
ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

Cone-Based Clustering Heuristic for List-Scheduling Algorithms
�

Sriram Govindarajan and Ranga Vemuri y

Laboratory for Digital Design Environments

Department of ECECS

P.O. Box 210030

University of Cincinnati

Cincinnati, OH 45221{0030

Abstract

List scheduling algorithms attempt to minimize la-
tency under resource constraints using a priority list.
We propose a new heuristic that can be used in con-
junction with any priority function. At each time-
step, the proposed clustering heuristic tries to �nd a
best match between ready operations and the resource
set. The heuristic arbitrates among equal priority op-
erations based on operation-clusters formed from the
dependency graph. Based on this heuristic we have
presented a new Cone-Based List Scheduling (CBLS)
algorithm. Results presented in this paper compare
CBLS with the well-known Force Directed List Schedul-
ing (FDLS) algorithm, for several synthesis bench-
marks. In cases where FDLS produces sub-optimal
schedules, CBLS produces better schedules and in other
cases CBLS performs as good as FDLS. Moreover, in
conjunction with a simple priority function (namely
the self-force of an operator), CBLS results in consid-
erable improvement in latency when compared to FDLS

that has the same priority function. Finally, we show
that CBLS with the simple priority function performs
better in execution time as well as latency when com-
pared to the original FDLS that has a relatively com-
plex priority function.

1 Introduction

The traditional view of high level or behavioral syn-
thesis (HLS) [1] involves transforming the behavioral
speci�cation of a design into a register transfer level
(RTL) speci�cation which usually consists of a data
path and a controller. Scheduling, as stated by many
of our peers [2, 3, 4], is an important step in HLS.
Scheduling can be described as the process of divid-
ing the DFG into time steps that correspond to clock
cycles at the RTL level. Therefore, scheduling directly

�This research was partially supported by DARPA and mon-
itored by the FBI, under contract number J-FBI-93-116.

yAuthor for Correspondence, (513)-556-4784 (Voice), (513)-
556-7326 (FAX), Ranga.Vemuri@UC.EDU

controls the throughput rate of the RTL design pro-
duced. However, for large designs the task of �nding
optimal schedules is a bottleneck in terms of synthe-
sis time. Therefore, there exists a tradeo� between the
scheduling time and design performance. A designer
would try to exploit this tradeo� using good schedul-
ing algorithms that need to be computationally sim-
ple, at the same time produce high-quality schedules.

A wide variety of algorithms [2, 3, 4] exist in the
current literature to perform scheduling. In this paper
we are primarily concerned about the List Scheduling
(LS) algorithm [4, 2] that takes resource constraints
(design area and component library) and tries to op-
timize the latency (or throughput) of the design. In
short, a basic list scheduling algorithm [4] maintains a
priority list of operations (ready list) at each time step,
from which it schedules operations until resources be-
come insu�cient, and defers the rest. Some of the
priority functions (PFs) suggested in the literature are
themobility range [2], the critical path [4] and the force
of an operator which is used in the well known Force
Directed List Scheduling (FDLS) algorithm [3], sug-
gested by Paulin and Knight. In this paper we will
consider FDLS for comparison purposes.

The following section presents an example to show
the performance of list scheduling algorithm and the
improvement that can be done. Section 3 describes
our heuristic which is the basic idea behind the Cone-
Based List Scheduling algorithm (CBLS) that we are
proposing. Section 4 gives a detailed presentation of
the CBLS algorithm. In Section 5 we compare the per-
formance of CBLS with the well known Force-Directed
List Scheduling (FDLS) algorithm, for several synthe-
sis benchmarks. Finally, we present some improve-
ments that can be made to CBLS, in Section 6.

