operations among hardware blocks [13, 14, 15, 16, 17],
while others have focused on partitioning coarser-grained
functions (algorithmic-level subroutines) [18]. More re-
cently, the problem of partitioning among hardware and
software blocks has attracted much attention [19, 20,
21, 22, 23, 24, 25, 26]; most of this focus uses coarser-
grained functions.

Previous functional partitioning techniques used a
cut-edges approach to I/O implementation, similar to
structural partitioning techniques. In particular, they
�rst create a graph representation of the system, where
each node represents an operation or a function, and
each edge represents the
ow of data among nodes.
They then partition the nodes among parts, and im-
plement a unique set of wires for each data edge that
crosses between parts, with one or two control signals
for each set. In this paper, we propose a new approach
to I/O implementation for functional partitioning, us-
ing a single bus for all inter-FPGA communication. In
our approach, nodes represent coarse-grained functions
from the speci�cation, and each edge represents data

Unpartitioned Funct. partitioned Funct. part. w/ bus
Example Max I/O Total I/O Max I/O Total I/O

IO Size reduction reduction reduction reduction
2p-fact 99 19697 49% 60% 66% 77%
rsa 132 22614 53% 67% 76% 85%
chinese 99 28471 45% 27% 86% 85%
vol 110 17028 33% 29% 39% 39%

Fig. 2: I/O reductions through functional partitioning.

transferred during calls by one function to another. The
bus implements these function calls, so we refer to the
bus as the FunctionBus. In essence, all data edges are
multiplexed over a single bus, and all control signals are
encoded in an address, also multiplexed over that same
bus. Figure 2 illustrates the further reductions in I/O
when using a bus rather than cut-edges for I/O imple-
mentation after functional partitioning.

A structural-partitioning based technique described
in [10] also aims to reduce I/O, particularly for logic
emulation systems. The technique analyzes the trans-
fers over inter-FPGA logical wires resulting after struc-
tural partitioning, and then multiplexes subsets of those
transfers over single physical wires in a pipelined man-
ner, through the use of shift registers, simple distributed
controllers, and multiple clocks. Our approach is very
di�erent as it is based on functional partitioning, whose
advantages were listed earlier.

Functional partitioning techniques are complex and
have appeared in many earlier publications [12, 19, 20,
21, 26, 27], so we do not describe such techniques here.
Instead, we demonstrate the ability to tradeo� I/O and
performance when using the FunctionBus, by varying
the bus size and hence making serial versus parallel com-
munication tradeo�s. In the remainder of this paper, we
describe the problem, summarize the FunctionBus con-
cept, walk through a small example, summarize trade-
o�s obtainable on several real examples, discuss current
status and future work, and provide conclusions.

2 Problem description

We focus on partitioning a single functional process
among multiple processors (extensions for concurrent
processes are discussed in Section 6). This process' exe-
cution can be viewed as a series of function calls. Reads
and writes of global variables are also treated as function
calls, with the input or output data treated as an input
or output parameter, and any array indices treated as
additional parameters. We assume the functions are
non-recursive, which simpli�es the FunctionBus imple-
mentation, while also being a restriction imposed by
most synthesis tools.

Such an execution model has the feature that only
one function is active at a time. Thus, when we perform
function calls over the bus, there is only one bus user at
a time, so there is no bus contention.

We must partition these functions among FPGA's.
Although FPGA partitioning is addressed in this paper,
the FunctionBus can be applied in an identical man-

Areq
Dreq

External ports External ports External ports

FPGA FPGA

Custom
processor

Custom
processor

Software
processor

AD

Fig. 3: FunctionBus architecture.

ner for most system partitioning problems, such as par-
titioning among hardware blocks representing ASICs,
modules within an ASIC, or even microcontrollers or
processors (software blocks). Each FPGA has size and
I/O constraints. Functions may have imposed execution-
time constraints, applying to that function and all its
called functions. A detailed functional partitioning prob-
lem formulation can be found in [21].

