
Abstract
We present a gridless multi-layer router suitable for stan-
dard cell circuits using central terminal model (CTM)
cells. A CTM cell has pins in the middle which split the
over-the-cell routing region into top and bottom parts. Our
router routes nets in both the channel (if needed) and over-
the-cell. The router uses a combined constraint graph and
tile expansion algorithm. It achieves channelless solutions
for the Primary1 circuit by routing over the cell in three
layers. For classical channel routing examples, it achieves
solutions at density for Deutsch’s difficult example in two,
three, four and five metal layers. It also generates equal or
better results compared to the best of the previous channel
routers for all the examples we have tried.

1 Introduction

The detail routing problem for standard cells is an
important issue in VLSI physical design automation. As
multi-layer metal technology evolves, a router has to han-
dle the fact that the different metal layers have different
design rules and routing over the cell becomes available.
For a grid-based router, different grid sizes can cause a via
alignment problem between different layers. Some critical
nets (e.g. clock, power nets) need to be routed with a
larger wire width than other signals. To handle these prob-
lems, our router takes two gridless approaches -a graph
based pre-routerand a tile expansion maze router. It
routes nets in the over-the-cell region for theCentral Ter-
minal Model (CTM) cells.

Central Terminal Model (CTM) cells have pins in the
middle and split the over-the-cell(OTC) routing region
into a top part and a bottom part. In this model, a channel
router is able to process the problem by moving the
boundaries of the channel to exclude the intra-cell routing
wires and evenly utilizing the bottom half of one OTC
region and the top half of another. We use our “channel”
router to do over-the-cell routing in the multi-layer stan-
dard cell layout system that we are developing. All of our
CTM cells [22][23] are automatically generated such that
their pins are near the centers of the cells (in they direc-
tion, where the rows run horizontally). A “channel” in our
system has its top pins near the center of one row and its
bottom pins near the center of the neighboring row just

below the previous one.

Our experimental results in Section 7 show that a pure
maze router doesn’t generate a good solution efficiently.
Usually, an intensive rip-up and reroute process is neces-
sarily involved in order to achieve the best result for a
maze router. The rip-up and reroute process runs rigorously
and slowly for congested channels or areas. However, an
efficient rip-up and reroute process would require global
information on net-ordering. We therefore developed a
graph based algorithm to pre-process the net-ordering
problem to assist the maze router, and thus quickly gener-
ate a good gridless solution. Our combined approach has
the time efficiency of a graph-based router and the better
results of a maze router.

Constraint graph based algorithms for two [7] and three
[8][9] metal layers have been developed. The three layer
routers [8][9] use two separate graphs to represent the pair
of H-V (horizontal-vertical) layers. Instead, we developed
a new unified multi-layer constraint graph (MCCG) to
store constraints from all H and V metal layers. The algo-
rithm for the layer assignment of pins and horizontal wires
in the multi-layer problem also uses the MCCG to select a
least-cost assignment.

However, the graph-based algorithm doesn’t have infor-
mation on how to generate useful doglegs and overshoots.
For very congested channels, we observe that overshoot
doglegs and an unrestricted layer wiring scheme are help-
ful to reach the density solution. There are many routing
algorithms that can handle doglegs efficiently, such as the
symbolic router YACR2[6], MIGHTY[5], Mulch[12],
Chameleon[13], dogleg router[10], the three-layer
router[14], the four-layer router[11] and greedy rout-
ers[15][16][17]. However, these routers either cannot han-
dle an arbitrary number of layers or they cannot handle
variable width wires. We take the tile expansion maze rout-
ing approach to generate necessary doglegs and thus opti-
mize the preliminary solution of the constraint graph based
pre-router.

The tile expansion routing model has been developed for
area routers [2][3]. Both of them adopt the restricted layer
wiring scheme and only allow H-V tile expansion on
neighboring layers. Our tile expansion router allows
expansions along the orthogonal direction or the straight
direction on the same layer or neighboring layers. This
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flexible routing style is achieved by a special technique
called thedual tile plane. The dual tile plane, which is
constructed by simply transforming the coordinates of cor-
ner-stitched horizontal strips, has the advantages of fast
and symmetrical horizontal and vertical expansions. An
efficient multi-level rip-up and reroute algorithm is imple-
mented to iteratively move nets from an uncongested track
to other tracks so that the uncongested track can be elimi-
nated.