2 Motivation through an Example
The PFs mentioned in Section 1 need not clearly

specify a total ordering of the ready list. They could
generate equal priorities for some ready operations and
hence they may be placed in any order. Thus a par-

-

-

* * * *

+ +

+

**

+ +

-

+

**

A

+

** +

**

+

**

-

+

**

-

* * * *

+ +

F := A - C;

G := B - D;
(a)

B C D

-
F G

(b)

A := (In1 * In2) + (In3 * In4);

B := (In5 * In6) + (In7 * In8);

C := (In1 * In4) + (In2 * In3);

D := (In5 * In8) + (In6 * In7);

(c) (d)

Figure 1: (a) An Example (b) DFG (c) List

Scheduled DFG (d) Improved Schedule

ticular order of picking the equal priority operations
for scheduling at any time step could �nally lead to
a sub-optimal schedule. For example, consider the
behavioral speci�cation and the corresponding DFG

shown in Figures 1.a and 1.b. Consider a resource
set with four multipliers, two adders and one subtrac-
tor. In this example, all paths starting from the eight
multiply operations are of equal length and are criti-
cal. Therefore, any of the PFs mentioned in Section 1
would compute the priorities of the eight multiply op-
erations to have the same value. Suppose at the �rst
time step, the �rst four multiplications were picked for
scheduling, it would �nally result in a schedule (Fig-
ure 1.c) that has �ve time steps. However, for the
same resource set there exists a better schedule shown
in Figure 1.d that is one time step less. Note that, in
Figure 1.c the subtractor is not utilized in the third
time step. Whereas, in the new schedule the subtrac-
tor is utilized in the third time step, which accounts
for the reduction of a time step. In the following sec-
tion we will describe the basic idea behind producing
better schedules for such cases.

3 Cone-Based Clustering Heuristic
Consider the DFG shown in Figure 1.b and the re-

source set with four multipliers, two adders and a sub-
tractor. In the second stage of the DFG there are four
addition operations (A,B,C and D) that are contribut-
ing to the two output nodes F and G. Suppose, at
the second time step there were two adders available.
Then, it is quite intuitive to schedule those operations
that contribute to the same output. In this example,

+

**

+ +

-

+

**

A B C D

-
F G

F-cone G-cone

(a) (b)

Figure 2: (a) Cone formation (b) Cone and Clus-

ter formation

we should schedule either the operations A and C since
they contribute to the same F output, or schedule the
operations B and D since they contribute to same G
output. The same strategy can be extended to the
�rst time step. If we have only four multipliers, we
should schedule those multiply operations that con-
tribute to the same output operation. It is wise to
schedule operations contributing to the same output
because, this could �nally help in the scheduling of
their successor operations at earlier time steps. The
e�ect of this approach is clearly shown in Figure 1.d,
resulting in a shorter schedule.

An important point to note is that this heuristic
should be followed, taking into account other features
of the DFG. For example, if we neglect the mobility
range (Alap timestep � Asap timestep + 1) [2] and
try to schedule operations purely based on this heuris-
tic, it might result in a poor schedule. However, if we
use this heuristic in conjunction with a priority func-
tion that accounts for others factors in the DFG, the
combination would produce better schedules wherever
possible as shown in Figures 1.c and 1.d. We will now
present some de�nitions that explain the methodology
behind the heuristic.

The basic idea is to schedule operations that belong
to the same output operation. We de�ne an Output
operation to be a leaf node of the DFG (We will con-
sider extension to cyclic DFGs later in Section 6). For
example, in Figure 1.b there are two output operations
F and G. We de�ne a Cone to be the set of all oper-
ations that are ancestors of an output operation, in-
cluding the output operation itself. A cone is marked
by the id of the output operation. Figure 2.a shows
the formation of F-cone and the G-cone (marked by
the solid and the dashed lines). Operations A, C, F
and their four ancestor multiplication operations be-
long to the F-cone and the rest belong to the G-cone.
A DFG can be viewed as a set of cones that may be in-
tersecting, in other words having one or more common
operations, as shown for another DFG in Figure 2.b.
Therefore, an operation may belong to more than one

cone. We de�ne the Cone set of an operation to be
the set of all cones to which the operation belongs.
The cone set for each of the operations in the DFG

shown in Figure 2.a will have only one element, either
F or G.

We know that a ready list is a list of operations that
are ready to be scheduled at the current time step.
We now de�ne a Cluster to be the set of all opera-
tions from the ready list that belong to the same cone.
For example, Figure 2.b shows that there are two clus-
ters at each time step (marked by the dashed ellipses).
Since cones may intersect each other, clusters can also
intersect as shown in Figure 2.b. A cluster has a subset
of operations from a single cone and has the same id
as that cone. We de�ne the size of a cluster to be the
number of operations in it. We de�ne a Cluster set
to be the set of all clusters formed at a particular time
step, from the ready list. Basically, after cluster for-
mation, every operation in the ready list will belong
to one or more clusters in the cluster set. Note that
the important di�erence between a cone and a cluster
is that clusters are dynamically created at each time
step, whereas cones are created only once for a DFG.