3 The FunctionBus

Figure 3 illustrates the FunctionBus architecture. Sev-
eral processors are connected by a bus consisting of AD,
Areq and Dreq lines. AD consists of N lines, used to
carry address and data. Areq is a single line used to in-
dicate a valid address on AD. Dreq is a single line used
to indicate valid data on AD. All lines are bidirectional.
Only one processor will control the bus at a time, with
the others providing high-impedance values. We refer
to N as the size of the FunctionBus, even though the
number of I/O required will always be N+2.

A key feature of the FunctionBus is that N can be
made small or large to tradeo� performance with I/O.
N can range from 1 to the available number of I/O.

A system executes as a series of function calls. A
function A executes on a single FPGA. If this function
must call another function B on a di�erent FPGA, A
sends B's address over the bus, followed by input pa-
rameters to B. B captures these parameters and then
executes, possibly calling other functions in like man-
ner. Upon completion, B sends A's address over the
bus, followed by any output parameters. A captures
these parameters and resumes execution.

Each function must know the return address, i.e., the
address of the function's caller. Functions with just one
caller have a �xed return address. However, functions
with multiple callers will have multiple return addresses.
In some cases, the sequence of return addresses from
a given function can be determined statically, so we
can simply hard-code those addresses. In other cases,
the sequence is data dependent and thus can only be
known during dynamic execution. In such cases, in or-
der for a function to know the return address, the caller
must send its address when calling the function. Note
that the non-recursive function requirement means that
there will only be one return address per function at a
time.

From the above discussion, we see that there are two

Areq

delay

Dreq

high
impedance

high
impedance

impedance

high

AD

Areq

delay

Dreq

AD

(a)

impedance

high

high
impedance

high
impedance

Callee
addr

Caller
addr

Inparm
1

Inparm
m

Return
addr

Outpar
1

Outpar
n

(b)

Fig. 4: Timing diagrams: (a) function call, (b) return.

= addr
Areq = 1

Areq = 0

AD

wait for fb.delay wait until Areq=1 and AD=addr

for i in 1 to num loop

wait until Dreq=1

= ADdata[base..(base+fb.size)]

base = i * fb.size

end loop

FunbusRec(addr, data, num)
FunbusSend(addr, data, num)

// Send the address

Areq = Dreq = AD = high imped.
// Release the bus

for i in 1 to num loop
base = i * fb.size

Dreq= 1
wait for delay
Dreq= 0

end loop

= data[base..(base+fb.size)]AD

// Send the data

// Wait for correct address

// Receive the data

Fig. 5: Send and receive protocols.

types of communications that occur over the Function-
Bus. A function call sends the address, possibly a return
address, and input parameters. A function return sends
the return address and output parameters.

Both communications use similar protocols, shown
in Figure 4. Both begin by placing the address of the
receiver function (the callee in (a) and the caller in (b))
on AD and pulsing Areq. The function call protocol
then places the return address on AD and pulses Dreq
(if necessary). Both then send a sequence of data chunks
by placing a chunk on AD and pulsing Dreq.

The pulse delay can be one clock cycle when all parts
use the same clock, because only one function, and hence
only one FPGA, is active at any time, so the other FP-
GAs can respond immediately to an address.

Both of the above communications are composed of
just two basic protocol actions: Send and Receive. Send
places the receiver's address and then the sequence of
data (return address plus input parameters, or output
parameters), and Receive waits for its address and then
receives and assembles the data. Figure 5 shows pseudo-
code suitable for creating C, VHDL or Verilog speci�-
cations of the send and receive protocols.

Compared with the previous cut-edges I/O approach

long ModExp(long a, long b, long n)
{

long c,d; int i;
c = 0; d = 1;
for (i=sizeof(long)*8)-1; i>=0; i--)
{

c = 2 * c;
d = (d*d)%n;
if (Testbit(b,i))
{

c = c + 1;
d = (d*a) % n

return d;
}

}
}

long pubkey_n;
long pubkey_d;
char msg[MSG_SIZE];

long EncodeMsg(char msg_item)
{

return ModExp(M, pukey_d, pubkey_n);
}

{

{

CL_SendSrvLongPCS(c1, msg_encoded);
}

}

pubkey_d = CL_RecSrvLongPCS(c1);
pubkey_n = CL_RecSrvLongPCS(c1);

void XmitMsg ()

for (num=0; num < MSG_SIZE; num++)

msg_enc = EncodeMsg(msg[num]);

