
ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

Exploiting Temporal Independence in Distributed Preemptive Circuit

Simulation

Peter Walker Sumit Ghosh

Division of Engineering Computer Science Dept

Brown University Arizona State University

Providence , RI 02906 Tempe, AZ 85287

paw@cs.brown.edu sumit.ghosh@asu.edu

Abstract

In digital circuit simulation hidden opportunities for

concurrent execution of models often exist, arising from

the propagation delay associated with the generation of

output events by the circuit models. An event predic-

tion algorithm is developed to identify such parallelism

thereby, increasing the simulation execution rate. The

algorithm uses an event prediction network and simu-

lates circuits asynchronously and deadlock free, while

honoring the preemptive semantics associated with dig-

ital circuit simulation.

1 Introduction

The literature reports three principal techniques

for distributed discrete event simulation namely syn-

chronous, optimistic or rollback, and conservative, each

having di�ering properties in regard to exploiting par-

allelism in a simulation. The synchronous approach [1]

is simple to de�ne and implement, but lacks the ability

to utilize the maximal parallelism inherent the simu-

lated system. The optimistic method [2], also known

as virtual-time algorithm or rollback algorithm, has the

ability to exploit the total parallelism in the simulated

system. It however incurs a signi�cant storage require-

ment and in extreme cases domino rollback may occur

[3], devastating the progress of simulation and processes

may spend more time on rollbacks than useful compu-

tation.

In contrast to the rollback approach, the conservative

method always generates accurate results as outputs of

the simulation model. In general, it utilizes less of the

available model parallelism during the simulation but

may require substantially less memory. Further, the

conservative algorithm has the potential of executing

into deadlock. The approach in [4] suggests a deadlock

avoidance method through the propagation of \null"

messages whenever a model executes but fails to pro-

duce a new output transition. Peacock [5] proposes the

use of \probe" messages. Both method conceivably in-

curs a high message cost overhead to the simulation.

Debenedictis, Ghosh, and Yu introduced a novel algo-

rithm for conservative, asynchronous, distributed dis-

crete event simulation, YADDES [6], that is deadlock-

free. It however lacks the ability to accommodate pre-

emption and simulates only a restricted class of circuits.

In this paper we expand on the work in [6] to develop

a conservative algorithm termed P 2EDAS. The algo-

rithm is dead-lock free and distributively simulates arbi-

trary digital circuits, excluding cyclic circuits with zero

delay loops. The algorithm simulates asynchronously

by e�ciently identifying and utilizing all deterministic

instance of parallelism among simulated models. The

remainder of this pager is arranged as follows. Section

2 de�nes the concurrency type we desire to exploit and

is followed by an ine�cient solution as illustration. Sec-

tion 3 describes our algorithm and illustrates its advan-

tages. Finally, section 4 presents simulation results and

conclusions.

2 Concurrency In Circuit Simulation

Two types of concurrency can be de�ned for digi-

tal circuit simulation. Electrical concurrency: In a

real circuit, generally several components are active si-

multaneously due to concurrent stimulation from events

within the circuit. That is, at time t, all components

that are a�ected by events with event-time t are excited

to respond to those input events. Temporal Indepen-

dence concurrency: In responding to input events

a component may schedule new output events, delayed

in time by an amount equal to the time required for the

internal processing in the physical model. In a simula-

tion, the simulator may take advantage of this internal

time delay to determine conditions that allow the exe-

cution of existing events at models that are connected

to

A B

delayBdelayA
WB

WA

Figure 1: Cyclic Circuit

to outputs on which events are pending.

Optimistic simulation uses both concurrency by as-

suming all events are concurrent. P 2EDAS is designed

to exploit both types of simulation concurrency using

conservative methods.