The basic idea behind our heuristic is to attempt
to schedule full clusters at every time step, when there
is a con
ict among equal priority operations. The fol-
lowing section presents the algorithm that is based on
the idea presented so far.

4 Cone-Based List Scheduling

The Cone-Based List Scheduling (CBLS) algorithm
combines the basic List Scheduling algorithm [4, 2]
with the Cone-Based Clustering heuristic presented
in Section 3. The idea behind the CBLS algorithm
(shown in Figure 3) is that, whenever there is re-
source contention among operations whose priorities
are equal, schedule those operations that belong to the
same cluster, i.e., that contribute to the same output.
The algorithm guarantees that the priorities gener-
ated by the PF are never violated. Therefore, we are
assured that the algorithm never produces a worse
schedule than that produced by the list scheduling al-
gorithm using the same PF. In the worst case, CBLS
using a PF would perform as good as the original LS
algorithm using the same PF.

There are two main parts to our CBLS algorithm:
the formation of cones and the formation of clusters.
The procedure FORM CONES (in Figure 3) searches
for leaf nodes in the DFG and forms a new cone with
each leaf node as the output operation. The proce-
dure Upward propagate new cone id adds the id of the
output operation to the cone set of the output oper-
ation and each of its ancestors, thereby creating the
cone. It is a procedure that �nds all ancestors by re-

CONE BASED LIST SCHEDULING(DFG; Rset)

Begin

> Here; obtain the ASAP schedule of the DFG;

> if it is necessary for computing the PF:

FORM CONES(DFG)
Tstep 1 > While loop iterates across Tstep

0s

while (not all DFG operations are scheduled)

Lready fUnscheduled operations all of

whose predecessors have been scheduled g

Cset f All Clusters from Lready g

Cset Sort Clusters by Increasing Size(Cset)
while (Rset not su�cient)

> Need to defer an operation

for each (operation Op 2 Lready)
compute PRIORITY FUNCTION(Op)

end for

Pmin Minimum Priority assigned to

any operation in Lready
for each (cluster C 2 Cset in sorted order)

for each (operation Op 2 C)
if (Op:priority = Pmin) then

> Defer the operation

Lready Lready � fOpg

> Exit from outer for loop

break 2

end if

end for

end for

end while

for each (operation Op 2 Lready)

Schedule Op at Tstep
end for

Tstep Tstep + 1

end while

End

FORM CONES(DFG)

>Form cone with leaf node as output operation

Begin

for each (operation Op 2 DFG)

Op:cone set = ;

end for

for each (operation Op 2 DFG)

if (Op is a leaf node) then

Upward propagate new cone id(Op; Op:Id)

end if

end for

End

Upward propagate new cone id(Op; cone id)

>Propagate the cone id to all ancestors

Begin

Op:cone set Op:cone set [fcone idg

for each (Opred 2 Op:predecessor list)

Upward propagate new cone id(Opred; cone id)
end for

End

Figure 3: The CBLS Algorithm

cursively traversing through a list of immediate prede-
cessors (predecessor list), starting from the output op-
eration of the cone. A cluster in the cluster set (Cset)
is formed by looking at the cone sets of the operations
in the ready list, to group operations that belong to
the same cone. We can achieve a simple implementa-
tion of the cluster set creation, that makes only one
pass of the ready list. On the other hand, the pro-
cedure FORM CONES is a relatively complex proce-
dure. However, FORM CONES is executed only once,
before the actual list scheduling is done. Therefore, the
only overhead in CBLS compared to the basic LS algo-
rithm, is the formation of clusters at each time step,
which is also not computationally expensive. We will
now proceed to explain the rest of the algorithm.