Fig. 6: Example: unpartitioned speci�cation.

to functional partitioning, we note several di�erences.
First, rather than having distinct control signals for each
data item transferred among FPGA's, we encode the
signals into addresses, resulting in fewer wires. Sec-
ond, these addresses are multiplexed with data over
the same wires, resulting in even fewer wires but also
slightly slower performance. Of course, we could mod-
ify the FunctionBus to use distinct address and data
lines. Third, data transfers corresponding to distinct
function calls are multiplexed over the same bus, which
does not degrade performance since such transfers were
sequential anyways.

4 Example

In this section, we walk through an example of a
functionally-partitioned system using the FunctionBus.
We use an example involving RSA encryption [28]. In
this example, a portable device permits data entry, stor-
ing the data in an internal memory. The device can be
connected to a PC's serial port for transfer of the data
to the PC. The data is transported using RSA encryp-
tion technology. The PC �rst transmits two public keys
to the device, which then encodes each data item before
sending it to the PC. The encrypted data on the PC can
only be read by a user having the private keys necessary
for decryption.

The portion of the portable device responsible for
data encryption and PC communication is shown in
Figure 6. The device uses XmitMsg to transmit the

pubkey_d = FB_RecLong(FB_pubkey_d);

msg_raw = FB_RecChar(FB_EncodeMsg);

pubkey_n = FB_RecLong(FB_pubkey_n);

msg_enc = EncodeMsg(msg_raw);
FB_SendLong(FB_XmitMsg, msg_enc);

long pubkey_d;
long pubkey_n;

{
FB_Init();

while(1)
{

}
}

long ModExp(long a, long b, long n) ...
long EncodeMsg(char msg_item) ...

void main2()

FPGA2

char msg[MSG_SIZE];

{

FB_SendLong(FB_pubkey_d, key);

FB_SendLong(FB_pubkey_n, key);

FB_SendChar(FB_EncodeMsg, msg[num]);

}

{
FB_Init();
key = CL_RecSrvLongPCS(c1);

key = CL_RecSrvLongPCS(c1);

void XmitMsg ()

}

for (num=0; num < MSG_SIZE; num++)

msg_enc = FB_RecLong(FB_XmitMsg);
CL_SendSrvLongPCS(c1, msg_enc);

FPGA1

Fig. 7: Example after partitioning using FunctionBus.

data to the PC. This function �rst receives the two keys
over the PC serial port using a communication library
function (having a CL pre�x) describing the protocol;
we omit this function's details. The keys are stored in
two global variables. Next, XmitMsg steps through each
data item, encodes the data by calling another function
EncodeMsg, and then sends the encoded data to the PC.
In turn, EncodeMsg calls ModExp, which uses the two
keys to encrypt the data.

An automated functional partitioner (as described in
[21]) might �nd that ModExp uses too much hardware
to coexist on the same FPGA as the other functions,
since it uses a multiplier and a divider. Thus, ModExp
may be partitioned to a second FPGA. Because func-
tional partitioning is usually driven not only by capacity
constraints but also by execution-time constraints, such
partitioning will try to minimize time-consuming inter-
FPGA communication. To avoid transmitting the two
public keys to the second FPGA for every data item,
the two keys' global variables may also be moved to the

pubkey_d
pubkey_n
EncodeMsg
ModExp

FPGA2FPGA1

msg
XmitMsg
Others

Areq
Dreq

AD

Interface
PC Serial

Fig. 8: Example's FunctionBus architecture.