2.1 Simulation Via Event Prediction
Consider a distributed simulation in which each cir-

cuit component is simulated within independent simu-

lation processes. Given the absence of the global event

queue, to ensure correctness in simulation the follow-

ing is required. A simulation clock value, clockN , is

computed for every component N and is de�ned as the

time up to which the model has been simulated. The

clock is manipulated locally and without regard to other

components clock. In the simulation of digital systems

often events are not generated at the output of a compo-

nent following its execution. Under such circumstance,

events are not propagated over to the inputs of compo-

nents that are connected to the output and consequently

their simulation clock value stagnates periodically or

deadlock occurs in the simulation. By computing the

time of next event in the circuit and propagating it, the

simulation clock can be kept active.

Consider the cyclic circuit shown in Figure 1. Propa-

gation delay delayA; delayB are associated with compo-

nents A and B respectively. Assume event at time to is

such that to � (delayA + delayB). The circuit is to be

simulated by computing the time of next event at each

component input so as to determine the instances of

temporal independence concurrency. At initialization,

the predicted time of next event at output of A and B

is respectively WA = 0 andWB = 0. Assume a sequen-

tially ordered computation of prediction values starting

at A. Thus computing the initial prediction computa-

tion yields WA = min(WB + delayA; t0 + delayA) =

min(delayA; t0 + delayA) = delayA. Similarly at B we

haveWB = min(WA+delayB) = delayA+delayB . The

new value of WB is now used in equation to compute

WA. Thus the computation iterates over the loop until

it is determined thatWB > t0 at which pointA realizes

that it may execute the event at time to. The number

of iterations before the executable event in the circuit

is determined is given by Niter = d to
delayA+delayB

e. If

the cost of computing the time of next event at a com-

ponent is Ci; i 2 f1::ng, the prediction cost in given

by Niter

Pn

i=1Ci. In general, if the time di�erence to

the next executable event in a loop is T and loop delay

is dl =
Pn

i=1 delayi, n the number of components in

the loop, the number of iterations to discover the exe-

cutable event is given by Niter = d T
dl
e, which is highly

ine�cient.

3 The P 2EDAS Algorithm

P 2EDAS performs event prediction via an event

prediction network. The network is synthesized for

a given digital system to be simulated and executes

concurrently with the simulation of the behavior de-

scriptions. It consists of mathematical entities, termed

pseudo components, that generate predicted event time.

A predicted event time, de�ned at an output signal of

a pseudo component, is the earliest time at which an

event is expected to be generated at that component

output. The predicted event time is computed sepa-

rately from the actual execution of the behavior de-

scriptions. The simulation utilizes the predicted event

times to determine when execution of models are pos-

sible. Components in a cyclic subsystem have head and

tail pseudo components. Acyclic components have only

head pseudo components. The minimum input pre-

dicted event time to a head pseudo component de�nes

the time up to which the component can be executed

without violating the causality constraints. This time is

called the temporal independence limit, twin. All events

at the input of the simulationmodel with time less than

the temporal independence limit may be executed by

the component model.

3.1 Event Prediction Network(EPN) Syn-
thesis

In constructing the event prediction network for the

digital system under simulation, �rst the combinational

and sequential subcircuits are identi�ed. This is done

by determining the strongly connected components and

synthesizing the EPN for each section. The individual

EPN sections are then connected to make a complete

EPN of the circuit.

For a cyclic subcircuit a feedback edge set [7] given

by S = fE1; E2; � � �Eng of a directed graph correspond-

ing to the subcircuit is identi�ed such that the graph

may be rendered acyclic following the removal of all of

the edges E1 through En. Correctness is not a�ected

by the identi�cation of the minimal feedback edge set

which is a computationally demanding problem for large

circuits [8]. For each Ej; 8j 2 f1; 2; : : : ; ng, in the

original directed graph, a new acyclic directed graph is

constructed by replacing Ei with two unconnected edges

Ein
j and Eout

j .

