
Abstract
In this paper a method of architecture exploration and
selection is presented. Compared with other approaches,
no special tools or modeling languages are needed -
instead the models and tools of the ASIC design flow are
used. The architecture trade-off process is performed iter-
atively, and considers information from different levels of
abstraction in parallel. At system level, software and
behavioral models, which are part of executable specifica-
tions are examined to get the necessary top-down informa-
tion (performance). Bottom-up information (hardware
costs) for irregular hardware structures is obtained by
generating, analyzing and synthesizing VHDL code at RT-
Level. For regular structures, formulas or tables can be
used to estimate area and timing. The proposed approach
was successfully performed for parts of a multimedia
design, where an executable specification (in 'C') was
available together with the standard.

1 Introduction
To an increasing degree, ASICs are specified by so-called
executable specifications. These specifications consist of
pure functional software models as well as of behavioral
models comprising clock-related timing. The advantage of
this approach is the ability to perform validation (are we
building the right product?) and verification (are we build-
ing the product right?) in early design stages to avoid long
iteration loops in the design process. After the specifica-
tion, the whole design is modeled again at a lower level of
abstraction - the register transfer level. In some cases
behavioral synthesis tools can be used to perform this
transformation. Often, the models (software, behavior,
RTL) are only used for the verification (simulation) or
design (synthesis) process, while for architecture explora-
tion, special tools for performance modeling are used. The
intention of this paper is to show a way to exploit the mod-
els of the design process for architecture trade-offs as well.

1.1 Related Work
Architecture trade-offs can be performed at all levels of
abstraction. A classification of design levels related to
abstraction can be found in [EcHo92]. For architecture
exploration at system level, various tools were developed.
A toolset for computer architecture design and simulation,
in which the models are described in an object oriented
language, is presented in [IHH95]. Another specification-
driven design environment [TAB95] for design trade-offs

at the architectural abstraction level uses a special Design
Specification Language (DSL) as input. The exploration is
performed through simulation and behavioral synthesis.
Special abstract modeling approaches, such as the use of
Petri Nets [AbCo90, Ram93], are also used for early sys-
tem evaluation. All of the above referenced approaches
have in common that a special tool or description language
is needed in parallel to the HDL-based design flow to per-
form architectural explorations. Other approaches only
cover a special class of architecture trade-off. In [HoGa95]
a method of architectural exploration for data paths with
memory hierarchy is presented which allows for perfor-
mance/cost trade-offs in memory-intensive applications. A
memory estimation technique for DSP applications can be
found in [VSR94]. Another approach [VaGa95] is based
on a control-unit/datapath model to perform incremental
hardware estimation during hardware/software partition-
ing. A generator-based method for the design space explo-
ration in time and area for regular structured logic like
mathematical operators is proposed in [JhDu92, GWG93].

1.2 Paper Structure
The next section gives an overview of the iterative archi-
tecture trade-off process and outlines the interaction of
top-down and bottom-up information. Afterwards the rela-
tion of reuse and architecture trade-off and their impact on
the modeling style are discussed. The main part of the
paper focuses on the different abstraction levels and shows
methods of architecture trade-off at system (functional),
behavior (synchronization), and register transfer level.
Application examples are given for each abstraction level.

2 Overview
Hardware architecture trade-off consists of architecture
exploration and selection. During the exploration process,
top-down information is collected at system level. For
example, software models can be used to perform func-
tional explorations like algorithm selection and to generate
data statistics. Average data rates can help to determine the
required performance for each subdesign. Behavior mod-
els are a good means of examining the queueing behavior
of several buffers and the synchronization between func-
tional units. The data distribution functions, calculated by
the software model, can be used to stimulate a behavioral
simulation to consider the data-dependent processing time.

For architecture selection, bottom-up information is
needed to estimate the hardware costs and to evaluate each

A Methodology for Hardware Architecture Trade-off
at Different Levels of Abstraction

Claus Schneider

Siemens AG, Corporate Research and Development, ZT ME 5
D-81730 Munich

E-Mail: Claus.Schneider@mchp.siemens.de

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

architectural alternative. This information can be obtained
by analyzing or synthesizing models at register transfer
level, which are parameterizable regarding performance
and cost. For regular hardware structures (e.g. adder, mul-
tiplier) hardware costs can be estimated by tables or for-
mulas. The exploration and selection is an iterative
process, for which top-down and bottom up information is
needed in each step (see Figure 1).

