
ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc.  To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

Cartesian Multipole Based Numerical Integration for 3D Capacitance Extraction

U. Geigenmüller and N.P. van der Meijs

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: uggmllr@cas.et.tudelft.nl, nick@cas.et.tudelft.nl

Abstract
Application of the hierarchical Schur algorithm to the

boundary element method for 3D capacitance extraction
shifts the speed bottleneck from inversion of the influence
matrix to its calculation. We show how the numerical inte-
gration required for the latter can be accelerated by an or-
der of magnitude with the aid of a multipole expansion in
Cartesian formulation. The scheme differs essentially from
that of the FASTCAP extractor.

1 Introduction
In submicron integrated circuits, where the vertical size

of the interconnects is typically not small compared to their
minimum lateral size, a reliable determination of intercon-
nect capacitances cannot be achieved with simple formulas
based on area and perimeter of the conductors. Instead, a nu-
merical solutionof Poisson’s equation in three dimensions is
required. When the circuit is embedded in a stratified dielec-
tric medium, this task can generally best be handled using
the boundaryelement method (BEM) [1], since then only the
conducting surfaces need to be discretized.

A BEM calculation consists of the following steps:
1. tile the conducting surfaces with boundary elements

(BEs),

2. calculate for all pairs of BEs the influence matrix element
Gµν, i.e. the (weighted average of the) potential generated
on BE µ due to a charge density on BE ν,

3. invert the influence matrix G, and

4. determine the short-circuit capacitance matrix C as

Ci j = ∑
all BEs µ

on conductor i

∑
all BEs ν

on conductor j

�
G−1

�
µν

: (1)

When using a general-purpose routine for inverting the
influence matrix, such as Gaussian elimination, the mem-
ory complexity scales as O(N2) and the time complexity as
O(N3), where N denotes the number of boundary elements.
This is only tolerable for relatively small N. If the BEM is
to be applied to large ICs, both complexities need to be re-
duced substantially.

One way of overcoming the time complexity is the use of
the fast multipole algorithm, implemented in the FASTCAP

extractor by Nabors and White [2]. In the inversion step,
when the BE charges are calculated for given BE potentials,
this method does not treat the influence of distant BEs indi-
vidually, but rather uses a multipole expansion of their com-
bined effect. By using this algorithm, together with a gener-
alized conjugate residual method, FASTCAP achieves a re-
duction of the time complexity toO(N ×m), where m ∝ N is
the number of conductors.

An alternative scheme for reducing the computational
complexity, which is particularly suited for application to in-
tegrated circuits, is based on the omission of all direct ca-
pacitive couplings for distances beyond a selectable cut-off
value w. In this way only a band matrix needs to be stored
and inverted. Experience shows that in typical IC intercon-
nect structures, sufficiently precise capacitance values can
be achieved with rather small cut-off distances. However, to
avoid unphysical artifacts such as negative capacitance val-
ues, the cut-off must be introduced in an indirect way, by re-
quiring that all the elements of the inverse matrix G−1 with
mutual distance larger than w vanish. Then one furthermore
has the advantage of reducing the capacitance model to be
used in a simulation program.1 An efficient algorithm that
accomplishes this task, the so-called hierarchical Schur al-
gorithm, has been developed [3], implemented [4] and re-
fined [5] in the SPACE2 extractor. The hierarchical Schur al-
gorithm reduces the time complexity toO(Nw4), while the
memory requirement becomesO(

p
Nw4). Note that w is in-

dependent of the layout size.
In fact, the acceleration of the matrix inversion by the hier-

archical Schur algorithm can be so large that the calculation
of the matrix elements Gµν, rather than the inversion of the
matrixG, becomes the bottleneck in execution speed. In one
way or another, computation of Gµν requires the evaluation
of a four-dimensional integral, viz. two-dimensional inte-
grals of the electrostatic Green function with respect to both
arguments. In the simplest case, the Green function is just
the Coulomb potential. When a ground plane and a stratified

1This cannot be accomplished by “sparsifying” G itself, since the in-
verse of a sparse matrix is, in general, not sparse.

