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Abstract
This paper addresses the problems arising in the calcula-
tion of numerical references (network function coeffi-
cients), essential for an appropriate error control in simpli-
fication before and during generation algorithms for sym-
bolic analysis of large analog circuits. The conventional
polynomial interpolation method reveals to be unable to
handle the large circuit sizes needed, mainly due to the dra-
matic effect of round-off errors. This paper introduces a
new algorithm able to accurately calculate the network
function coefficients of large analog circuits in an efficient
way.

1. Introduction

Symbolic circuit analysis refers to the calculation of net-
work functions where all or part of the circuit parameters
are represented by symbols. The applicability of symbolic
simulation techniques to the analysis and synthesis of ana-
log integrated circuits has been known for a long time. See
for instance [1] for an actualized review of techniques and
applications of symbolic analysis.

Given the exponential increase of the resulting expres-
sion length with the circuit size, symbolic expression sim-
plification has been recognized to be essential for both:
formula interpretation by human designers and computer
manipulation for repetitive evaluations in design automa-
tion applications [1]. Simplification in symbolic analysis is
defined as the reduction of formula complexity by eliminat-
ing insignificant terms or sub-expressions, based on numer-
ical estimates of the symbolic parameters. Conventional
simplification approaches first calculate thecomplete sym-
bolic expression, and then simplify it−−commonly called
SimplificationAfter Generation (SAG).

Due to the necessity of generating complete expressions,

* This work has been performed in the framework of the AMADEUS
Project within the ESPRIT IV Program of the CEC.

SAG techniques are constrained to low and medium com-
plexity circuits (below about 50 symbols). Larger circuits
can be analyzed by using the newest approaches of simpli-
fying during, or before to, the analysis stage. They are
calledSimplificationDuringGeneration (SDG) andSimpli-
ficationBeforeGeneration (SBG) techniques respectively.

The rationale behind SDG techniques is that terms of the
network function coefficients can be generated strictly in
decreasing order of magnitude starting with the largest
[2]-[4]. Consider a generic symbolic network function

(1)

and

(2)

represents eitherfi(x) or gj(x) in (1). Refs. [2]-[4] generate
theP most significant terms in (2) until the sum of the gen-
erated terms represents a given fraction of the total magni-
tude of the coefficient,

(3)

wherexo represents a design point of the circuit parameters
andεk is an error control parameter. As shown in (3), the
total magnitude of each circuit coefficient  must be
known a priori, without having the symbolic expression
available.

On the other hand, SBG takes place in the network under
analysis, replacing those elements (or subcircuits), whose
contribution (appropriately measured) to the network func-
tion is negligible, with a zero-admittance or zero-imped-
ance element. Then, the reduced circuit is much easier to
analyze. As in SDG, most accurate error control criteria
compare a numerical evaluation of the simplified expres-
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sion with a numerical estimate of the complete (exact)
expression.

Hence, both simplification methodologies require to
compare with a reference. The calculation of this reference
is the objective of this paper, with implies the realization of
a symbolic analysis with only the complex frequencys as
symbolic variable.

2. Polynomial interpolation techniques

2.1 Background

The polynomial interpolation method [5],[6] constitutes a
very efficient technique for the calculation of network func-
tion coefficients with only the complex frequency in sym-
bolic form.

The polynomial interpolation starts from the idea that a
n-th order polynomial,

(4)

is fully determined by its value at (n+1) points.
It is widely accepted that the interpolation points should

not have a wide spread because of the overflow problem. It
has been shown that the use of  equally-spaced
interpolation points in the unit circle gives the best results
concerning numerical accuracy and stability [5],[6]. Once
the values of (4) at all these pointsP(sk) are known, the
polynomial coefficients can be obtained through theInverse
Discrete Fourier Transform (IDFT),

(5)

where

(6)

The number of interpolation points,K, should be (n+1),
but in most cases, like that we are dealing with, the polyno-
mial order is not known beforehand. Hence, an upper esti-
mate onK must be done, and (5) should be identically 0 for
those coefficients over then-th power. As we will see, this
becomes a major problem when working with analog inte-
grated circuits.