The remainder of the paper describes our multi-layer
rip-up and reroute tile expansion channel router called
Sockeye. Sockeye is the first report of the use of a tile
expansion maze router for thevariable heightchannel
routing problem. By variable height channel routing we
mean that a single execution of the routing algorithm will
result in a completely routed channel. The only thing that
is not determineda priori is the height or number of tracks
needed. In contrast, all previous uses of the maze routing
algorithm in routing have been in the domain of fixed area
routing. In this case, either the router will succeed in rout-
ing the specified netlist in the provided area or it will fail.
Should it fail, the user (or a controlling program) must
completely restart the router from the beginning while
providing increased routing area (usually tracks). Typi-
cally this process iterates several times before the routing
of a channel or area is completed. Sockeye addresses the
variable height channel routing problem as follows: First,
it quickly generates an initial solution using a graph-based
pre-router which is briefly described in Section 3. Second,
employing a tile expansion maze router, it iteratively
selects a track and then seeks to reroute the nets using this
track to the other tracks. Should it be successful, the empty
track is deleted. The iterations continue, starting with the
least congested tracks, until the multi-layer channel is
routed in density or a predetermined time limit has been
exceeded. As our results will show, almost always the
former occurs first. In any case, a completely routed chan-
nel is the result. We describe the CTM cell model in Sec-
tion 2 and the graph-based pre-router in Section 3. The
routing model of the corner-stitching data structure and the
dual tile plane is described in Section 4. Section 5 presents
the tile expansion models, maze routing algorithm and
multi-level rip-up and reroute algorithm. The time and
space complexities of the tile expansion algorithm are
described in Section 6. Our experimental results are shown
in Section 7.

2 The Cell Model

The standard cell design style has been used for
decades. Due to the processing technology improvement
to multiple metal layers, cell design for over-the-cell rout-
ing has become an important key feature to increase the
layout density in the last few years. Many physical cell
design models have been proposed [22][23][24][25][26]
[27][28]. In order to utilize the over-the-cell routing area
for inter-cell routing by a channel router, we adopt thecen-
tral terminal model(CTM) in [22][23]. Our approach uses

a generic channel router to evenly assign nets into the
combined routing region between the line of top pins and
the line of bottom pins on each layer.

In some other cell designs which have pins along the
boundaries of the cells, the over-the-cell routing problem
is solved in association with the channel routing problem
[27]. The dependency between the over-the-cell routing
process and the channel routing process prohibits the rout-
ing problem from being solved in parallel (i.e. the inter-
cell routing between a pair of rows cannot be solved inde-
pendently of other pairs of rows). Our approach deter-
mines the inter-cell routing between two rows without
using routing regions in other rows and thus processes the
routing problem in parallel.

We show an example of the CTM cell in Figure 1(a).
The inter-cell over-the-cell routing regions are shown
(shaded areas) in Figure 1(b) and (c).
Figure 1: Center terminal model [22][23] and the inter-

cell routing boundary of the cell

3 The Constraint Graph Based Pre-Router

Our multi-layer graph-based pre-router based on ideas
from Howard Chen’s two-layer router in [7]. We have also
proposed a number of extensions to this prior work

3.1 The Constraint Graph Based Routing Model

Horizontal Constraints and Vertical Constraints

Each layer is chosen to route only either horizontal (H)
wires or vertical (V) wires. A multi-terminal net is broken
into two-pin nets. A vertical constraint (VC) is introduced
when two vias have a vertical violation on the V layer. A
horizontal constraint (HC) is introduced when two hori-
zontal wires have a horizontal violation on the H layer.

Node and Graph

A node represents a two-pin net. An edge between two
nodes could be either directed as a vertical constraint or
undirected as a horizontal constraint. A vertical constraint
graph (VCG, see Figure 2(b)) is composed of nodes with
directed edges. A horizontal constraint graph (HCG, see
Figure 2(c)) is composed of nodes with undirected edges.
A combined constraint graph (CCG, see Figure 2(d)) is
composed of nodes with undirected and directed edges.
The VCGs from the vertical layers and the HCGs from the
horizontal layers are merged to form themulti-layer com-
bined constraint graph (MCCG). Unlike the other graph
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based routers[8][9] using separate routing graphs for each
pair of layers, we have aunified graph for the multi layers.
Based on this constraint graph model, we developed a
multi-layer pre-router.