2SPACE is actually a full-featured layout to circuit extractor, of which
3D capacitance extraction is an integrated part. Starting from e.g. a GDS II
layout SPACE directly produces a SPICE netlist ready for simulation.



ambient dielectric are present, however, the Green function
takes the form of an infinite sum over image charges. For
the Coulomb potential and polygonal boundary elements,
one of the integrations can be done analytically [6]. Due
to transcendental functions in the analytic formulas, how-
ever, on RISC machines numerical integration may actually
be faster than the use of these formulas. No analytic formu-
las are known for the second integral. There is a vast lit-
erature on fast numerical integration formulas for triangu-
lar and quadrilateral domains [7], but even with very effi-
cient integration rules the time needed for calculation of the
matrix elements typically dominates the total execution time
when the hierarchical Schur algorithm is used. It turns out
that a lot can be gained by calculating the Gµν with a the aid
of a multipole expansion. This scheme, where multipoles
are used to evaluate individual influence matrix elements,
is obviously very different from the use of multipole expan-
sions in FASTCAP.

2 Multipole expansion
To calculate the influence matrix elements we need the

Green function G(~ro;~rc), which gives us the potential at
the observation position~ro due to a unit point charge at the
charge position~rc. The most general case that we consider
is a circuit above a ground plane at z = 0, embedded in a di-
electric that is uniform in x and y direction. In this case the
Green function can be written as an infinite sum over image
charges,

G(~ro;~rc)=

∞

∑
j=0

A jp
[zo − (σ jzc +d j)]

2 +[xo − xc]
2 +[yo − yc]

2
;

(2)
as mentioned above. For the calculation of the weights A j ,
signs σ j = ±1, and distances d j see e.g. Reference [8]. The
influence matrix elements are given by

Gµν =

Z
d2ro

Z
d2rc f (o)µ (~ro)G(~ro;~rc) f (c)ν (~rc) : (3)

Various choices for shape functions f (c) and weight func-
tions f (o) are commonly used. In the Galerkin method the
shape function f (c)ν and the weight function f (o)ν are equal;

here we use a f (c)ν constant on BE ν, zero elsewhere, and nor-
malized such that

R
d2r f (c)ν (~r) = 1. The collocation method

saves some work by omitting the integration over the obser-
vation BE (i.e. by choosing for the weight function f (o)µ a
delta function at the center of BE µ), at the expense of re-
duced precision and an unphysical, though generally slight,
asymmetry of the influence matrix.

When evaluating the elements of the influence matrix we
shall interchange the summation in (2) with the integrations
in (3). In each term the integration is then of the form

Z
d2ro

Z
d2rc fo(~ro)

1
|~ro −~rc|

fc(~rc) ; (4)

where the translation d and sign σ have been shifted from
the potential into the shape function fc (not indicated ex-
plicitly for notational simplicity). Thanks to special prop-
erties of the Coulomb potential, the multipole expansion is
here equivalent to Taylor expansions around the centers ~Ro

and ~Rc of the supports of fo and fc, respectively. Perform-
ing such a double Taylor expansion the integral (4) becomes,
with~r 0

o ≡~ro −~Ro etc.,
Z

d2r0
o

Z
d2r0

c
fo(~Ro +~r 0

o) fc(~Rc +~r 0
c)

|~r 0
o +(~Ro −~Rc)−~r 0

c|

=

∞

∑
io=0

∞

∑
ic=0

(−1)ic

�
1

io!

Z
d2r 0

o fo(~Ro +~r 0
o)(~r

0
o)

io

�
�io

"�
∂

∂~Ro

�io+ic 1

|~Ro −~Rc|

#
�ic

�
1
ic!