Figure 1: Top-down and bottom-up information

Architecture trade-off is not only a technical, but also a
managerial problem. A trade-off between design complex-
ity and development time and risk has to be made. Not in
every case is the most sophisticated architecture that meets
the technical constraints at the lowest hardware cost the
best to meet the time-to-market constraint as well.

Similar to the design process, modeling know-how and
reuse are essential parts for architecture trade-off. At RT-
Level, VHDL can be used for modeling as well as Verilog.
Because of the powerful modeling capabilities at behavior
level, VHDL was chosen for the whole design flow.

3 Reuse Modeling for Architecture Trade-off
For reuse as well as for architecture trade-off, parameteriz-
able models are needed. However, the requirements con-
cerning the parameters are different.

The goal of reuse is the integration of frequently used
components into many different applications. Therefore
the components must have flexible interfaces (e.g. variable
port widths, parameterizable control signals, optional
input/output registers). In addition, a test bench for the
integration test must be available as support for the model.
A reuse scenario for the VHDL-based hardware design
flow can be found in [PHSR95].

For architecture trade-off, many architectural alterna-
tives must be examined in order to select one for the final
implementation. This trade-off has to be performed for
each application that reuses the component. In contrast to
reuse, the model must be parameterizable for architectural
explorations with regard to performance and cost (e.g. par-
allel/serial, internal processing data width). Another
important feature of models for architecture trade-off is
the ability to rapidly estimate the hardware costs for differ-

Top-Down
Information

Bottom-Up
Information

Project

Technology
Know-How

Modelling
Know-How

System
Know-How

Know-How

VHDL
Reuse
Library

C / VHDL

Hardware
Architecture
Trade-Off

ent performance values. For regular structures (e.g. adder,
multiplier, barrel-shifter) a formula or a table can be sup-
plied with the model [JhDu92]. This is not possible for
complex or irregular hardware structures. Here rough esti-
mations can be done by analyzing the VHDL code pre-
synthesis and by counting, for example, the number of
states, inputs and literals [BRSW87]. Better cost figures
(e.g. area, timing) can be obtained by performing a more
or less precise (time consuming) synthesis process.

3.1 Self-generating VHDL Models
During the elaboration of self-generating VHDL models,
for analysis and statistics generation, the VHDL synthesis
subset is limited too much. For example, text I/O and
access types (pointer) are totally unsupported by current
synthesis tools. These language features should not be
synthesized, but they are very useful in supporting the
model and report generation, such as for the following
tasks:

• Read a complex look-up table in text format as an
input parameter of the model.

• Perform transformations by using dynamically linked
lists with access types.

• Write the actual parameter settings to a report file to
document the design process.

• Write model-based analysis and hardware cost estima-
tion results.

The long elaboration time and large memory requirements
for parameterizable, self-generating VHDL models are
another serious problem for architecture trade-off.
(Nested) Loops are often used for the calculation of inter-
mediate results during the model generation process. The
synthesis tools unfortunately interpret these kind of calcu-
lations as hardware and perform loop unrolling.

3.2 External Model Generators
For architecture trade-off, the usage of external VHDL
code generators is a good method to work around the limi-
tations of current synthesis tools. With scripting languages
like PERL [WaSc] for example, which are used in the
design process as well, text processing is very easy
because powerful functions (e.g. sort, grep, regular
expression matching) are available. Another advantage is
that the generated VHDL code is independent of the syn-
thesis tool, because only the synthesis subset is used.
While self-generating models are parameterized by gener-
ics, parameterization with packages is a better alternative
for externally generated models.

4 Abstraction Levels

4.1 System (Functional) Level
In the field of multimedia (e.g. MPEG), 'C'-executable
specifications ore often available with the standard. These
reference models cover the whole functionality in a
sequential description style. They are mostly used to figure
out the whole system functionality and the operation of its
parts. Another useful application is the generation of test
data for lower levels of abstraction (e.g. Behavior or RTL).
Due to the high execution speed of software models, a
huge amount of data can be processed. By modifying or

extending these models, high-level architecture trade-offs
can be performed.