Figure 2: Examples of combined constraint graphs

3.2 The Algorithm

The channel routing problem could be considered as a
one-dimensional compaction problem. The goal is to
reduce the channel height. We transform the geometrical
dependency information of nets into a constraint graph. By
assigning all the undirected edges to proper directions, we
can determine the proper order of nets and obtain acom-
plete MCCG. The longest path of the MCCG is equivalent
to the channel height of the layout. Thus, a gridless chan-
nel routing problem is transformed into the problem of
minimization on the critical path of the MCCG by assign-
ing proper direction for undirected edges (see Figure 2(e)
(f)).

Problem Formulation - In the multi-layer problem, each
vertical (V) layer has at least one adjacent horizontal (H)
layer and each horizontal layer has at least one adjacent
vertical layer. For example, a four layer partition model
can be one of the HVHV, VHVH, HVVH and VHHV
schemes. The pins can only reside on V layers. The hori-
zontal metal segments can only reside on H layers. The
vertical segments are constructed from pins to horizontal
segments.

The algorithm is divided into two phases. First, pins and
horizontal wires of nodes are assigned to proper layers
with minimum weight such that the length of the critical
path of the MCCG is minimized. Second, the edge assign-
ment algorithm processes undirected edges in the MCCG
to minimize the length of the critical path. The layout is
obtained from the complete MCCG. These algorithms are
described in subsections 3.2.1 and 3.2.2.

3.2.1 Layer Assignment of Pins and Nodes

In a hierarchical design style, the layer assignment of
pins can be done in the global routing stage or in the detail
routing stage. Our router allows the processing of the layer
assignment of pins in the detail routing stage. If the pins
have been already assigned in the global routing stage,
only the layer assignment of horizontal wires (nodes) is
invoked. The layer assignment for horizontal wires has
four different schemes (see Figure 3). All the possible H
and V layer combinations for pins and horizontal wires of
the two-pin nets are tested iteratively. The combination

1

12

2

3

3 2

1
3

2

1
3

2

1
3

(a) Pin list before processing

1

12

2

3

3

(e) Layout after processing

(b) VCG (c) HCG (d) CCG

2

1

3

(f) ProcessedCCG

with minimum weight for nodei (i.e. the length of the
longest path through nodei in the MCCG) is chosen and
then the pins and the horizontal wire of nodei are assigned
to the chosen layers. This layer assignment process effi-
ciently minimizes the longest path in the MCCG.

Figure 3: Layer assignment of horizontal wire

The three-layer Trigger algorithm[8] takes a different
approach. It assigns all horizontal wires to horizontal lay-
ers H1 and H2 initially and generates weighted constraint
graphs WCG1 and WCG3 for H1V2 and V2H3 respec-
tively. It takes an insert-all-and-remove approach which
can not handle the multi-layer pin assignment problem
because the pins can be on other than the V2 layer for a
general multi-layer problem. Our approach is an insert-
one-after-another style. According to the given prefixed
layer routing scheme, our layer assignment process tries
all the possible layer combinations and chooses the best.
The preliminary MCCG constructed in this process is fur-
ther processed by the edge assignment algorithm, which is
described in the following subsection.

3.2.2 Edge Assignment

An extended multi-layer version of the two-layer Glitter
algorithm[7] was developed to process the undirected
edges in the MCCG. Instead of a weighted constraint
graph for the two-layer channel routing problem, we use
the MCCG to combine multiple VCGs and multiple HCGs
for the multi-layer channel routing problem. The Glitter-
like algorithm is applied to process the MCCG as follows:
1) Theedge selection algorithm is first invoked to process
the most demanding undirected edges, i.e. those undi-
rected edges which would increase the length of the criti-
cal path if assigned to an improper direction, 2) thenode
selection algorithm is applied to choose the most demand-
ing nodes, i.e. those nodes which are on the critical path
and closest to the boundaries, and to place them close to
either the upper boundary or the lower boundary, and 3)
procedures 1 and 2 are iteratively executed until all the
nodes and undirected edges are processed.