The EPN for the cyclic subcircuit, is synthesized

from connecting two identical copies of the acyclic cir-

cuit through a prediction switch. The EPN section to

the left and right of the prediction switch are referred to

as the tail EPN and head EPN respectively. The pseudo

components in the EPN are identi�ed as Xt and Xh

respectively, where X refers to the corresponding simu-

lation model. The prediction time at every input port

of a pseudo component Xt that has a label of the form

Ein
j , is permanently held at a large predicted event-time

value represented by the symbol1. An output port of

every Xt that has the form Eout
j is linked to the input

port of pseudo component Yh in the head network that

has a label of the form Ein
j via the prediction switch.

The second input of prediction switch is the output la-

beled Eout
j at the component Xh. Thus, the prediction

switch may be used to select prediction values from the

tail EPN, hence making totally acyclic EPN, or it may

restore the cycle in head network such that the predic-

tion computations are circulated in head EPN.

For acyclic subcircuits, the prediction networks for

those circuits constitute only head components. No pre-

diction switch is required for such circuits either. An

EPN of the circuit in �gure 1 is as shown if �gure 2.

3.2 Simulation Algorithm

A model can execute events up to the value of twin.

The event prediction network is responsible for com-

puting values of twin e�ciently. Every behavior model,

Cn, has a private simulation clock , clockn. Sno , repre-

sents the logical value of the most recent event asserted

at the output o of Cn. Assume that tneo represents the

time of the earliest event in the output event queue cor-

responding to the output o of Cn. Where the output

event queue is empty, tneo is set to1. Assume also, that

tei represents the time of the earliest event at input i of

Cn. Our discussion of P 2EDAS is for cyclic subcircuits

since their simulation is more complex. Thus, assuming

that Cn is included in a cyclic subcircuit, the event pre-

diction network will consist of Cn
t and Cn

h , representing

the tail and head pseudo components respectively. Cor-

responding to every head and tail pseudo component of

Cn, the predicted event time Wn
i and Wn

o are associ-

ated with input port i and output port o respectively.

The simulation steps are as follows.

Initialization: Set all predictions values, Wn
i =W

n
o ,

clockn, tnwin to zero and appropriate inputs of tail EPN

set to in�nity.

Simulation Process at the Model: has the fol-

lowing steps

� Model execution: For a given component,Cn, iden-

tify any and all events, tei , at the input ports such

that tei < tnwin. The behavior model is executed

for all such events, starting with the earliest event.

For every event executed, the clockn value is ad-

vanced to the time of earliest next event that can

be processed. The value of clockn will always be

less than tnwin. The newly generated output events,

if any, are included in the output event queue of the

a�ected outputs.

� Preempt output events using the semantics as de-

�ned in [9].

� Propagation of asserted events: For each output

assert events , tneo , if the relationship tneo � clockn

is true. These events are no longer preemptable.

� Updating the EPN parameters, namely the new

time of events at inputs and logic value at outputs.

� The above steps are continually executed until

clockn exceeds the simulation time of interest.

Execution of pseudo component: For each

pseudo component, input port i, output port o with

logical value So, the function min delay(i; o; So) is the

minimum of transition time to any other logical value

that may be asserted at o. Every pseudo component

computes output predicted event times, Wn
o at every

output o, as

Wo = minfteo ; (min(Wi; tei)+min delay(i; o; So))g 8i:

(1)

If the value is changed, the newly computedWo values is

propagated to the dependent pseudo components. The

head pseudo component also computes tnwin values as

tnwin = minimumfWig 8i: (2)

where i is the set of inputs to the component. When i is

a primary input port, Wi is replaced by maximum sim-

ulation time in the computation of tnwin. If t
n
win changes

the behavior model is alerted. Correctness in the sim-

ulation requires that tnwin be monotonic. Hence if Wi

values in equation 2 have transient non-monotonic val-

ues, the event prediction network must wait until the

Wi values are settled before they are used.