CBLS, like any other list scheduling algorithm
works by scheduling operations at each time step
(Tstep), starting from the �rst. In each iteration of
the outer while loop (corresponding to a time step),
the ready list (Lready) and the cluster set (Cset) are
formed. The cluster set is then sorted in the ascend-
ing order, based on the size of a cluster. This is be-
cause, the largest cluster is picked for scheduling so
that maximum resources can be allocated to opera-
tions in a single cluster. The inner while loop defers
an operation in each iteration, until the resource set
(Rset) is su�cient to schedule all operations in the
ready list. First, priorities for the ready operations are
re-computed by calling the user de�ned priority func-
tion. Note that the cluster set is not re-constructed
inside the inner while loop, but is done only once in
each time step. From the sorted cluster set, the small-
est cluster (C) is selected for deferring operations. The
inner most for loop �nds a least priority (Pmin) op-
eration from smallest cluster selected. If none of the
operations in C have the least priority, then the next
smallest cluster is selected. In this way the two nested
for loops ensure that always a least priority operation
is deferred in each iteration of the inner while loop.
Thus, all clusters in the cluster set are searched to
exhaust all the least priority operations before mov-
ing to the next smallest priority. The body of the
inner most if-condition deletes the selected operation
from the ready list and breaks out of the two enclosing
nested for loops.

After the inner while loop �nishes, all the remain-
ing operations in the ready list are scheduled at the
current time step. The Tstep is then incremented and
the outer while loop continues until all the operations
in the DFG are scheduled.

5 Results

As explained in Section 4, CBLS can be used with
any priority function. For comparisons, we have cho-

Design Maximal Rset Tot.
Examples f[+]; [�]; [�]g Ops. RSets CPL

1.DCT8x8 f448; 512; 64g 1984 1:4 � 10
7 10

2.DCT4x4 f48; 64; 16g 240 49152 8
3.DFT f48; 48; 0g 96 2304 8

4.TN-1 f24; 48; 0g 60 1152 6
5.TN-2 f18; 36; 0g 54 648 6

6.FFT f24; 24; 0g 48 576 6
7.LSS4x4 f12; 16; 16g 44 3072 4

8.LSS3x3 f9; 12; 9g 30 972 3

Table 1: Synthesis Benchmarks

sen the well known Force-Directed List Scheduling al-
gorithm [3] that uses a rigorous priority function called
the Force of an operator. As discussed by Paulin and
Knight, the Force of an operator is the sum of the Self-
force and the Successor-forces. To see the e�ect of our
clustering heuristic with other priority functions, we
have considered a simple priority function similar to
this Force, but with no successor force calculation, i.e.,
computes only the Self-force. We will call these two
priority functions as follows:

FDLS/p PF = PF in Paulin and Knight's FDLS = Self-

force + Successor-forces

FDLS/s PF = Self-force of an operation

We have taken results by executing CBLS and FDLS

with these two PFs. We will call these algorithms as
follows:

FDLS/p Algorithm = FDLS = The original Paulin and

Knight's Algorithm (with FDLS/p PF)

FDLS/s Algorithm = FDLS with FDLS/s PF

CBLS/p Algorithm = CBLS with FDLS/p PF

CBLS/s Algorithm = CBLS with FDLS/s PF

In the following sections we will compare the perfor-
mance of the CBLS algorithms versus the FDLS algo-
rithms, for a variety of design examples.

5.1 Design Examples

For obtaining the results, we have considered a
number of synthesis benchmarks listed in Table 1. The
examples are listed in the decreasing order of the num-
ber of operations in the DFG. For each example we
have shown the maximal resource set (maximumnum-
ber of operations of each type that appear in parallel,
in the ASAP schedule), the total number of operations,
the total number of possible resource sets (RSets) and
the critical path length (CPL). We use a parameter-
ized RTL component library using which the scheduler
generates the resource sets for a given design.

Our �rst example, the Discrete Cosine Transform
(DCT) [5] 8x8 version is the largest among those in
the table. It has more than ten million possible re-
source sets and 1984 operations in the DFG, of which

a maximum of 448 additions, 512 multiplications and
64 divisions appear in parallel in its ASAP schedule.
The DCT4x4 is a smaller version of discrete cosine
transform. The Discrete Fourier Transform (DFT) [6]
example consists of two 8-point DFTs with thirty two
design inputs sixteen design outputs. The Threshold
Network (TN) [8] example is widely known as the per-
ceptron network in neural systems. Each node in the
network takes a variable number of inputs and gener-
ates their weighted sum as the output. We have con-
sidered two versions of the TN, each having nodes that
take two inputs, but the number of nodes and their
connectivity are di�erent. The Fast Fourier Trans-
form (FFT) [6] example consists of an 8-point FFT-
butter
y network constructed using two 4-point FFTs.
The Linear System Solver (LSS) [7] example is a pop-
ular method of solving a linear system of equations
using matrix inversion. This LSS example computes
the solution to a system of four equations with four
variables each.