));
FB_AD==fb_addr
FB_Areq &&while (! (

// Wait for the address

{
// Send the address

// Send the data

FB_AD
FB_Areq
FB_Delay();

= fb_addr;

FB_Areq

FB_AD = fb_data;
FB_Dreq

= 1;

= 0;

= 1;
FB_Delay();
FB_Dreq = 0;

// Release the bus

byte fb_addr;
void FB_SendChar(

char fb_data)

FB_AD = Z;
FB_Areq = FB_Dreq = Z;

}

char FB_RecChar(
byte fb_addr)

while (! FB_Dreq);
fb_data = FB_AD;
while (FB_Dreq);

}

// Receive the data

return(fb_data);
// Return the data

char fb_data;{

Fig. 9: FunctionBus character-data transfer routines.

{
// Send the address

// Send the data

FB_AD
FB_Areq
FB_Delay();

= fb_addr;

FB_Areq

= 1;

= 0;

byte fb_addr;
void FB_SendLong(

long fb_data)

for (i=0; i<4; i++)
{

FB_AD
FB_Dreq
FB_Delay();
FB_Dreq

= 1;

= 0;
}

// Release the bus
FB_AD = Z;
FB_Areq = FB_Dreq = Z;

}

= (fb_data<<8)|FB_AD;

byte fb_addr)

// Receive the data
for (i=0; i<4; i++)

}

while (FB_Dreq);

{
while (! FB_Dreq);
fb_data

}

// Return the data
return(fb_data);

char FB_RecLong(

long fb_data;{

));
FB_AD==fb_addr
FB_Areq &&while (! (

// Wait for the address

=fb_data>>(8i)

Fig. 10: FunctionBus long-data transfer routines.

second FPGA, along with the EncodeMsg function, as
shown in Figure 7.

The above functional partition, which satis�es ca-
pacity constraints while minimizing communication and
hence maximizing performance, has created four inter-
FPGA communications: writing the two keys, and call-
ing and returning from EncodeMsg. We use the Func-
tionBus to implement those communications. Each key
is assigned an address, shown in Figure 7 as FB pubkey d
and FB pubkey n, which represent two-bit values. En-
codeMsg is also assigned an address FB EncodeMsg. Be-
cause XmitMsg must receive output parameters from
EncodeMsg, it too requires an address, FB XmitMsg.
After receiving a key, XmitMsg calls a FunctionBus rou-
tine FB SendLong to send the key to a global variable
on the second FPGA. XmitMsg also uses another Func-
tionBus routine FB SendChar to send each data item
to EncodeMsg. Finally, it uses FB RecLong to receive
the encoded data. Complementary routines are found
on the second FPGA. The two-FPGA architecture is
shown in Figure 8.

The FunctionBus routines for a size of 8 are shown
in Figure 9 and Figure 10, written in C for conciseness.
Each send routine requires two parameters: the address

of the function to be called, and the data to be sent to
that function. Each receive routine requires the address
of the receiver function, not the address of the function
sending the data. These routines have been optimized
for the data types being transferred, unlike the general
routine templates shown earlier in Figure 5. Character
data is sent in one chunk, while long data (four bytes)
is sent in four chunks. (For conciseness, we use shifts
to indicate which byte is being transferred or captured,
though for synthesis we would access the bits directly).

The activity over a FunctionBus of size 8 is shown
in Figure 11. Each long is sent as four chunks of 8
bits each. Note that the address for each long is only
sent once. Suppose we change the FunctionBus size to
16. The character-data transfer routines would remain
mostly the same. However, the long-data transfer rou-
tines would now only loop twice instead of four times,
transferring two chunks of 16 bits each, as illustrated in
Figure 12, resulting in a performance improvement at
the expense of 8 I/O pins.

Let us now consider the range of possible tradeo�s
of I/O and performance. First, we derive an execution-
time equation for XmitMsg in Figure 7 as follows:

75+2�FBlong+(512�(FBchar+128+FBlong+35)) (1)

or : 83531 + 514 � FBlong + 512 � FBchar (2)