One example of architecture trade-off with software
models is algorithm selection with a subsequent compli-
ance test. For the matrix multiplication of the Inverse Dis-
crete Cosine Transformation, a floating point
implementation was given by the MPEG executable speci-
fication. Several algorithms are known from literature to
calculate this transformation. They range from highly reg-
ular approaches, with a large number of operations, to
irregular ones, with a minimum number of operations. For
a hardware implementation not only the number of opera-
tions (e.g. ADD, MULT), but also the number of registers
and data path multiplexors is important. When implement-
ing different algorithms in software, the required resources
(e.g. operations and memories) can be counted and the
hardware size can be estimated roughly. But the most
important modeling step for this example is the conversion
from floating to fixed point arithmetic and the compliance
check with the reference model. For the compliance with
the standard, a huge number of data blocks must be pro-
cessed, which can be best done with a software model.

Another example of architecture trade-off at system
level is the generation of data statistics. The MPEG video
data stream, for example, consists of blocks of up to 64
coefficients of the 2-dimensional Discrete Cosine Trans-
formation (DCT). In the decoder, each coefficient has to
be multiplied by two factors to perform the Inverse Quan-
tization (IQ) operation. Due to encoding by the DCT, only
a few coefficients of each block are non-zero. Therefore,
only a few multiplications of the non-zero coefficients are
necessary on average to perform the IQ operation for each
block. Figure 2 shows the distribution of non-zero coeffi-
cients per block at the input of the IQ operation. A huge
number of blocks are not coded (zero coefficients) or con-
tain only a few non-zero coefficients.

Figure 2: Distribution of coefficients

If the IQ operation should only meet the average perfor-
mance constraints, an architecture that can perform 9 (2 *
4.5) multiplications in a certain period of time would be
sufficient. Depending on the buffer depth before and after
the operation, a higher performance of the IQ operation
may be necessary. For the operation-schedule/buffer-size
trade-off the distribution of the coefficients can be used to

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60
Coefficients per Block

Average Number of
Coefficients per Block = 4.5

%

stimulate the behavior level simulation model as shown in
the next section.

4.2 Behavior (Synchronization) Level
Behavioral models are becoming more and more a part of
executable specifications. In [ScEc96] a behavioral model-
ing approach was presented that consists of separation of
synchronization and functionality, which is an ideal struc-
ture for architecture trade-offs. An example of a structure
for this behavioral modeling style is shown in Figure 3.

Figure 3: Buffer-size/operation-schedule trade-off

The operations (OP) are decoupled by buffer memories
(MEM) to allow parallel processing. Due to the separation
of controller and data path, the operations can be modeled
sequentially without considering timing. The controllers
need only to model the synchronization without any func-
tionality. Therefore, on the one hand, reuse of operations
from an existing software model is made easy. On the
other hand, standard controllers can be reused from a
VHDL library.

An operation is controlled by an operation scheduler
(OS) that generates the synchronization signals for the
data path as well as for the connected queue controllers
(QC). For architecture trade-offs, the model can be param-
eterized by the operation schedules and the buffer sizes.
Additional parameters for the synchronization between
operation and buffer are the threshold values for the buffer
data request lines.

Another feature of the separation of synchronization
and functionality is that in many cases no data path is
required for performance analysis and therefore can be
omitted in early design stages. The architecture trade-off
process as well as the modeling and verification can be
done in three steps - see Figure 4.

In the first step only the controllers (e.g. operation
scheduler, queue controller) are modelled. The test bench
for the verification and analysis of the synchronization
consists only of controllers for the handshake with the
behavioral model. The operation schedulers (OS) are
parameterized by dynamic schedules, generated by sub-
program calls. If no data statistics are available, a ramp is
used for stimulation.