The problem of calculatingP(sk) (representing either the
numeratorN(sk) or the denominatorD(sk)) at the different
interpolation points, is discussed now. Assume that an
appropriate formulation method, i.e. modified nodal analy-
sis, has been applied on the circuit so that the network equa-
tions can be written as [6]:

(7)

whereYMNA is the modified nodal matrix,X contains nodal
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voltages and auxiliary currents, andE accounts for the
influence of independent sources. Once any fre-
quency-dependent element inYMNA is evaluated at the inter-
polation points=sk, the value of the network function

(8)

can be obtained by applying LU decomposition to (7). The
denominator of the network function is easily obtained as:

(9)

and the numeratorN(sk) is easily obtained from (8) and (9):

(10)

2.2 Round-off errors in DFT

One major problem in polynomial interpolation applied
to analog integrated circuits is the dramatic effect of
round-off errors, due to the finite precision arithmetics of
computers. Let us check the associated problems through a
real-world example: the calculation of the differential volt-
age gain as a function ofs in the positive feedback OTA of
Fig. 1. The estimate on the upper bound of the polynomial
order for this circuit is 9. The interpolated polynomial coef-
ficients when using interpolation points located at the unit
circle are given in Table 1a.

As shown in Table 1a, many coefficients have a non-zero
imaginary component. This is due to the round-off errors,
which avoid perfect cancellations of the imaginary parts in
the DFT. But this is not a major problem. The results
obtained for the real parts make us doubt about their cor-
rectness. As can be seen, most calculated coefficients have
the same order of magnitude than the imaginary parts. So,
one may wonder which of those coefficients can be correct
and which are identically 0. As indicated by (6) the zero
coefficients would indicate the real polynomial order. But
now this criterion seems not valid.

On the other hand, it is known that each symbolic term is
given by a product of admittances: transconductances and
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Figure 1:  Positive feedback OTA.



capacitors [5]1. The coefficient ofsi has one more transcon-
ductance and one less capacitor in each term than the coef-
ficient ofsi+1. Taking into account the typical magnitudes of
conductances and capacitors in analog integrated circuits,
we can expect a ratio of 106 to 1012 between each pair of
consecutive coefficients. This clearly does not happen in
most coefficients in Table 1a.

The reason for this behavior can be found in the unavoid-
able numerical noise in digital computers. The numerical
error level in the polynomial interpolation depends on the
coefficientpi in (4) having the largest absolute value. This

error is about  in a computer with 16-dec-

imal-digit accuracy [6]. The spread of values between the
maximum and minimum coefficient should be well below
this error to ensure numerical accuracy of the calculated
coefficients. Hence, it is not difficult to see that the second
and higher order coefficients in Table 1a are not valid any
more.

3. Interpolation using scaling procedures

In order to reduce the spread of coefficient values in typ-

1We are considering circuits containing capacitors as the only fre-
quency-dependent element. Circuits containing inductors can be ana-
lysed using transformation methods [5].

Table 1:  (a) transfer function coefficients for the
differential voltage gain of Fig. 1: using
interpolation points on the unit circle, (b)
normalized coefficients using a frequency scale
factor of 10 9.

si

(a) (b)

Numerator Denominator Numerator Denominator

s0 −5.8296e−25
+j0.0

8.9418e−30
+j0.0

−5.8296e−25
−j1.1106e−42

8.9418e−30
+j2.2028e−43

s1 −1.5484e−33
−j2.2958e−41

3.8525e−36
−j7.0064e−47

−1.5484e−24
−j1.1010e−40

3.8525e−27
−j7.3880e−41

s2 −2.5254e−41
+j1.8367e−41

2.3920e−43
−j1.4013e−46

−1.7843e−24
−j3.2266e−40

4.2042e−25
−j5.0134e−41

s3 −5.5101e−41
+j0.0

1.0646e−43
−j1.4013e−46

−1.0937e−24
−j2.227e−40

1.3193e−24
+j2.9260e−40

s4 7.3468e−41
+j3.6734e−41

−8.4077e−46
−j5.6051e−46

−3.2376e−25
+j1.0883e−40

1.6913e−24
+j5.7810e−40

s5 −4.5917e−41
+j3.5695e−41

2.1019e−45
−j5.4751e−46

−9.8792e−27
+j3.2146e−40

1.0968e−24
+j3.6903e−40

s6 5.5101e−41
+j4.1326e−41

−4.2039e−46
−j5.6051e−46

1.2567e−26
+j3.6827e−40

3.5870e−25
−j7.3804e−41

s7 1.8826e−40
−j2.0203e−40

1.0243e−43
+j3.0828e−45

−4.6035e−40
−j9.511e−40

4.7236e−26
+j2.5243e−40

s8 −1.1479e−40
+j5.5101e−41

−1.8020e−43
−j5.6051e−46

−6.2330e−40
+j5.1814e−40

−2.110e−40
−j5.1437e−40

s9 −1.7448e−40
−j1.6530e−40

6.8383e−43
+j2.5223e−45

−2.2385e−39
+j8.7655e−40

−7.5904e−41
−j1.776e−39

10 13– maxi pi×

ical analog integrated circuits, the complex frequency vari-
able (equivalently the capacitor values) should be scaled
before performing the polynomial interpolation on the unit
circle. Also, this suggests conductance scaling as another
alternative.