EPN prediction phases: Prediction values propa-

gate from the tail EPN to the head. In the head EPN,

the network �lters the prediction values further by se-

lecting and propagating minimum values. Transitivity

in the cyclic subsystem requires that all paths that af-

fect the input of components be considered in deter-

mining the correct event prediction time values. This

to
to

delay
B

delay
A

1

Bt B
h

A
h

W
Bt W

B
h

At

W
A
h

pseudo component

delay
A

W
At

Prediction Switch

E
out

j

E
in

j

delay
B

HEAD EPNTAIL EPN

Figure 2: An EPN for Cyclic Circuit of �gure 1

is realized by doing prediction on the head EPN with

the cycle closed. Further, the prediction values in the

head network goes through transient values before they

settle to the correct prediction values (or steady state).

By restoring the cyclic structure of the circuit the

prediction process may now behave as the ine�cient

prediction method described previously. This occurs

when stale head prediction values are used i.e., predic-

tion values not related to existing events. Stale pre-

diction values exist when output preemption, schedul-

ing and asserting of new events occurs, requiring that

predicted event time on those outputs be recomputed.

When prediction in the head EPN starts, the predic-

tion values that can be trusted as being related to an

actual event are those that are propagated from the tail

network. To avoid the ine�cient prediction through the

use of stale head prediction values, the prediction in the

head EPN is done in two steps.

� Acyclic Head Prediction: First, prediction

with the prediction switch set to select tail EPN

outputs. This prediction process is acyclic as oc-

curs the tail network. Head prediction values are

updated to re
ect predicted event time based on

actual events.

� Cyclic Head Prediction: A second prediction

with prediction switch set to select cyclic head EPN

values. In this phase the transitive dependence in

the circuit is correctly captured. Thus the network

restores its cyclic structure but using prediction

values related to events, and proceeds to compute a

stable state. Transitivity and non-zero loop delay,

ensures that stable state with correct values will

always be arrived at without deadlock.

As such, the prediction simulation in P 2EDAS uses the

following distinct phases, namely:

1. Tail Prediction Phase: The tail network process

changes in prediction values until no more changes

occur.

2. Head Prediction Phase: Performed with the

sub-phases as described above.

3. Decision and Execution Phase: When the head

prediction is settled, all head pseudo components

concurrently does the following:

(a) Compute the twin, determines if executable

events exist and if so schedule the correspond-

ing simulation model for execution.

(b) Propagate head prediction values to pseudo

components outside the subcycle.

3.2.1 P 2EDAS Prediction Monitors

The phase of a given pseudo component is determined

by the phase associated with the subcycle. Thus each

cyclic subsystem operates in its private phase with-

out regard to the phase of another subcycle, implying

an asynchronous simulation process. As such, a per

subcycle prediction monitor is used to determine when

the simulation in a given cyclic subsystem has reached

steady state and to initiate transition to the next phase.

The prediction process uses the monitor as follows:

For each prediction message sent between pseudo com-

ponents in a given cyclic subcircuit, the sender informs

the prediction monitor. For each message received and

processed from pseudo component in the same subcycle,

the pseudo component subcycle prediction monitor is

informed. During a given prediction phase, the monitor

determines steady state as, when all messages sent have

been received and processed by the pseudo components.

It then initiates transfer to the subsequent phase. Thus

the prediction monitor non-intrusively determines the

Code Name Circuit Components Signals

CPU DLX Processor 19092 23749

TIMER Timer 1063 1612

UROM User ROM 852 984

SROM System ROM 1502 1634

URAM User RAM 12480 12581

SRAM System RAM 12480 12581

Decoder Address Decoder 168 266

Resolver Distributed Resolver 32 259

Table 1: Subcircuits size in DLX computer

completion of prediction phases in the simulation pro-

cess.

3.3 P
2
EDAS Simulation

Consider that the simulation of the circuit in Figure

1 will be done using P 2EDAS. A prediction network of

circuit is shown in Figure 2. Assuming an ordered eval-

uation from left to right, the computation at Bt is given

as WBt = min(1+ delayB ; t
B
ei
+ delayB ; t

B
eo
). Ignoring

the1+delayB term in equation (since it is constant and

does not compete with the other terms) the equation for

WBt may be written as WBt = min(tBei + delayB ; t
B
eo
).