Z
d2r0

c fc(~Rc +~r 0
c)(~r

0
c)

ic

�
: (5)

In this equation~am denotes the mth tensorial power of a vec-
tor~a, and A�m B the m-fold contraction of two tensors A, B
of ranks nA;nB ≥ m; in components

(A �m B)i1;:::;inA−m; jm+1;::: jnB
=

∑
k1;:::;km

Ai1;:::;inA−m;km;:::;k1Bk1;:::;km; jm+1;::: jnB
: (6)

The terms between braces in Equation (5) are the multipole
moments; note that their structure is the same for charge-
and observation-point. The Taylor series of 1=|~r−~R| in pow-
ers of~r only converges if r < R. Therefore, the multipole
expansion cannot be used if the center-to-center distance
|~Ro −~Rc| is smaller than the convergence radius

Rconv: ≡ max
fo(~Ro+~r 0

o)6=0

r 0
o + max

fc(~Rc+~r 0

c)6=0

r 0
c : (7)

A number of advantages of the multipole expansion are
immediately obvious:
1. Only elementary integrations are needed to evaluate the

multipole moments. This can easily been done analyti-
cally, and the resulting formulas do not contain transcen-
dental functions that are time-consuming to compute.

2. Once the multipole moments have been calculated, they
can be used over and over again for each term in the sum-
mation over image charges. They do not change when
the charge domain is shifted, and the multipole moments
of the original charge distribution and its mirror image
only differ by a sign in some components. In the sum
over images of the charge domain it only rests to con-
tract the multipolemoments with the derivatives of the in-
verse center-to-center distance. If the multipole moments
are kept in memory, they can furthermore be used again
for different combinations of charge- and observation-
domain.



Figure 1: A static SRAM cell. The structure has a minimum
distance of 0.3µ and a maximum distance of 3.9µ from a con-
ducting ground plane; it is embedded in a 5µ thick SiO2 layer.
The footprint of the structure measures 8µ × 8µ.

3. The contractions in (5) require little CPU time when both
multipoleorders io and ic are small. The contractions may
become expensive for high-order multipoles, but, since
each multipole order adds a factor 1=|~Ro − ~Rc|, the con-
tribution of high-order multipoles is small except when
the center-to-center distance is close to the convergence
radius. The number of multipoles to be included can be
chosen according to the ratio |~Ro −~Rc|=Rconv; if it is large,
already the monopole approximation suffices.

4. Numerical integration routines need to compute the
square root function time and time again when evaluating
the Coulomb potential in the integrand. With the multi-
pole expansion, on the other hand, one square root calcu-
lation suffices per charge-image/observation pair. The re-
maining operations are just multiplicationsand additions.
On RISC machines, this helps in reducing the execution
time.
A closely related utilization of a multipole-expansion has

been presented by Andersson [9]. However, this author em-
ployed the more conventional expansion in terms of spheri-
cal harmonics. In that case very many time-consuming eval-
uations of trigonometric functions are needed, and we found
that on our computer the multipole-expansion then leads to
an increase, instead of a decrease in CPU time. Therefore,
it is crucial to use the Cartesian implementation of the mul-
tipole expansion presented here.

3 Example: SRAM cell
As a practical example we consider the SRAM cell shown

in Figure 1. An impression of the error introduced by em-
ploying the multipole expansion for the calculation of the
influence matrix elements is given in Figure 2. Here the
relative frequency with which an element Gµν occurs is
plotted versus the minimum distance ratio |~Ro − ~Rc|=Rconv

of all the corresponding charge-image/observation pairs of
BEs, and versus the relative error of Gµν that results when
this matrix element is evaluated by multipole expansion to
quadrupolar order. We see that a threshold distance ratio

Figure 2: Relative frequency of influence matrix elements,
plotted as function of the BE-distance (normalized by the
convergence radius of the multipole expansion) and of the
relative error introduced by the multipole expansion. The
data correspond to the SRAM cell of Figure 1. The Galerkin
method is used, and the highest included multipoles are
quadrupoles.