For illustration’s sake, Table 1b shows the correct nor-
malized coefficients, which were obtained using a fre-
quency scale factor of 109. The shadowed coefficients are

well above the error level  and can be

considered to be correct.
The effect of conductance and frequency scaling on the

relative value of the coefficients is analogous. Assume that
g is the conductance scale factor andf is the frequency scale
factor, then the normalized coefficientsp'i are:

(11)

whereM is the number of conductances involved in coeffi-
cient . We can observe that increasing the frequency
scale factor has the same effect than decreasing the conduc-
tance scale factor. The main problem is that the appropriate
scale factor is not known a priori.

3.1 Interpolation of high order polynomials

As reported in [6], the scaling procedure described above
works well only for polynomials up to about tenth order (for
typical magnitudes involved in analog integrated circuits).
The main reason behind this is that for higher order polyno-
mials it is impossible to find a scale factor that keeps all the

coefficients within a  range, where

is the number of significant digits desired in the coeffi-
cients.

A possible solution is to try a relatively large set of scale
factors. For each pair of scale factors only a limited set of
coefficients−−those which keep above the error level−−are
equal in both interpolations and can be considered to be
valid.

There is obviously the problem of appropriately selecting
the scale factors. If the distance between them were too
large, some coefficients might never be above the error
level, or be above only for one scale factor. Then, those
coefficients would give a different result for each scale fac-
tor and would not be possible to calculate them correctly. If
the distance between the scale factors is too small, then
many coefficients will be calculated several times, leading
to much higher computational effort.

3.2 Adaptive scaling

The solution we propose to solve these problems is to
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select at each interpolation a region of valid coefficients.
Our objective is to make as few interpolations as possible.
For this, the scale factors must be selected trying to meet
two conditions:···

• The generated regions of valid coefficients must be
separated−−the smaller overlapping the better.

• Joining all valid coefficients must give all polynomial
coefficients.

The proposed algorithm performs successive interpola-
tions. At each interpolation, if coefficients with 6 significant
digits need to be calculated, then all coefficients which prior

to denormalization are smaller than

must be neglected. For each interpolation, the appropriate
scale factors are calculated using information from previ-
ous interpolations.

For a detailed explanation of the proposed algorithm we
will use theµA741 opamp. Due to the limited space and
without loss of generality we will limit ourselves to the
denominator of its voltage gain.

The first interpolation is performed using the inverse of
the mean value of the capacitors as frequency scale factor.
Analogously, the conductance scale factor is calculated
through the inverse of the mean value of the conductances.
The objective of these heuristics is to first generate the wid-
est region of valid coefficients.

For the example above we can observe in Table 2a how
these first frequency and conductance scale factors generate
a region of valid coefficients which goes fromp0 to p12

(light-shadowed). This region is determined from the coef-
ficient with largest normalized absolute value (dark-shad-
owed): all coefficients larger than:

(12)

are considered correct.
To proceed to coefficients with higher powers ofs a new

conductance scale factorg' and a new frequency scale fac-
tor f ' are calculated by normalizing the previous ones:

(13)

andq is given by:

(14)

where pe and pm are the last and maximum coefficients
within the last valid region respectively, andr is a tuning
factor.

A new polynomial interpolation with the scale factors
calculated in (13) gives a new region of valid coefficients.
The objective of (14) is that thee-th coefficient of the pre-
vious interpolation is one of the first coefficients in the new
region of valid coefficients and, hence, the new region has
the smallest overlap with the previous one.

To proceed to coefficients of smaller powers ofs, then

10 13– 6+ maxi pi×

10 13– 6+ 1.28095 124×10× 1.28095 117×10=

g' g

q
-------= f ' f q=

pe q
e

pm q
m

10
13 r+×=

factorq in (13) is calculated through

(15)

wherepb is the first coefficient of the previous valid region.
The results of the first interpolation in the example above

(see Table 2a) are used to calculate new scale factorsf ' and
g' which provide a region of valid coefficients of higher
powers ofs. For this, we apply (13) and (14) usingpe=p12

andpm=p3. The generated valid coefficients are shown in
Table 2b, where the region of valid coefficients has shifted
to the region between the 13-th and the 30-th coefficient. A

third interpolation applying (13) and (14) to the coefficients
in Table 2b gives the remaining coefficients (see Table 3).