In other words, XmitMsg �rst spends 75 cycles ini-
tializing the FunctionBus (assumed to require 5 cycles)
and receiving the two keys from the PC (assumed to
require 35 cycles each). It then spends 2 � FBlong cy-
cles sending those keys to FPGA2. Then, XmitMsg
loops 512 times (assuming MSG SIZE is 512) each time
spending FBchar cycles sending a character to FPGA2,
128 cycles waiting while the encoding takes place on
FPGA2 (assumed), FBlong cycles receiving the encoded
long data, and another 35 cycles sending the encoded
data to the PC. FBchar and FBlong are times spent
transferring character and long data, plus the address,
over the FunctionBus. These times will vary depending
on the FunctionBus size, as shown in Figure 13 under
columns Char and Long. When the FunctionBus size
is 1, FBchar is 10 because we transmit 2 address bits
and 8 data bits serially; likewise, FBlong is 2 + 32 = 34
cycles, yielding an XmitMsg with an execution time of
83531 + 514 � 34 + 512 � 10 = 106127 cycles. Instead,
when the FunctionBus size is 4, FBchar is 3 because
we transmit 2 address bits in one chunk, followed by a
chunk of 4 data bits and then another chunk of 4 data
bits; likewise, FBlong is 1+32=4 = 9, so execution time
is then 83531+ 514 � 9+ 512 � 3 = 89693 cycles. In this
example, the largest practical FunctionBus size is 32,
since the largest data item transferred over the Func-
tionBus in the example is 32-bit long data.

Looking at Equation 2, we see that we can compute
a behavior B's execution time by separating that time

5 94829172
3 4 9174712
4 3 896939
5 3 891798
6 3 886657
7 3 881516
8 2 871255
9 2 871255
10 2 871255
11 2 866114
12 2 866114
13 2 866114
14 2 866114
15 2 866114
16 2 860973

Size Char

1 10

Long Time

10612734

Size Char

10

Long Time

17

2
2
2
2
2
2
2
2
2

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

2
2

2

2

2

2

3
3

3
3

3
3
3

3
3

3
3

3
3

3
3
2

86097

86097

85583

86097
86097
86097
86097

86097
86097
86097
86097

86097
86097
86097

86097
86097

Fig. 13: Example's I/O versus performance tradeo�s ob-

tained by varying the FunctionBus size.

into non-FunctionBus time and FunctionBus time, as
follows:

B:et = nonFB:time (3)

+
X

fbtrans2B

(FB:delay � fbtrans:freq �

d
FB:addrbits

FB:size
e+ d

fbtrans:bits

FB:size
e)

where B.et is B's execution time, nonFB.time is the ex-
ecution time of B (including its called functions) ex-
cluding FunctionBus transfers, fbtrans is a Function-
Bus transfer involving B or one of its called functions,
FB.delay is the time for which data must be held valid
on the FunctionBus (usually just one clock cycle, but
possibly longer when dealing with slower devices like
microcontrollers), fbtrans.freq is the number of times
the transfer occurs, FB.addrbits is the number of ad-
dress bits (which is usually log of the number of possible
inter-FPGA transfers), FB.size is the FunctionBus size,
and fbtrans.bits is the number of data bits of the current
transfer.

5 Experiments

We performed several experiments to demonstrate
the ability to easily tradeo� performance and I/O when
using the FunctionBus. We used four examples: ether,
an Ethernet coprocessor; fuzzy, a fuzzy-logic controller;
itv, an interactive TV processor; and mwt, a microwave
transmitter controller. We �rst applied an automatic
functional partitioner [21] to partition among two Xil-
inx XC4000 FPGA's, using simulated annealing and a
cost function seeking to minimize communication while
meeting FPGA size and I/O constraints.

Given this partition for each example, we then var-
ied the FunctionBus size from 1 to the maximum bits
transferred during any function call. For each size, we
recomputed the execution time. Results are shown in
Figure 14. Each point on the X-axis has two numbers.
The bottom number represents the FunctionBus size.

1: FB_pubkey_d
2: key[31..24]
3: key[23..16]
4: key[15..8]
5: key[7..0]

1: FB_pubkey_n
2: key[31..24]
3: key[23..16]
4: key[15..8]
5: key[7..0]

1: FB_XmitMsg
2: msg_enc[31..24];
3: msg_enc[23..16];
4: msg_enc[15..8];
5: msg_enc[7..0];

Areq

Dreq

AD 1 2 3 4 5 1 2 3 4 5 1 2 1 2 3 4 5

1: FB_EncodeMsg
2: msg_raw

MSG_SIZE times

Fig. 11: 8-bit FunctionBus activity.