4 The Tile Expansion Routing Model

The initial solution from the graph based pre-router is
first converted into the corner-stitching tile representation
in the second stage. The corner-stitching data structure has
advantages in retrieving the local geometric information
and the space interval information. It was introduced by
Ousterhout[1]. Tiles on the plane are stitched and com-
bined either into strips of maximal horizontal extent called
a horizontal (H) tile plane or strips of maximal vertical
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extent called a vertical (V) tile plane.
Figure 4: Dual tile plane representation

A special technique to mirror the coordinates of an H
tile plane at 45 degrees can produce a dual V tile plane.
We define this type of coupled H and V tile planes as the
Dual Tile Plane (see Figure 4(b), (c)). The coupled H and
V tile planes have consistent geometric information on
solid tiles except the coordinates are switched mutually on
both planes. The maximal H (V) strip tiles on the H (V)
tile plane allow fast tile expansion in the H (V) direction.
It extends the horizontal routing efficiency of the conven-
tional single tile plane to both directions of tile expansion.

The dual tile planeDi is the coupled H (denotedDiH)
and V (denotedDiV) representation for metal layeri.

5 The Tile Expansion Routing Algorithm

Our tile expansion router essentially takes the A* maze
routing algorithm technique[4] and uses a metal expansion
model and a via expansion modelto find a feasible route
with minimum cost. Themetal expansion model is applied
when the routing path is expanded on the current metal
layer. Thevia expansion model is applied when the rout-
ing path is expanded to the adjacent metal layer. Our
expansion models allow unrestricted layer routing - H to
V, H to H, V to H and V to V. The rip-up and reroute algo-
rithm allows overlapped expansion, in which it seeks a
feasible route with a minimum of overlapping with exist-
ing solid tiles. We describe the expansion models in sec-
tion 5.1 and explain the A* maze routing algorithm in
section 5.2. The multi-level rip-up and reroute scheme is
presented in section 5.3. The summary of the Sockeye
algorithm is in section 5.4.

5.1 Expansion Models and Rules

A tile (space or solid) can be expanded either into a tile
(space or solid) on the same dual plane or into a tile (space
or solid) on the neighboring dual plane. A solid tile with a
different signal from the current routing signal is called a
non-equivalent tile. A non-equivalent tile is allowed to be
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used in the rip-up and reroute stage. A tile isexpanded if
the expansion path has gone through it. A tile isgenerated
if an expanded node selects it for the next step of expan-
sion. The current selected working tile on the end of the
expansion path is called anactive tile (see H0 in Figure
5(a)).

5.1.1 Metal Expansion

Tile expansion on the same metal layer is calledmetal
expansion. It essentially generates the necessary metal
wire on the expansion path. The expansion can be along
both directions. The terminology for this expansion
method is described as follows:
Expandable Area -The maximum rectangular space area

covering the selected tile is the expandable area. The
fragmented space tiles are accumulated into a large
enough area which satisfies the design rules for routing
the metal wire (see the expandable area of H4 in Figure
5(a)).

Routing Path for Metal Expansion -The routing path for
metal expansion is the formation of metal wires. It is
constructed from the left boundary to the right boundary
inside the expandable area (see Figure 5(b)).

Effective Routing Path for Metal Expansion -The actual
metal covered area on the routing path is called the effec-
tive metal routing path. See the blockeof active node H3
in Figure 5(c), (d)).
Figure 5: Expandable area and metal routing path

The active tile first selects the neighbor tiles or over-
lapped tiles on the same layer as candidates. Then strict
design rules are applied to check the routing path of these
selected tiles. Only qualified tiles are generated by the
active tile.

5.1.2 Via Expansion

The tile expansion between neighboring metal layers is
called via expansion. It essentially generates a necessary
via and metal wires on both adjacent layers. The expan-
sion can be along both directions. The terminology for this
expansion model is described as follows:
Routing Path for Via Expansion - The routing path for via

expansion consists of two parts - the metal routing path
and the via block. The metal routing path (blockb in Fig-
ure 6(a)) is constructed like the routing path in metal
expansion. The via block is the formation of a via
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between the active tile and the selected tile (see blocka
in Figure 6(a)).

