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Abstract

This paper shows that the speed of FPGAs with
large embedded memory arrays can be improved by
adding direct programmable connections between the
memories. Nets that connect to multiple memory ar-
rays are often di�cult to route, and are often part
of the critical path of circuit implementations. The
memory-to-memory connection structure proposed in
this paper allows for the e�cient implementation of
these nets, resulting in a reduction in memory ac-
cess time of up to 25% and a slight improvement in
routability.

1 Introduction

As FPGAs become larger, they will be used to im-
plement entire systems, rather than small logic subcir-
cuits. One of the key di�erences between these large
systems and the smaller logic subcircuits is that the
systems often contain memory. Architectural support
for the e�cient implementation of memory in next-
generation FPGAs, therefore, is crucial.

Several vendors o�er FPGAs with architectural
support for memory [1, 2, 3, 4, 5, 6, 7]. The mem-
ory resources in these devices can be classi�ed into
two categories: �ne-grained and coarse-grained. Two
examples of the �ne-grained approach are the Xilinx
XC4000 and Lucent Technologies ORCA FPGAs, in
which each 4-input lookup table can be used as a 16-
bit memory, and these small RAMs can be combined
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to implement larger memories. The coarse-grained ap-
proach is used in the Altera 10K CPLDs and the Actel
3200DX and ES devices. These FPGAs, which con-
tain large embedded arrays, can implement large user
memories much more e�ciently since the per-bit over-
head is signi�cantly smaller. In this paper, we consider
only coarse-grained memory architectures.

In our previous work, we examined a simple inter-
connect structure between the memory and logic re-
sources in an FPGA, and concluded that only a small
amount of 
exibility is required, especially in FPGAs
where there are few memory arrays [8]. For devices
with 8 or more embedded arrays, it was suggested
that the memory/logic interconnect 
exibility require-
ments increase, due, in part, to connections between
memory arrays. In this paper, we propose support-
ing these di�cult nets by adding programmable con-
nections between memory arrays. We show that this
enhancement decreases the memory access time signif-
icantly, provides a slight improvement in routability,
and requires very little additional chip area.

The enhancement will be presented in the context
of a speci�c experimental architecture. Sections 2
and 3 of this paper describe the baseline architec-
ture and the proposed enhancement. Sections 4 and 5
present experiments that evaluate the enhanced archi-
tecture.

Logic Block

Memory Array

Figure 1: FPGA with embedded memory.
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Figure 2: Memory/logic interconnect architecture.
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Figure 3: Memory/logic interconnect block.

2 Baseline Architecture

As in [8], we assume an FPGA with embedded ar-
rays positioned in a row across the middle of the chip,
as shown in Figure 1. Each array contains 2Kbits,
and can be con�gured as 2Kx1, 1Kx2, 512x4, or 256x8
(similar to the Altera 10K series CPLDs [1]).

The logic resources consist of a grid of �ve-input
lookup tables, connected using vertical and horizontal
channels similar to the Xilinx and Lucent ORCA FP-
GAs [4, 5]. At the intersection of every horizontal and

vertical channel is a switch block; the switch block of-
fers each incoming wire three possible connections (i.e.
Fs = 3 in the terminology of [9]). Each logic block pin
can be connected to W tracks, where W is the num-
ber of tracks in each channel. We have assumed that
all segments are of length 1. That is, segments only
connect neighbouring switch blocks.

Figure 2 shows the interconnect structure between
the logic and memory parts of the FPGA. The verti-
cal tracks in the top half of the FPGA are connected
to those in the bottom half. The pins of each mem-
ory block are connected to one or more vertical tracks
through a memory/logic interconnect block. An ex-
ample memory/logic interconnect block is shown in
Figure 3. The 
exibility of this block, Fm, is de-
�ned as the number of vertical tracks to which each
pin can connect; in Figure 3, Fm = 4. The switch
pattern in each memory/logic interconnect block de-
pends on Fm, the number of memory pins, and the
number of incident vertical tracks. In all experiments
described in this paper, the basic pattern of Figure 3
is retained [10].