1 2 3

2: key[31..16]
3: key[15..0]

Areq

Dreq

AD

1: FB_pubkey_d

1 2 3 1 2 1 2 4

1: FB_EncodeMsg
2: msg_raw

3

1: FB_XmitMsg
2: msg_enc[31..16];
3: msg_enc[15..0];

1: FB_pubkey_n
2: key[31..16]
3: key[15..0]

MSG_SIZE times

Fig. 12: 16-bit FunctionBus activity.

The top number represents the maximum I/O required
on either FPGA. All examples were larger than 15,000
gates when implemented { note the extremely low max-
imum I/O sizes for these examples. The Y-axis repre-
sents total execution-time of all constrained behaviors
in the system, measured in clock cycles. This time in-
cludes all computation and communication.

The curves demonstrate a wide range of performance
obtainable by varying the FunctionBus size. Perfor-
mance varied by a factor of 4 for the fuzzy example, indi-
cating that the partitioned system involves much com-
munication; in other words, the second term in Equa-
tion 3 was large. On the other hand, performance var-
ied by only 1.5 for the itv example, indicating that the
partition involved much less communication relative to
computation within each FPGA; in other words, the
�rst term in Equation 3 was dominant. In addition, the
curves demonstrate that numerous sizes can give the
same performance. For example, performance is identi-
cal for sizes ranging from 12 to 22 in the fuzzy example,
so sizes 13 to 22 would never be bene�cial. Finally, the
curves demonstrate the rapid, non-linear deterioration
of performance as we go below a size of 8 towards serial
transfer. Such deterioration is due in part to the fact
that a signi�cant percentage of transfers are of 8-bit or
larger items.

Such data can serve the purpose of allowing a de-
signer to explore various design points, especially when
trying to choose a package size or trying to allocate I/O
to various types of communication (perhaps over more
than one FunctionBus). It can also help us to pick a
FunctionBus size for a standard board or a logic emula-
tor, such that we use the fewest I/O that still gives us
reasonable performance for a large set of applications.

6 Status and future work

We have been developing an automated functional
partitioner since 1991. VHDL algorithmic-level code is
parsed into the Speci�cation-Level Intermediate Format
(SLIF) [29]. SLIF is then heavily annotated with val-
ues indicating hardware size or contributors to hardware
size (such as required control steps, functional units,
data paths, control lines, etc.), data sizes, frequencies of
communication, computation times, and software sizes,
with distinct annotation values for each possible imple-
mentation technology. Such annotation is obtained by
using estimators and pro�lers developed at UC Irvine
[21]. The SLIF is then partitioned among allocated
packages, using any of a wide variety of heuristics, in-
cluding clustering, Kernighan/Lin, and simulated an-
nealing. Work is underway at UC Irvine to automati-
cally generate a re�ned VHDL description re
ecting the
chosen functional partition. The previous I/O model
was based on a cut-edges model. The FunctionBus
model is now being incorporated. The overall system
consists of over 100,000 lines of C code, and has been
released to numerous companies and universities.

There are many directions in which a FunctionBus
approach to functional partitioning can be improved.
First, we might select a FunctionBus size simultaneously
with partitioning, since these two tasks are interdepen-
dent. Second, a FunctionBus approach naturally leads
to the idea of developing a power-reduction technique
that shuts down the FPGA's that are not actively exe-
cuting a function, except for the address detection logic
on each FPGA, in order to reduce power; we are inves-
tigating such techniques. Third, we can develop tech-
niques to interface standard components, such as mem-
ories and processors, having �xed buses and protocols.