Figure 6: Via Expansion on Dual Tile Plane

Effective Routing Path for Via Expansion -The effective
routing path for via expansion consists of two parts - the
effective metal routing path and the via block (e.g.
blocksc andd in Figure 6(b), Di-1H0 is the active node).
The active tile first selects the overlapping tiles on the

adjacent layers as candidates. Then, strict design rules are
applied to check the routing path of these selected tiles.
Only qualified tiles are generated by the active tile. Our
via expansion algorithm allows expansion along the same
direction on two adjacent layers to increase the optimiza-
tion capabilities of the maze router.

5.2 Maze Routing Algorithm

We use the A* algorithm as the search algorithm in our
tile expansion router. The A* algorithm was introduced to
the routing problem by Clow [4]. It is an efficient maze
routing algorithm with the time efficiency of a depth-first
algorithm but still guarantees to find the optimal path
according to the given weight function.

In every step of expansions, the metal expansions (H to
V, H to H, V to H and V to V) and the via expansions (H to
V, H to H, V to H and V to V) from the least-cost tile are
tested to propagate the wave. By expanding tiles incre-
mentally from the starting pin tile toward the goal pin tile
according to the A* algorithm, an optimal route is found
when the goal pin tile is expanded. We implemented a rip-
up and reroute algorithm based on the maze routing algo-
rithm in a strip-by-strip removal scheme to compact the
channel height. It is described in the next section.

5.3 Multi-level Rip-up and Reroute

The rip-up and reroute (RR) algorithm allows the
expansion path to overlap with anon-equivalent solid tile
having a different signal than the current net being routed.
By applying thisoverlapping tile expansion feature, a fea-
sible optimal (with respect to the cost function used) route
is always found with a minimum of overlapping with non-
equivalent solid tiles by the maze router. The router first
rips up those two-pin nets which own the overlapping non-
equivalent solid tiles, draws the new route for the current
net, then continues this rip-up and reroute process for
those ripped up overlapped nets.

To prohibit nets from being cyclically thrashed out by
each other in congested channels, a multi-level control
mechanism was implemented. Thelevel of rip-up and
reroute is defined as the number of times that the rip-up
and reroute procedure has been executed recursively. A
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feasible route found at a leveli RR process is denoted as a
tentative route. A tentative route in the level0 RR process
is not allowed to overlap with non-equivalent tiles. A least
congested horizontal region (which would be a track in a
grid-based problem) in the channel is selected, all the nets
overlapped with that region are ripped up and rerouted
elsewhere by a leveln RR process. The leveln RR process
for nodep is accomplished by following procedures - (1)
search for a tentative route, (2) remove nets which own the
overlapped tiles on the route, (3) draw the route, (4) run a
leveln-1 RR process for the removed nets, (5) if any net in
step 4 fails, collect thefailed solid tiles owned by the
failed nets, and (6) call procedure 1 withn = n-1 and with
the failed solid tiles not being allowed to be expanded. If
the level n RR process fails to reroute nets from the
selected region to elsewhere, find the next least congested
region and continue the process. In our implementation of
the multi-level RR algorithm, amulti-level backtracking
queue is developed to restore the tile planes if any level of
the RR process fails.

5.4 Summary of the Sockeye algorithm

Previous uses of the maze routing algorithm in routing
have been in the domain of fixed area routing. In this case,
either the router will succeed in routing the specified
netlist in the provided area or it will fail. Should it fail, the
user (or a controlling program) must completely restart the
router from the beginning while providing increased rout-
ing area (usually tracks). Typically this process iterates
several times before the routing of a channel or area is
completed. This can be an exasperating experience when
confronted with today’s very large ASICs containing 100
channels or more.

Sockeye addresses the variable height channel routing
problem as follows: First, it quickly generates an initial
solution using the graph-based pre-router. Second,
employing the tile expansion maze router, it iteratively
selects a track and then seeks to reroute the nets using this
track to the other tracks. Should it be successful, the empty
track is deleted. The iterations continue, starting with the
least congested tracks, until the multi-layer channel is
routed in density or a predetermined time limit has been
exceeded. As our results will show, almost always the
former occurs first. In any case, a completely routed chan-
nel is the result.

6 Complexity of the Algorithm

The execution time of the graph based routing algorithm
is significantly less than the tile expansion maze router’s
execution time. Therefore we focus our complexity analy-
sis on the tile expansion maze router.