3 Memory-to-Memory Connections

As suggested in [8], the routability and delay of the
FPGA described in the last section is limited by nets
that connect to more than one memory block. Mem-
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Figure 4: Enhanced memory/logic interconnect architecture.

ory blocks are connected together when they are com-
bined to form larger memories, or when independent
user memories share a common data bus. These nets
are especially di�cult to implement when the mem-
ory/logic 
exibility is low. In addition, when memory
arrays are to be connected to each other, usually there
aremany nets that connect the arrays in parallel, since
typically all the address pins or all data pins of one ar-
ray need to be connected to the corresponding pins of
the other array. The high concentration of these di�-
cult connections causes congestion near the memories.
We propose an enhancement to the base architecture
that supports these memory-to-memory nets.

Figure 4 illustrates the enhanced architecture.
Each vertical wire incident to a memory/logic inter-
connect block can be programmably connected to the
corresponding wire incident to the two neighbouring
memory/logic interconnect blocks. The connection is
made through pass transistors denoted by rectangles
in Figure 4. We refer to each of these pass transistors
as a memory-to-memory switch. Note that the con-
nections shown as solid dots are non-programmable
permanent connections.

Figure 5 shows an example of a net connecting

three arrays implemented on the new architecture.
Two memory-to-memory switches are used to connect
the three memory arrays. The same net implemented
on an FPGA without memory-to-memory switches is
shown in Figure 6. In this case, the net must be
implemented using the logic routing resources that
could otherwise be used to route signals between logic
blocks. Because of the limited connectivity within
each switch block, the route through the logic rout-
ing resources is somewhat circuitous; in the presence
of routing contention, the route may be even worse.

The area cost of the new memory-to-memory
switches is small. If there are N arrays and V vertical
tracks per memory block, then NV extra switches and
programming bits are required.

4 Experimental Methodology

In order to quantify the gains obtained by the
memory-to-memory switches, we employ an exper-
imental approach in which benchmark circuits are
placed and routed on the baseline and enhanced ar-
chitectures. In each case, we estimate the area and
speed of the resulting circuit implementations.
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4.1 Benchmark Circuit Generation

The traditional method of placing and routing 10
to 20 benchmark circuits [9, 11] is not suitable for the
analysis of con�gurable memory architectures. Since
circuits typically have only a few memories each, hun-
dreds of such examples may be required to properly
exercise the architecture. Because it isn't feasible to
gather that many benchmark circuits, our approach
is to study the types of memory con�gurations found
in systems, and then to develop a stochastic memory
con�guration generator based on that study.

A memory con�guration is the set of all memo-
ries required in an application circuit, and consists
of the number of memory clusters (groups of mem-
ories which share data input or data output subcir-
cuits [10]), the number of memories within each clus-
ter, and the width and depth of each memory. The
generator chooses these parameters using probability

distributions based on statistics gathered from a set
of 171 custom ASIC and programmable logic designs.

The generator then randomly chooses logic subcir-
cuits from a collection of 38 MCNC circuits [12] and
connects them to the memories. These subcircuits
supply data to and consume data from the memo-
ries, as well as drive the memory address lines. These
logic subcircuits have been optimized using SIS [13]
and technology-mapped to 5-input lookup tables us-
ing FlowMap [14]. The interconnect patterns between
the memories and logic subcircuits are chosen from a
set of commonly occurring patterns in the set of ASIC
designs. The actual construction of the circuits is non-
trivial and is described in detail in [10].