The described algorithm has been implemented using
sparse matrix techniques. Each iteration for the example in
Table 2 and Table 3 spends 3.9s on a SPARC Station10.

The accuracy of the results obtained in this example is
demonstrated through the comparison of the Bode diagrams
obtained from the interpolation of numerator and denomi-
nator of the voltage gain ofµA741 and those obtained
through a commercial electrical simulator. Such compari-
son is illustrated in Fig. 2 where perfect matching can be
observed.

pb q
b

pm q
m

10
13 r+×=

Table 2: Denominator coefficients of the voltage
gain of µA741.

(a) First interpolation (b) Second interpolation

si Normalized Denormalized si Normalized Denormalized
s0 −2.82408e+118 −1.6419e−90 s0...

s1 −7.32222e+122 −1.45352e−92 s13 −3.52987e+91 −4.3694e−176
s2 −8.26327e+123 −5.60064e−98 s14 −2.04859e+92−4.25375e−184
s3 −1.28095e+124−2.96432e−104... ... ...
s4 −1.20867e+124−9.55018e−111 s18 −7.57228e+93−1.24499e−217
s5 −7.46903e+123 −2.015e−117 s19 −8.54909e+93−2.35783e−226
s6 −3.17468e+123−2.92428e−124 s20 −7.25477e+93−3.35638e−235
... ... ... ... ... ...
s12 −2.13624e+118−3.11759e−168 s30 −2.7438e+87−2.23949e−329
s13 −8.7689e+116 −4.3694e−176 s31 −2.02556e+86 −2.7733e−339
... s48 ... s48

Third interpolation

si Normalized Denormalized
s0 ...

s31 −9.64426e+99 −2.7733e−339
... ... ...
s39 −3.61933e+103−1.52373e−421
s40 −3.9978e+103−3.13903e−432
s41 −3.48434e+103−5.10259e−443
... ... ...
s47 −2.18689e+100−1.34792e−510
s48 −9.75596e+98 −1.1215e−522

Table 3: Denominator coefficients of the voltage
gain of µA741.



The new polynomial contains the coefficients that still have
to be calculated and need onlyl−k+1 interpolation points.
This reduction of the problem complexity has been applied
to the example above. The CPU time to get the same results
using (17) reduces to 3.9s for the first iteration, 2.3s for the
second one and 0.9s for the third one.

Also, it has been shown in the example above that for a
given scale factor some coefficients are smaller than the
error level. This means that for this scaling, these coeffi-
cients affect the polynomial value less than the error level,
and, hence, can be neglected. Neglecting high order coeffi-
cients is useful because it allows to handle the polynomial
as of smaller order, reducing in this way the number of
points needed in the interpolation.

Conclusions

The fundamental topic of numerical reference generation
for error control in simplification before and during gener-
ation algorithms for symbolic analysis has been addressed.
A new adaptive scaling mechanism has been introduced in
the polynomial interpolation technique. This technique effi-
ciently solves the problems arising when analyzing medium
and large analog integrated circuit. A real world example
has been shown to demonstrate the validity of the proposed
approach.
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If between two consecutive valid regions, with scale fac-
torsf1, g1 andf2, g2, some incorrect coefficients remain, then
new scale factorsfnew, gnew, are calculated as follows,

(16)

Notice that in the algorithm above simultaneous scaling
of both, frequency and conductance is used. This technique
is used to avoid using too large (>~1018) frequency or con-
ductance scale factors. These high values occasionally
occur when using a single scale factor and are responsible
for an increase of the error in the calculation of numerator
and denominator of the transfer function at the interpolation
points.

3.3 Increasing efficiency of the adaptive scaling
mechanism

In each polynomial interpolation the computational effort
depends on the number of interpolation frequencies needed.
The problem complexity can be reduced at subsequent iter-
ations of previous algorithm, once the coefficients of the
largest or smallest powers ofs have been calculated.
Assume the coefficientsp0...pk-1 andpl+ 1...pn have already
been calculated, then the polynomial is transformed as fol-
lows,

(17)
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Figure 2:  Bode diagrams of the voltage gain of
µA741 using the interpolated coefficients and
an electrical simulator.
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