Controller Reuse

Operation Reuse

Software

VHDL
Reuse
Library

Trade-Off:
Size

OPMEM

QC OS

Datapath

Trade-Off:
Schedule

MEM OP

QC OS

Figure 4: Test bench and behavioral model

Otherwise the data statistics can be used to generate ran-
dom numbers of this kind of distribution. An example of a
tabular distribution procedure is shown in Figure 5. The
distribution table is derived from the data statistics for the
coefficients from Figure 3.

type distr_rec is record
 v : integer;
 p : real;
end record;

type distr_vec is array(natural range <>) of distr_rec;

constant distr_iq_coeff : distr_vec :=
((0, 0.368102), (1, 0.492626), (2, 0.567988),

(3, 0.626089), (4, 0.674154), (5, 0.715147),
(6, 0.750619), (7, 0.781390), (8, 0.808165),

.....
(61, 0.999996), (62, 0.999999), (63, 1.000000));

procedure distribute(constant distr: distr_vec;
 variable seed: inout real;
 variable x: out integer) is
 variable r: real;
begin
 random(seed, r);
 for i in 0 to distr'high loop
 if r <= distr(i).p then
 X := distr(i).v;
 exit;
 end if;
 end loop;
end distribute;

Figure 5: VHDL listing for distribution procedure

In the second step (Figure 4) a dummy data path can be
added to the controller. The dummy data path has the same
structure as the final one, but the operations simply pass
input data to the output without processing. The test bench
is extended with stimuli generators that generate special
test data (e.g. serial numbers) to analyze the data flow.

In the final step the dummy operations in the data path
are replaced by the full functional ones and the test bench
is extended to read source and result data for stimulation
and result checking. In the behavior model the distribution
function for the data path schedule can be replaced by the
data-dependent schedule from the full functional data path
operation.

Controller

STIM CHK

RAMPDISTR

OSOS

Source
Data

Result
Data

Datapath

3

1

Software Model

Behavior Model

Testbench

2

DISTR

4.3 Register Transfer Level
The previous chapters presented methods for architectural
exploration at higher levels of abstraction to get the neces-
sary top-down information. To evaluate a selected archi-
tecture, bottom-up information like circuit area and
propagation delay is required as well for decision making.

In semi-custom design, frequently used blocks - for
example, an adder or a barrel-shifter, can be instantiated
from a reuse library. These blocks are often characterized
by a regular structure. Therefore the bottom-up informa-
tion of area and timing can easily be estimated by using a
formula or a table. On the other hand, it is difficult to make
estimations about irregular hardware structures, like look-
up tables, which consist of random logic.

The following application example illustrates an
approach to quickly estimate the area for a look-up table
for different degrees of parallelism. This kind of parallel/
serial trade-off is not only interesting for architecture
selection on the hardware side, but is also an estimation
method for hardware/software co-design. The flow of the
estimation process is depicted in Figure 6.

Figure 6: Parallel/serial trade-off for look-up tables

To start out from a specification of the look-up table in
textual form, the VHDL code for each processing width is
generated. After reading the specification, the table is seri-
alized by splitting and introducing a state vector. The
resulting table logic is then minimized and don't care val-
ues are mapped. The optimization leads to better estima-
tions, area results and halves the time for logic synthesis.
Together with the VHDL code, a statistic is written for
each architecture variant (degree of parallelism). After-
wards the statistic values can be displayed graphically
(Pre) to assist the architecture trade-off and to help select
architectures for the time-consuming logic synthesis pro-
cess.

In this case the look-up table was in the critical timing
path together with a barrel-shifter and therefore they were
synthesized together. The look-up table is used from the
generated VHDL packages and the barrel-shifter reused
from a library. To show that the proposed approach works,
all architecture variants from 2-bit to 28-bit were synthe-
sized and the area and timing statistics after the synthesis
(Post) were compared with the pre-synthesis results.

Use

Reuse
Generate

Read VHDL-Code
Generator

Spec

VHDL
Reuse
Library

VHDL
VHDL

Report

Pre

Post
RTL

Synthesis

Figure 7: Pre- & post-statistics of next-state logic

Figure 7 shows that there is a close correlation between
the number of states of the generated finite state machines
and the area of the synthesized next-state logic. The thick
line shows the number of states and the grey shaded range
the circuit area of the next-state logic for different state
encodings (binary and onehot) and different synthesis
strategies.

There is also a relationship between the width of the
input vector and the area of the output logic. Again the
gray shaded range shows the area results of the synthesis
runs with different optimization strategies - see Figure 8.