The storage requirement of the tile expansion algorithm
is composed of the tiles in the dual corner-stitching tile
planes, the nodes in the tile expansion tree and the back-up
tiles in the back-tracking queue. First, the number of solid
tiles is proportional to the number of two-pin nets. The



storage requirement for dual tile planes is O(n), wheren is
the number of two-pin nets in the problem. Second, the
number of nodes in the tile expansion tree is equal to the
number of tiles on the dual tile planes, which in the worst
case is when all solid tiles and space tiles are generated
and we cannot find a feasible route. Thus the storage
requirement for the tile expansion tree in the worst case is
also O(n). Third, the storage requirement for the multi-
level backtracking queue depends on the complexity of the
multi-level RR process. The backtracking queue backs up
the modified or deleted tiles from the executed tile opera-
tions which rip up nets and draw nets on the dual tile
planes at each RR level. Let the number of backed up tiles
for a net construction be a constantCT and that for a net
destruction to be a constantDT. In the worst case that all
nodes in a levell RR process have overlapping tentative
routes and recursively invoke a levell-1 RR process to
reroute their descendent nodes, (r(CT+DT))l back-up tiles
are stored for each successful route, wherer is the average
number of overlapped nets in each level. In the worst case
that the new route overlaps with all other existing routes,r
is equal to (n-1). However, the worst case is highly
unlikely since in most cases a non-overlapping route for a
net can be found with no need to invoke a levell-1 RR
process, in which the expected and observed space com-
plexity is O(n). For the worst case, the space complexity
of our algorithm is O(n + (n-1)l) = O(nl).

The maze routing algorithm has two hierarchical parts -
the route searching procedure and the multi-level rip-up
and reroute procedure. The execution time for the route
searching procedure is O(n) in the worst case in which the
tile expansion tree generates all the tiles on the dual tile
planes if no route can be found. But this is very unlikely.
The execution time to draw a new route is O(n), because
the tile creation is proportional to the number of space tiles
[1]. The worst case of the searching procedure occurs
when the new route always overlaps with the existing nets
and thereby invokes the next level of the RR process. The
level l RR procedure calls the route searching procedure
(R • OL)l • Q times, whereR is a user specified limit on the
number of tentative routes for each level,OL is the aver-
age number of overlapping nets with a tentative route and
Q is the number of nets on the given rip-up and reroute
region (track). In the worst case that all the nets exist in the
removed region (Q= n) and the new optimal route overlaps
with all other existing nets (OL = n-1), the time complex-
ity is O((R • n)ln • n) = O(nl+2). However, we found that
the route searching procedure is usually able to find a non-
overlapping tentative route and therefore the expected or
observed time complexity is O(n2).

7 Experimental Results

Sockeye is implemented in GNU C++ and runs on Unix
systems. The current use of Sockeye is in the realm of
gridless over-the-cell routing problems for CTM cells
which are transformed into variable height channel routing
problems, complete with blockages and prerouting (due to

intra-cell routing). Since the classic benchmark examples
for channel routing are all gridded, we also demonstrate
the effectiveness of Sockeye on these gridded examples.

Figure 7: A test channel from Primary1 (an MCNC
benchmark circuit) (density=15) routed in one channel
track using three metal layers (shaded area is the intra-

cell wire)

We tested the router on the Primary1 circuit using three
layers and the cell library from [22][23]. The placement
for Primary1 was obtained using TimberWolfSC[30][31],
and the global routing was generated by Timber-
WolfGR[29].

Figure 7 shows the complete routing solution of a
Primary1 test channel with density=15 routed using only
one channel track. A complete routed solution for
Primary1 is shown in Figure 8. The number of channel
tracks is shown in Table 1, in which 2CR stands for the
channel density routed by a two-layer channel router and
3CR stands for the channel density routed by a three-layer
channel router. Our router generates a channelless solution
for every channel and outperforms other OTC routers (see
Table 2). Note that ICR-3[24] also routes CTM cells. Our
router takes less than 5 seconds to complete every channel
in Table 1 on an Intel PentiumPro 200MHz.