5.2 CBLS/p Versus FDLS/p

In this section, we compare the results taken by ex-
ecuting CBLS with the FDLS/p PF and the original
FDLS algorithm as discussed by Paulin and Knight
[3]. Table 2 shows the latency (number of Tsteps)
of schedules generated by these two algorithms, for
the synthesis benchmarks described earlier. Column-
A and column-B show the number of time steps for
the schedules generated by FDLS/p and CBLS/p algo-
rithms and column-C shows the reduction achieved by
CBLS/p. The resource sets for each of these examples
are listed in the order of increasing areas (in terms
of the sum of the areas of all the components in the
resource set).

All the design examples have a large number of pos-
sible resource sets. Therefore, we identi�ed selected
points in their design space and ran the algorithms for
those resource sets. Typically, we selected the resource
sets to yield the maximally serial and maximallyparal-
lel schedules and several in between. For some smaller
area resource sets (R1 � R4) of DCT8x8, CBLS pro-
duced schedules that are seven time steps shorter com-
pared to that of FDLS. For DCT4x4, CBLS showed
a maximum reduction of three time steps. In the
case of DFT which is a smaller example compared
to DCT4x4, CBLS reduced the schedule by four time
steps. In the case of FFT and the TN examples, the
CBLS showed a maximum improvement of three time
steps. So far for all the examples, as the area of the
resource set increases the number of time steps saved
decreases. However, this need not be true always, as
we can see in the case the �rst and the second resource
sets for both the LSS examples. This is because, in
this case, the number of division operations chosen in

Design RSet Information Latency(Tsteps)
Examples Rif[+]; [�]; [�]g A B C

R1f7; 8; 64g 140 133 7
R2f14; 16; 64g 76 69 7
R3f28; 32; 64g 44 37 7

1.DCT8x8 R4f56; 64; 64g 28 21 7
R5f112; 128; 64g 16 13 3
R6f224; 256; 64g 12 11 1
R7f448; 512; 64g 10 10 0
R1f3; 4; 16g 39 36 3
R2f6; 8; 16g 23 20 3

2.DCT4x4 R3f12; 16; 16g 15 12 3
R4f24; 32; 16g 10 9 1
R5f48; 64; 16g 8 8 0
R1f4; 4; 0g 27 23 4
R2f7; 7; 0g 25 21 4

3.DFT R3f14; 14; 0g 15 13 2
R4f28; 28; 0g 10 9 1
R5f48; 48; 0g 8 8 0

R1f4; 8; 0g 18 15 3
4.TN-1 R2f12; 24; 0g 11 9 2

R3f20; 40; 0g 8 7 1
R4f24; 48; 0g 6 6 0

R1f4; 8; 0g 13 11 2
5.TN-2 R2f10; 20; 0g 10 8 2

R3f18; 36; 0g 6 6 0

R1f3; 3; 0g 19 16 3
R2f4; 4; 0g 17 14 3

6.FFT R3f7; 7; 0g 15 13 2
R4f14; 14; 0g 10 9 1
R5f24; 24; 0g 6 6 0

R1f3; 4; 2g 13 11 2
R2f3; 4; 4g 10 7 3

7.LSS4x4 R3f6; 8; 4g 8 7 1
R4f6; 8; 8g 6 5 1
R5f12; 16; 16g 4 4 0
R1f3; 4; 2g 8 7 1

8.LSS3x3 R2f6; 8; 4g 6 4 2
R3f9; 12; 9g 3 3 0

Table 2: Latencies for FDLS/p Vs. CBLS/p

1. DCT8x8 2. DCT4x4
RSet FDLS/s CBLS/s A FDLS/s CBLS/s B
R1 189 137 52 48 39 9
R2 97 72 25 26 22 4
R3 51 39 12 16 12 4
R4 28 21 7 12 11 1

Table 3: Latencies for FDLS/s Vs. CBLS/s

the resource set plays a crucial role in the quality of
the schedule. From Table 2, we can see that for all
the examples, when the largest resource set was cho-
sen CBLS/p performed as good as FDLS/p. This is
because, the largest resource set is su�cient to sched-
ule all the ready list operations at any time step, never
leading to a resource contention.