Table 1: Total execution time (on a HP 9000/735 computer)
for capacitance extraction of the SRAM cell using the SPACE

extractor, with a ground plane at z=0, a oxide layer extend-
ing from z=0 to z=5µ, and air above. The data in the sec-
ond row were obtained with a threshold distance ratio of 2,
and quadrupoles as highest included multipoles. The win-
dow size w of the hierarchical Schur algorithm is 4µ.

collocation Galerkin
numerical integration 435 sec. 4450 sec.
multipole expansion 177 sec. 201 sec.

|~Ro −~Rc|=Rconv = 2 suffices when a precision of one percent
is required; for smaller distance ratios conventional numer-
ical integration should be used. Indeed, with this distance
threshold and quadrupoles included, the error in the final re-
sult for the short-circuit capacitance matrix due to the mul-
tipole expansion lies below 0.5 percent.

While the multipole expansion thus does not impair the
precision of the calculation, it has a very substantial influ-
ence on the execution time. The total CPU times (including
mesh generation, I/O etc.) for capacitance extraction of the
SRAM cell are shown in Table 1. The acceleration amounts
to about a factor 2 for the collocation method, and a factor 22
for the Galerkin method. The multipole expansion also re-
duces the execution time ratio between the Galerkin method
on one hand, and the collocation method on the other hand
from about 10 to about 1.1. This makes the more precise and
more robust Galerkin method much more attractive.

When the ground plane and/or the dielectric discontinuity
due to the embedding SiO2 layer are omitted, the speed gain
obtained by application of the multipole expansion is less



Table 2: As Table 1, but in vacuum(i.e. with the ground plane
and the dielectric SiO2 layer removed).

collocation Galerkin
numerical integration 166 sec. 430 sec.
multipole expansion 143 sec. 160 sec.

dramatic. The reason is that then there is at most one mir-
ror image of charges, not an infinite number of such image
charges. Thus the possibility to re-use once calculated mul-
tipole moments is strongly reduced. Nevertheless, an accel-
eration of the calculation by factor 1.2 to 2.7 is still achieved,
as shown in Table 2.

We end this section by a short performance compari-
son with FASTCAP. For the SRAM example with ground
plane, but without dielectric medium, the execution times
of SPACE is longer than that of FASTCAP: using the mesh
for the cell as generated by SPACE, consisting of 880 BEs,
and an explicitly specified ground plane with 400 BEs,3 we
found that FASTCAP needs 30 seconds and SPACE 142 sec-
onds (with the collocation method also used by FASTCAP).
The higher memory requirements of FASTCAP, however,
prohibit its use for larger ICs. SPACE, with itsO(

p
N) stor-

age complexity, has much less stringent limitations. A 144-
transistor test circuit, with a mesh consisting of 42,664 BEs,
was extracted by SPACE in 32 minutes using only 22 Mbyte
of core memory, whereas FASTCAP needed more than the
210 Mbyte available on our machine. With that amount
of core, FASTCAP (version 2.0) can handle at most about
20,000 BEs.

4 Conclusion and outlook
We have shown that by using a multipole method for the

evaluation of the influence matrix elements, the total time
needed for 3-D capacitance extraction with the Galerkin
boundary element method and the hierarchical Schur algo-
rithm can be reduced by about a factor 20, as compared to
the case when all influence matrix elements are evaluated by
numerical integration. For the collocation method the accel-
eration amounts to about a factor 2. This gain is only possi-
ble if the number of calls to time-consuming, transcendental
functions is kept low, which requires a Cartesian formula-
tion of the multipole expansion. The smaller the cut-off dis-
tance w can be chosen, the more does the calculation of the
influence matrix dominate the execution time, and the larger
is the acceleration due to the multipole expansion.

The gain in speed is largest when many image charges,
due to a ground plane and dielectric discontinuities, must
be taken into account. In the SRAM example discussed in
this paper, only two different dielectric layers (SiO2 and air)
were used. When more dielectric layers, and consequently

3FASTCAP has no built-in facility for ground plane and dielectric layers,
so that these must be specified explicitly.

more image charges are present, we expect the acceleration
due to the multipole expansion to improve further.

Finally we would like to point out that the method can be
applied to other problems than capacitance extraction only;
examples from the field of IC design are the calculation of
substrate resistances [10] and thermal conduction proper-
ties.
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