This stochastic generation approach was also used
in [8] and [15]. Unlike this previous work, we con-
strain the generator to create circuits that use between
75% and 100% of the total bits in the target architec-
ture in order to fully stress the memory architectures.
In the experiments described in Section 5, we con-
sider architectures with both eight and sixteen 2-Kbit
memory arrays. For each of these two memory sizes,
we generate 100 circuits. The �rst nine columns of
Table 1 show statistics for the generated circuits. In
the circuits generated for the 8-array FPGA, 5.9% of
the nets connect to memory, 24% of which connect to
more than one memory array. In the circuits gener-
ated for the 16-array FPGA, 10.6% of the nets connect
to memory, 23% of which connect to more than one
memory array.

4.2 Circuit Implementation Procedure
and Delay Modeling

Each benchmark circuit is \implemented" in each
FPGA using custom-built CAD tools [10]. First, each
memory in the circuit must be implemented using one
or more of the physical memory arrays. For exam-
ple, a 4Kx2 user memory can be implemented using
four 2-Kbit arrays each con�gured as a 2Kx1 mem-
ory with appropriate decoding. We call this process
logical-to-physical mapping and use an algorithm de-
scribed in [10].

Next, the mapped circuits are then placed on
an appropriately-sized FPGA using a simulated
annealing-based placement program, and the detailed
routing is performed using a multi-pass maze router
(both tools are described in [10]). The routing is re-
peated for di�erent values of W (the number of tracks
per channel) to determine the minimumW that gives
a 100% routable solution. The router considers all in-
put pins of a lookup-table equivalent, as well as all
address pins of a memory array. Data pins are also
considered equivalent with the constraint that a pin
assignment for a speci�c bit in the data-out port �xes
the corresponding assignment in the data-in port (and
vice versa).

The size of the FPGA used in the place and route



Arrays 5-LUTs Used Arrays Used I/O Blocks Nets R Aspect Ratio

in FPGA Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

8 913 467 7.72 0.57 146 85.5 1069 497 3.93 0.86 1.08 0.25

16 849 500 15.2 1.33 154 102 1030 500 3.01 0.01 3.16 1.72

Table 1: Circuit and implementation statistics.

step depends on both the number of lookup tables
and memory arrays required by the circuit. For a
given number of arrays, we place the required num-
ber of logic blocks above and below the memory row,
creating a roughly square chip. This will result in
di�erent values of R (the number of logic blocks per
memory block in the horizontal dimension) for di�er-
ent circuits. If R is less than 3, we force R to be 3,
resulting in a non-square aspect ratio. For some cir-
cuits, the number of inputs/outputs will determine the
chip area; for these circuits, a square array with the
required number of input/output blocks will be used.
Table 1 shows the average values of R and the average
aspect ratio (ratio of horizontal logic blocks to verti-
cal logic blocks) for circuits implemented on the two
architectures.

Finally, a timing analyzer is used to measure the
read access time of all memories in the circuit, in-
cluding the routing to and from the memory arrays
(but not including the logic block delays at either
end). The timing analyzer �nds each net delay by
constructing an RC-tree and �nding the Elmore de-
lay [16]. Commercial FPGAs often contain repower-
ing bu�ers to reduce the delay of long nets; rather
than assuming a speci�c repowering bu�er strategy,
we make the pessimistic assumption that each signal
is repowered in every switch and memory/logic inter-
connect block. Although this architecture is not likely
to be used in practice, the delay estimates obtained
by assuming such an architecture are similar to those
that would be obtained had a more intelligent bu�er
placement policy been employed. The memory access
time is measured from a modi�ed version of CACTI, a
detailed cache access timemodel [17]. A 0.5�mCMOS
process was assumed.

5 Results

In this section, we show that the proposed enhance-
ment improves the speed and routability of circuit im-
plementations. To obtain these improvements, how-
ever, the maze-routing algorithm must be restricted
such that it uses the memory-to-memory switches only
to implement memory-to-memory connections. If a
standard maze-router that is free to use the memory-
to-memory connections for all nets is employed, the
extra switches actually reduce the routability of the
device.