5.3 CBLS/s Versus FDLS/s

In this section, we will compare the results of the
CBLS/s algorithm (CBLS with FDLS/s PF) and the
FDLS/s algorithm that does not look at successor
forces, when computing the force of an operator. The
DCT examples are the largest among those listed in
Table 1. Therefore, we have presented the latency
(number of Tsteps) results for these DCT examples in
Table 3. Columns A and B show the reduction in
Tsteps achieved by the CBLS/s algorithm for these ex-
amples.

From the results we can clearly see that CBLS/s
performs extremely well compared to FDLS/s. For the
smallest resource set (R1) of DCT8x8, CBLS/s has re-
duced more than 50 time steps. There are two reasons
to this: (i) FDLS/s without the calculation of successor
forces does not perform very well for smaller resource
sets, (ii) However, CBLS/s has some knowledge about
the structure of the entire DFG and is able to per-
form much better. The results also show that CBLS

can be used with any simple PF and would perform
in the worst case as good as the original LS with that
PF. Note that, although CBLS/s computes global in-
formation about the DFG, much of this computation
(cone sets) is done only once. Only a small amount
of additional computation (cluster sets) is necessary
during each iteration of the algorithm.

5.4 CBLS/s Versus FDLS/p

The time spent by FDLS/p in computing the suc-
cessor forces for large design examples is quite high.
Table 4 shows the execution times measured using the
Quantify commercial tool on a Sun sparc-20 with a
256 Megabytes of memory. We have shown results
only for the DCT examples, since the scheduling time
for all other examples are relatively small (less than a
few seconds) compared to these numbers. These tables
show that the CBLS algorithms yield better schedules,
although at the expense of some execution time, com-
pared to the corresponding FDLS algorithms.

The graphs in Figures 4.a and 4.b compare results
for the �rst four resource sets of the DCT8x8 example.
From Figure 4.a, we can see that CBLS/s, shows only
a small increase in latency when compared to CBLS/p,
and is still better than the original FDLS/p algorithm.
From Figure 4.b, we can see that both the CBLS algo-
rithms, incur only a small overhead in time (even for

1. DCT8x8: Scheduling time (seconds)

Rset FDLS/p CBLS/p FDLS/s CBLS/s
R1 275.38 341.48 45.20 117.90
R2 173.13 225.97 31.37 63.52
R3 73.13 90.29 25.78 38.37
R4 43.96 53.82 23.76 26.23
R5 26.74 27.03 19.93 19.05
R6 18.80 20.14 16.01 16.22
R7 15.75 16.23 15.59 16.10

2. DCT4x4: Scheduling time (seconds)

Rset FDLS/p CBLS/s FDLS/s CBLS/s
R1 1.354 1.535 0.863 0.886
R2 0.865 0.958 0.603 0.669
R3 0.621 0.686 0.542 0.562
R4 0.537 0.565 0.513 0.526
R5 0.533 0.527 0.513 0.522

Table 4: SchedulingTime for the DCT examples

small resource sets) with respect to the correspond-
ing FDLS algorithms. Also, we can see that with the
simpler priority function (FDLS/s PF) there is a con-
siderable amount of reduction in time for both CBLS

and FDLS, compared to the FDLS/p PF.

The important point to note from both the graphs
is that CBLS/s with the FDLS/s priority function per-
forms better in latency as well as execution time when
compared to FDLS/p that uses the considerably more
complex FDLS/p PF. There are two reasons to this:
(i) FDLS/p incurs a lot of overhead in execution time
because of the relatively complex priority function,
which gathers information about the entire DFG dur-
ing each iteration of the scheduling algorithm. (ii)
Since CBLS has knowledge about structure of the
entire DFG, much of this knowledge in the form of
cone sets gathered once at the beginning of the algo-
rithm, it is able to produce better schedules even with
a relatively simple priority function.

6 Improvements

In the CBLS algorithm, the cones are always formed
from the leaf nodes of the DFG. We will now show a
case where we can further improve the schedule, if
cones are formed from intermediate operations in the
DFG.