Figure 8: Pre- & post-statistics of output logic

What is remarkable about the results is not only the good
match between pre- and post synthesis statistics but also
the time to generate both statistics. The pre-synthesis sta-
tistic can be generated in less than five minutes, whereas
the post-synthesis statistic required more than three days
to calculate.

5 Conclusion
An architecture trade-off methodology for different
abstraction levels of the ASIC design process was pre-
sented. In contrast to tools for architecture exploration that
use special modeling languages, the proposed approach is
based on the models of the design process only. Beginning
from an executable specification, software models are

0 5 10 15 20 25 30
Architecture: Processing Width [bit]

Pre: Number of States

Post: Area of Next-State Logic

0 5 10 15 20 25 30
Architecture: Processing Width [bit]

Post: Area of Output Logic

Pre: Width of Input Vector

used to generate data statistics to determine the average
performance required for each functional unit. The data
distribution function, generated by the software model, is
then used to stimulate the behavior model for the analysis
of the queueing behavior. System level models are used to
get the top-down information for the architecture explora-
tion. For the selection of an architecture, bottom-up infor-
mation is needed to estimate the hardware costs. To obtain
this bottom-up information, the usage of RTL models,
which are parameterizable with regard to performance and
costs, was proposed. In addition to this, modeling styles
for reuse and architecture trade-off were discussed. The
proposed approach was successfully performed for parts
of a multimedia design. For each abstraction level (sys-
tem, behavior, RTL) the architecture trade-off methodol-
ogy was illustrated by an industrial application example.

Acknowledgments
I would like to thank Wolfgang Ecker for his suggestions
and helpful discussions.

References
[AbCo90] Aboulhamid, M.; Cordeau, M.: System Level Model-

ing in VHDL using Timed Petri Nets. Proceedings of
the EURO-VHDL’90.

[BRSW87] Brayton, R.K.; Rudell, R.; Sangiovanni-Vincentelli
A.; Wang, A.R.: MIS: A Multiple-Level Logic Opti-
mization System, IEEE Trans. on CAD, Nov. 1987.

[EcHo92] Ecker, W.; Hofmeister, M.:The Design Cube - A
Model for VHDL Designflow Representation. Pro-
ceedings of the EURO-VHDL’92.

[GWG93] Gasteier, M.; Wehn, N.; Glesner, M.: Synthesis of
Complex VHDL operators, Proceedings of the
EURO-VHDL’93.

[HoGa95] Holmes, N.D.; Gajski, D.D.: Architectural Explora-
tion for Datapaths with Memory Hierarchy, Proceed-
ings of the ED&TC 1995.

[IHH95] Ibbett, R.N.; Heywood, P.E.; Howell, F.W.: HASE: A
Flexible Toolset for Computer Architects, The Com-
puter Journal, Vol. 38, No. 10, 1995.

[JhDu92] Jha, P.K.; Dutt, N.D.: Rapid Estimation for Parame-
terized Components in High-Level Synthesis, Sixth
International Workshop on High Level Synth., 1992.

[PHSR95] Preis, V.; Henftling, R.; Schütz, M.; März-Rössel, S.:
A Reuse Scenario for the VHDL-based Hardware
Design Flow, Proceedings of the EURO-VHDL’95.

[Ram93] Rammig, F.: Modeling Aspects of System Level
Design. Proceedings of the EURO-VHDL’93.

[ScEc96] Schneider, C.; Ecker, W.: Stepwise Refinement of
Behavioral VHDL Specifications by Separation of
Synchronization and Functionality, to appear in the
Proceedings of the EURO-VHDL’96.

[TAB95] Tanir, O; Agarwal, V.K.; Bhatt, P.C.P.: A Specifica-
tion-Driven Architectural Design Environment,
Computer Vol. 28, No. 6, 1995.

[VaGa95] Vahid, F.; Gajski, D.D.: Incremental Hardware Esti-
mation During Hardware/Software Functional Parti-
tioning, IEEE Transactions on VLSI Systems, Vol. 3,
No. 3, 1995.

[VSR94] Verbauwhede, I.M.; Scheers, C.J.; Rabaey, J.M.:
Memory Estimation for High Level Synthesis, Pro-
ceedings of the 31st DAC 1994.

[WaSc] Wall, R., Schwartz R.L.: Programming PERL,
O’Reilly & Associates, 1992.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