We �rst show results for the case when the router
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Figure 7: Routing results using standard maze

router

is free to use the memory-to-memory connections for
all nets. Figure 7 shows routability results for an
FPGA with eight memory arrays with and without the
memory-to-memory switches for several values of Fm.
The horizontal axis is the number of programmable
switches per memory array in the memory/logic in-
terconnect. This includes the switches in the mem-
ory/logic interconnect blocks (proportional to Fm),
and, in the enhanced architecture, the memory-to-
memory switches. The vertical axis is the number of
tracks required in each channel in order to completely
route the circuit, averaged over all 100 benchmark cir-
cuits. Each point is labeled with the corresponding
value of Fm.

As the graph shows, the required track count is
signi�cantly increased for low values of Fm and rela-
tively unchanged for higher values. At Fm = 1, in the
enhanced architecture, more that half of the circuits
could not be routed using less than 45 tracks; we do
not present results for this case.

The primary reason for these disappointing results
is that nets that do not connect to memory will of-
ten use the memory-to-memory switches as a low-
cost route to travel from one side of the chip to the
other. Consider Figure 8, which shows the connec-
tion between two distant logic blocks. If the net is
implemented using only the logic routing resources, at
least six switch blocks would lie on the path between
the two logic blocks. Using the memory-to-memory
switches, only two switch blocks and two pass tran-
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sistors (one under each memory block) must be tra-
versed. Since the latter alternative is cheaper, it will
be favoured by a standard maze-type router.

Although this provides an e�cient implementation
of this net, the vertical tracks labeled A and C in
the diagram become unavailable for future nets (the
router processes nets one at a time). If future nets
require connections to the memory, the loss of vertical
tracks A and C may severely hamper the routing of
these nets, especially in low-Fm architectures. Also,
since the connections between the vertical tracks inci-
dent to each memory/logic interconnect block and the
horizontal tracks connecting the memory-to-memory
switches are permanent, the track labeled B will also
be unavailable for future nets.

To alleviate this problem, we modi�ed the router
so that the memory-to-memory switches are used only
to implement memory-to-memory connections. Al-
though this means that these tracks are wasted if a
circuit contains no (or few) memory-to-memory con-
nections, it alleviates the problems described above.

Figures 9(a) and 10(a) give the results obtained us-
ing this algorithm for the 8 and 16 array FPGAs re-
spectively. Again the horizontal axis is the number of
switches per memory array (including the memory-to-
memory switches in the enhanced architecture) and
the label above or below each point is Fm. As the
graph shows, the memory-to-memory switches help
somewhat, reducing the average track requirement by
between 0.5 and 1 track.

Figures 9(b) and 10(b) give delay results. In each
graph, the vertical axis is the time to perform a read
access, including the routing to the address pins and

from the data-out pins. Since each address and data
line likely has a di�erent delay, the combination that
gives the maximum delay is chosen. If an address net
connects to more than one memory array, it might
have a circuitous route in the baseline architecture,
resulting in a longer net delay, and hence, a longer read
time. The memory-to-memory switches result in more
direct routes for these nets, leading to lower memory
read times. In the architecture considered here, the
di�erence is as much as 25%. Since the critical path
of a circuit implementation often includes the memory
read time, this speed-up will signi�cantly impact the
achievable clock frequency of circuits implemented on
the FPGA.

6 Conclusions

In this paper, we have shown that the routability
and speed of FPGAs containing large embedded mem-
ory arrays can be improved by adding programmable
switches between neighbouring memory blocks. In our
experimental architecture, the enhancements reduced
the channel width by between 0.5 and 1 track (aver-
aged over all benchmark circuits) and improved the
speed of circuit implementations by as much as 25%.
The area cost of these additional switches is small.
These results were obtained using an algorithm that
uses the new switches only to implement memory-to-
memory connections. The development of algorithms
that use these tracks more aggressively is left as fu-
ture work; it is likely that such algorithms would give
improvements beyond those presented in Figures 9
and 10.
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Figure 9: Results for an 8-array FPGA with memory-to-memory switches
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