Our router also outperforms the other channel routers on
the benchmark circuits. A comparison with other multi-
layer routers for Deutsch’s difficult example [19] is shown
in Table 3. The two-layer and three-layer results for exam-
ples 3a, 3b, 3c in [18] and the randomly generated exam-
ples r1-r4 in [21] are compared with other routers in Table
5. Deutsch’s difficult example is denoted asdiff. The chan-
nel height numbers marked with an asterisk are results not
achieved previously by any other router. The channel
height of two-layer solutions routed by the graph-based
pre-router and the number of RR levels applied to each
example are also shown in Table 5. The execution times
are for a Digital AlphaStation 250/266. Some examples
are marked with two numbers for CPU time, the left num-
ber is the time needed to achieve a density plus one solu-
tion and the right number is the time for a density solution.
Figure 10 shows how the time is distributed in eliminating
uncongested tracks for the r4 example in two layers as
Sockeye approaches a density solution (the 24 track initial
solution is generated by the pre-router). We observed that
density solutions can be achieved for examples 3a, 3b, 3c
by a level 1 or 0 RR process. For the more difficult exam-
ples, a level 5 RR process is sufficient to achieve density
solutions. The layout of a two-layer solution for Deutsch’s
difficult example is shown in Figure 11. It is noteworthy



that we did not permit stacked vias for the 3 or more layer
cases. Nonetheless, our multi-layer gridless router still
obtained equal or better results than the other routers in all
cases. Summing the number of tracks for the best reported
routing result for each of the eight examples yields the plot
shown in Figure 9. Note that Sockeye reached the density
solution for all eight examples.
Figure 8: A complete layout of PrimaryI in three metal

layers

Figure 9: Routing quality vs. time frame

Figure 10: Incremental execution time toward a density
solution for the r1 example in two layers

The value of the graph based pre-router in solving the
net ordering problem is readily seen from the data in Table
4. In producing the data for this table, we turned off the
graph based pre-router. In other words, only the tile expan-
sion A* maze router was used. Even though the maze
router was given 2-4 extra tracks beyond density, it was
still unable to find a valid routing (except for one exam-
ple), even after extensive rip-up and reroute. This proves

Channel
 #

2CR
(tracks)

3CR
Sockeye
3-layer

1 7 4 0
2 8 4 0
3 11 6 0
4 13 7 0
5 14 7 0
6 12 6 0
7 14 7 0
8 13 7 0
9 13 7 0
10 12 6 0
11 7 4 0
12 9 5 0
13 9 5 0
14 9 5 0
15 9 5 0

Total 160 85 0

Table 1:Channel height in
Primary I routed in 3 metal

layers

OTC Router WILMA ICR-3 Sockeye

2CR 298 298 160
3CR 172 172 85

OTC routing
in 3-layer

83 104 0

Improv. % 52 42 100

Table 2: Comparison with OTC
routers on Primary I

# of layers
(wiring
scheme)

2
(HV)

3
(HVH)

4
(HVHV)

5
(HVHVH)

Density 19 10 10 7
Our router 19 10 10 7
Chame-
leon [13]

19 11 10 7

F-F-L [20] 10 7
Table 3: Comparison of multi-layer

routers for Deutsch’s difficult
example

140

149
1984 1986 1988 1990 1992 1994 1996

total density (tracks) in 8 examples* Sockeye

*r1-r4, YK3a-3c, Deutsch’s difficult examples in two layer model

23 22 21 20

log10(timesec)

tracks

0.7

2.4

1.4

0.0
24

that a fast graph-based pre-router can greatly improve the
results produced by a pure maze router, both in routing
quality and run time. This is a result not previously
reported in the literature and apparently not known in
practice.

8  Conclusion

We have presented a gridless multi-layer router for cen-
tral terminal cells by using a combined constraint graph
and tile expansion algorithm. Our approach represents the
first maze router to take advantage of a graph based algo-
rithm to solve the net ordering problem. It achieved chan-
nelless solutions for the Primary1 circuit by routing over
the cell in three layers. For classical channel routing exam-
ples, it achieved solutions at density for Deutsch’s difficult
example in two, three, four and five metal layers. It also
generated equal or better results compared to the best of
the previous channel routers for all the examples we have
tried. In fact, Sockeye is the first router to achieve density
solutions for the r1, r3 and r4 examples for two layers and
for the r3 example for three layers.
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