This equation reveals that prediction values are not

considered, only the time of events that exist at the

model. As no events exist at the input and output of

B, tBei = tBeo = 1 and hence WBt = 1. At compo-

nent At the prediction value is computed as WAt =

min(WBt + delayA; t0 + delayA; t
A
eo
). With tAeo = 1

the equation yields WAt = to + delayA. This value is

passed into the head network where computation yields

WBh = (delayA + delayB + t0) and hence, WBh > t0.

For the cyclic prediction phase, this condition remains

unchanged. Thus in a single pass over the prediction

network it is determined that the event at A is exe-

cutable, versus Niter in the iterative approach.

4 Simulation Results and Conclusion

Distributed simulation of circuits was done on net-

work of Pentium 90 workstations, linked by a 100MBit

Ethernet network and running the Linux operating sys-

tem. Each machine was equipped with 16 Megabyte

of RAM and 100 Megabyte of swap space. Simulation

of a DLX [10] computer system was performed. Table

1 shows the description of each major partition of the

system.

Table 2 shows the distributed simulation time of the

system for 3, 5, and 8 processors. The results shows re-

duction in the simulation time between 3 and 5 proces-

sors but an increase between 5 and 8 processors. This is

due to the increase cost of communication as the num-

ber of compute nodes participating in the simulation

increases. The single processor simulation runs for a

Processors 1 3 5 8

Time (sec) 43200 4920 1800 2160

Table 2: Distributed simulation time for DLX Com-

puter

signi�cantly longer time. The reason is that, with the

circuit loaded the simulator consumes 37 Megabytes of

memory. Thus as the simulation progresses a signi�cant

amount of swapping occurs as the machine is equipped

with only 16 Megabytes of RAM. This hi-lights an im-

portant bene�t of distributed simulation. By using mul-

tiple machines, the resource needed for the simulation

at each machine is greatly reduced.

In conclusion, we have introduce a new distributed,

conservative, asynchronous simulation algorithm which

shows scalable performance. The algorithm simulates

arbitrary digital systems. It supports preemption, as

occurs in digital circuit simulation, is deadlock free and

is capable of exploiting all available deterministic par-

allelism in the simulation.

References
[1] J. Misra. DistributedDiscrete-Event Simulation. Computing

Surveys, 18(1):39{65, March 1986.

[2] D. Je�erson. Virtual Time. ACM Transactions on Program-

ming Languages, 7(3):404{425, July 1985.

[3] J.V. Briner, J.L. Ellis, and G. Kedem. Breaking the Barrier
of Parallel Simulation of Digital Systems. In Proceedings

of the 28th Design Automation Conference, San Francisco,
June 1991.

[4] K.M. Chandy and J. Misra. AsynchronousDistributed Simu-

lation via a Sequence of Parallel Computations. Communci-

cations of the ACM, 24(4):198{206, April 1981.

[5] J.K. Peacock and Wang and Manning. Distributed Simu-
lation Using a Network of Processors. Computer Networks,
3(1):44{56, 1979.

[6] Eric Debenedictis, Sumit Ghosh, and Meng-Lin Yu. An
Asynchronous Distributed Discrete Event Simulation Algo-

rithm for Cyclic Circuits using Data-
ow Network. IEEE

Computer, 24(6):21{33, June 1991.

[7] Narsingh Deo. Graph Theory with Applications to Engineer-

ing and Computer Science. Prentice Hall Inc, 1974.

[8] S. Chakradhar, A. Balakrishnan, and V. D. Agrawal. An
exact algorithm for selecting partial scan
ip-
ops. In Proc.

31st ACM/IEEE Design Automation Conference, pages 81{
86, June 1994.

[9] Sumit Ghosh and Meng-Lin Yu. A Preemptive Schedul-
ing Mechanism for Accurate Behavioral Simulation of Digi-
tal Designs. IEEE Computer, 38(11):1595{1600, November
1989.

[10] John L. Hennessy and David A. Patterson. Computer Ar-

chitecture: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., 1990.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