ether

0
50

100
150
200
250
300
350
400
450
500

38
1

40
3

42
5

44
7

46
9

48
11

50
13

52
15

54
17

56
19

58
21

60
23

Max I/O, AD wires

E
xe

cu
tio

n
tim

e

fuzzy

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

19
1

21
3

23
5

25
7

27
9

29
11

31
13

33
15

35
17

37
19

39
21

41
23

Max I/O, AD wires

E
xe

cu
tio

n
tim

e

itv

0

2000

4000

6000

8000

10000

12000

14000

16000

76
1

78
3

80
5

82
7

84
9

86
11

88
13

90
15

92
17

94
19

96
21

98
23

Max I/O, AD wires

E
xe

cu
tio

n
tim

e

mwt

0

200

400

600

800

1000

1200

1400

1600

25
1

27
3

29
5

31
7

33
9

35
11

37
13

39
15

41
17

43
19

45
21

Max I/O, AD wires
E

xe
cu

tio
n

tim
e

Fig. 14: I/O and performance tradeo� curves.

Fourth, there are likely many optimizations that can be
applied to improve performance and hardware size. For
example, we can replicate threads so that each has a
single return address, eliminating the need to send a re-
turn address to a multiply-called function. As another
example, we might experiment with di�erent address en-
coding techniques to see their e�ects on hardware size.
Further examples include cloning multiply-called func-
tions to reduce FunctionBus tra�c at the expense of
replicated hardware [30], and enclosing external port
accesses into function calls to enable us to distribute
ports among FPGA's to obtain a balance of I/O. Fifth,
we need to extend the approach for multiple processes.
One simple method is to use a distinct bus and a distinct
processor for each process. More sophisticated methods
might share a FunctionBus among multiple processes,
possibly requiring arbitration.

7 Conclusions

We have presented an improvement to a new ap-
proach to multi-FPGA partitioning. Earlier work demon-
strated greatly reduced I/O and other improvements ob-
tained through functional partitioning, while the work
in this paper demonstrates techniques for further reduc-
ing I/O using the FunctionBus, and for trading o� per-
formance for even further I/O reductions. Functional
partitioning combined with the FunctionBus therefore
comprise a promising solution to multi-FPGA parti-
tioning, particularly in overcoming the I/O limitations
of traditional structural partitioning. The FunctionBus

approach is applicable not only for partitioning among
FPGA's, but also for partitioning among any custom
hardware blocks (even within the same package) as well
as among hardware and software processors. Therefore,
the FunctionBus approach provides a simple yet pow-
erful basis for general hardware and software system
partitioning.

References

[1] C. Alpert and A. Kahng, \Recent directions in netlist parti-
tioning," Integration, The VLSI Journal, vol. 19, pp. 1{81,
1995.

[2] D. Brasen and G. Saucier, \FPGA partitioning for critical
paths," in Proceedings of the European Design and Test Con-
ference (EDTC), pp. 99{103, 1994.

[3] P. Chan, M. Schlag, and J. Zien, \Spectral based multi-
way FPGA partitioning," in Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 133{139, 1995.

[4] N. Chou, L. Liu, C. Cheng, W. Dai, and R. Lindelof, \Local
ratio cut and set covering partitioning for huge logic emu-
lation systems," in IEEE Transactions on Computer-Aided
Design, pp. 1085{1092, 1995.

[5] S. Hauck and G. Borriello, \Logic partition orderings for
mult-fpga systems," in Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 32{38, 1995.

[6] D. Huang and A. Kahng, \Multi-way system partitioning
into single and multiple type FPGAs," in Proceedings of the
International Symposium on Field-Programmable Gate Ar-
rays (FPGA), pp. 140{145, 1995.

[7] R. Kuznar and F. Brglez, \PROP: A recursive paradigm
for area-e�cient and performance oriented partitioning for
large FPGA netlists," in Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 644{649, 1995.

[8] K. Roy-Neogi and C. Sechen, \Partitioning with perfor-
mance optimization," in Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 146{152, 1995.

[9] P. Sawkar and D. Thomas, \Multi-way partitioning for min-
imum delay for look-up table based FPGAs," in Proceedings
of the Design Automation Conference, pp. 201{205, 1995.

[10] R. Tessier, J. Babb, M. Dahl, S. Hanono, and A. Agar-
wal, \The virtual wires emulation system: A gate-e�cient
asic prototyping environment," in Proceedings of the Inter-
national Symposium on Field-Programmable Gate Arrays
(FPGA), 1994.