Consider the DFG shown in Figure 5.b that cor-
responds the behavioral speci�cation shown in Fig-
ure 5.a. Note that there is only one cone shown as a
solid triangle. If we choose a resource set that has two
multipliers, one adder and one subtractor and perform
the CBLS, it could result in the schedule shown in Fig-
ure 5.c. Now consider the two intermediate addition
operations as output operations and form two cones

40

60

80

100

120

140

1 2 3 4

La
ten

cy
 (T

im
e S

tep
s)

Resource Sets (Increasing Areas)

FDLS/s
FDLS/p
CBLS/s
CBLS/p

0

50

100

150

200

250

300

350

1 2 3 4

Sc
he

du
lin

g T
im

e (
Se

co
nd

s)

Resource Sets (Increasing Areas)

CBLS/p
FDLS/p
CBLS/s
FDLS/s

Figure 4: DCT8x8: (a) RSets Vs. Latency (b)

RSets Vs. Scheduling Time

-

+

**

+

**

F

(b)

A C

*

*

+

*

*

+ -

-

**

**

(In2 * In3);

(In3 * In4);
A := (In1 * In2) +

C := (In1 * In4) +

F := A - C;

(c) (d)(a)

A

C

+

+A

C F

F

Figure 5: Improving Schedule by intermediate

Cone formation

instead of a single cone. These cones are shown by
the dashed triangles in Figure 5.b. If we run CBLS

with this kind of cone formation then we will get the
improved schedule shown in Figure 5.d, that is one
time step less. Therefore, if we cannot clearly order
operators using the cones formed from leaf nodes, we
can use the intermediate cones to further resolve the
con
ict.

There are two advantages to this approach. First
is in the case of cyclic graphs, where cycles are broken
at a natural point, operations from the broken cycle
(based on the new dependency relations) can be easily
grouped into a cone, since cones can now be formed
from any intermediate operation. Second is the case
of a design output point that is not always a leaf node
of the DFG. Rather, it is the point where the execu-
tion cycle of the behavioral speci�cation ends for that

particular design output. This can only be identi�ed
by the user, and can be speci�ed as a pragma. From
such pragmas, we can locate the output operations
and form cones from them.

7 Conclusion
We have presented a new Cone-Based List Schedul-

ing algorithm in this paper. It is based on a heuristic
that tries to utilize resources e�ciently by selecting
carefully among equal priority operations. The selec-
tion criteria is based on the knowledge of the entire
DFG. CBLS can be used with any priority function
and will never violate the priorities generated by the
PF. Therefore, CBLS would always perform either as
good or better than the original LS algorithm with
that PF. Results for several synthesis benchmarks
have shown that CBLS improves the schedule when
FDLS produces a sub-optimal schedule. In our expe-
rience, CBLS yields de�nite gains for data
ow and
arithmetic dominated designs and works at least as
good as the original LS algorithm for the control dom-
inated designs. The e�ect of the schedule quality on
the overall area of the design is yet to be studied. As
shown in the results, CBLS is computationally inex-
pensive and therefore incurs very little overhead com-
pared to the original LS algorithm. Therefore, CBLS
can be used in place of any other list scheduling algo-
rithm by simply plugging-in the priority function.

References
[1] Raul Camposano, Wayne Wolf, \High-Level VLSI

Synthesis", Kluwer Academic Publishers, 1991.

[2] Daniel Gajski, Nikil Dutt, \High-Level Synthesis",
Kluwer Academic Publishers, 1992.

[3] Pierre G. Paulin and John P. Knight, \Force Di-
rected Scheduling for the behavioral synthesis of
ASICs," IEEE Trans. Computer Aided Design,
Vol.8, pp. 661-679, June 1989.

[4] Jan Vanhoof et. al., \High-Level Synthesis for
Real-Time Digital Signal Processing", Kluwer
Academic Publishers, 1993.

[5] Phillip E. Mattison, \Practical Digital Video with
ProgrammingExamples in C", JohnWiley & Sons,
Inc., 1994.

[6] Leland B. Jackson, \Digital Filters and Signal Pro-
cessing", Second Edition, Kluwer Academic Pub-
lishers, 1989.

[7] Michael Wolfe, \High Performance Compilers for
Parallel Computing", Addison-Wesley Pub., 1996.

[8] Jacek M. Zurada, \Introduction to Arti�cial Neu-
ral Systems", West Publishing Company, 1992.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