[11] F. Johannes, \Partitioning of VLSI circuits and systems," in
Proceedings of the Design Automation Conference, 1996.

[12] F. Vahid, T. Le, and Y. Hsu, \A comparison of functional
and structural partitioning," in International Symposium on
System Synthesis, 1996.

[13] E. Lagnese and D. Thomas, \Architectural partitioning for
system level synthesis of integrated circuits," IEEE Trans-
actions on Computer-Aided Design, vol. 10, pp. 847{860,
July 1991.

[14] R. Gupta and G. DeMicheli, \Partitioning of functional
models of synchronous digital systems," in Proceedings of
the International Conference on Computer-Aided Design,
pp. 216{219, 1990.

[15] K. Kucukcakar and A. Parker, \CHOP: A constraint-driven
system-level partitioner," in Proceedings of the Design Au-
tomation Conference, pp. 514{519, 1991.

[16] Y. Chen, Y. Hsu, and C. King, \MULTIPAR: Behav-
ioral partition for synthesizing multiprocessor architectures,"
IEEE Transactions on Very Large Scale Integration Sys-
tems, vol. 2, pp. 21{32, March 1994.

[17] C. Gebotys, \An optimization approach to the synthesis of
multichip architectures," IEEE Transactions on Very Large
Scale Integration Systems, vol. 2, no. 1, pp. 11{20, 1994.

[18] F. Vahid and D.Gajski, \Speci�cation partitioning for sys-
tem design," in Proceedings of the Design Automation Con-
ference, pp. 219{224, 1992.

[19] R. Gupta and G. DeMicheli, \Hardware-software cosynthesis
for digital systems," in IEEE Design & Test of Computers,
pp. 29{41, October 1993.

[20] R. Ernst, J. Henkel, and T. Benner, \Hardware-software
cosynthesis for microcontrollers," in IEEE Design & Test
of Computers, pp. 64{75, December 1994.

[21] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci�cation
and design of embedded systems. New Jersey: Prentice Hall,
1994.

[22] X. Xiong, E. Barros, and W. Rosentiel, \A method for par-
titioning UNITY language in hardware and software," in
Proceedings of the European Design Automation Conference
(EuroDAC), 1994.

[23] A. Kalavade and E. Lee, \A global criticality/local phase
driven algorithm for the constrained hardware/software par-
titioning problem," in International Workshop on Hardware-
Software Co-Design, pp. 42{48, 1994.

[24] P. Eles, Z. Peng, and A. Doboli, \VHDL system-level speci�-
cation and partitioning in a hardware/software co-synthesis
environment," in International Workshop on Hardware-
Software Co-Design, pp. 49{55, 1992.

[25] P. Knudsen and J. Madsen, \PACE: A dynamic program-
ming algorithm for hardware/software partitioning," in In-
ternational Workshop on Hardware-Software Co-Design,
pp. 85{92, 1996.

[26] A. Balboni, W. Fornaciari, and D. Sciuto, \Partitioning
and exploration strategies in the tosca co-design
ow," in
International Workshop on Hardware-Software Co-Design,
pp. 62{69, 1993.

[27] F. Vahid and D. Gajski, \Incremental hardware estimation
during hardware/software functional partitioning," IEEE
Transactions on Very Large Scale Integration Systems,
vol. 3, no. 3, pp. 459{464, 1995.

[28] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Al-
gorithms. Cambridge, MA: MIT Press, 1989.

[29] F. Vahid and D. Gajski, \SLIF: A speci�cation-level inter-
mediate format for system design," in Proceedings of the Eu-
ropean Design and Test Conference (EDTC), pp. 185{189,
1995.

[30] F. Vahid, \Procedure cloning: A transformation for im-
proved system-level functional partitioning," in Proceedings
of the European Design and Test Conference (EDTC), p. to
appear, 1997.

	CD-ROM Home Page
	FPGA97
	Front Matter
	Table of Contents
	Session Index
	Author Index

