Cartesan Multipole Based Numerical I ntegration for 3D Capacitance Extraction

U. Geigenmiller and N.P. van der Meijs

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: uggmllr@cas.et.tudelft.nl, nick@cas.et.tudelft.nl

Abstract

Application of the hierarchical Schur algorithm to the
boundary element method for 3D capacitance extraction
shifts the speed bottleneck from inversion of the influence
matrix to its calculation. We show how the numerical inte-
gration required for thelatter can be accelerated by an or-
der of magnitude with the aid of a multipole expansion in
Cartesian formulation. The scheme differs essentially from
that of the FASTCAP extractor.

1 Introduction

In submicron integrated circuits, where the vertical size
of theinterconnectsistypically not small compared to their
minimum latera size, areliable determination of intercon-
nect capacitances cannot be achieved with ssimple formulas
based on area and perimeter of theconductors. Instead, anu-
merical solutionof Poisson’sequationinthreedimensionsis
required. Whenthecircuitisembedded inastratified diel ec-
tric medium, this task can generally best be handled using
theboundary el ement method (BEM) [1], sincethen only the
conducting surfaces need to be discretized.

A BEM calculation consists of the following steps:
1. tile the conducting surfaces with boundary eements

(BEs),
2. caculatefor al pairsof BEstheinfluence matrix el ement

Guv, i.e. the(weighted average of the) potential generated

on BE u due to a charge density on BE v,

3. invert the influence matrix G, and
4. determine the short-circuit capacitance matrix C as

Gi= Yy Y (99, O

al BEsp al BEsv
on conductor i on conductor j

When using a general-purpose routine for inverting the
influence matrix, such as Gaussian elimination, the mem-
ory complexity scales as (’)(NZ) and the time complexity as
O(N?®), where N denotesthe number of boundary e ements.
Thisis only tolerable for relatively small N. If the BEM is
to be applied to large I Cs, both complexities need to be re-
duced substantialy.

Oneway of overcoming thetime complexity isthe use of
the fast multipole algorithm, implemented in the FASTCAP

extractor by Nabors and White [2]. In the inversion step,
when the BE charges are cal cul ated for given BE potentials,
this method does not treat the influence of distant BEs indi-
vidually, but rather uses amultipoleexpansion of their com-
bined effect. By using thisagorithm, together with agener-
alized conjugate residua method, FASTCAP achieves are-
duction of thetime complexity to O(Nxm), wheremON is
the number of conductors.

An dternative scheme for reducing the computational
complexity, whichisparticularly suited for applicationtoin-
tegrated circuits, is based on the omission of all direct ca-
pacitive couplingsfor distances beyond a sdl ectabl e cut-off
value w. Inthisway only a band matrix needs to be stored
and inverted. Experience showsthat in typical I1C intercon-
nect structures, sufficiently precise capacitance values can
be achieved with rather small cut-off distances. However, to
avoid unphysical artifacts such as negative capacitance val -
ues, the cut-off must beintroducedin an indirect way, by re-
quiring that al the elements of the inverse matrix G1 with
mutual distance larger than w vanish. Then one furthermore
has the advantage of reducing the capacitance model to be
used in asimulation program.! An efficient algorithm that
accomplishes thistask, the so-called hierarchical Schur al-
gorithm, has been developed [3], implemented [4] and re-
fined [5] inthe SPaCE? extractor. The hierarchical Schur al-
gorithm reduces the time complexity to O(Nw?*), while the
memory requirement becomes O(/Nw?). Notethat wisin-
dependent of the layout size.

Infact, theacceleration of thematrix inversion by thehier-
archical Schur algorithm can beso large that the calculation
of the matrix elements Gy, rather than the inversion of the
matrix G, becomes the bottleneck in execution speed. Inone
way or another, computation of G, requires the evaluation
of a four-dimensional integral, viz. two-dimensiona inte-
grals of the el ectrostatic Green function with respect to both
arguments. In the smplest case, the Green function is just
the Coulomb potential. When aground planeand astratified

1This cannot be accomplished by “sparsifying” ¢ itself, since the in-
verse of a sparse matrix is, in general, not sparse.

2space is actually a full-featured layout to circuit extractor, of which
3D capacitanceextraction is an integrated part. Starting frome.g. aGDSI|
layout SPACE directly producesa SpiCE netlist ready for simulation.
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ambient didectric are present, however, the Green function
takes the form of an infinite sum over image charges. For
the Coulomb potential and polygona boundary elements,
one of the integrations can be done analyticaly [6]. Due
to transcendental functions in the analytic formulas, how-
ever, on RISC machines numerical integration may actually
be faster than the use of these formulas. No analytic formu-
las are known for the second integral. There is avast lit-
erature on fast numerical integration formulas for triangu-
lar and quadrilateral domains [7], but even with very effi-
cient integration rules the time needed for calculation of the
matrix elementstypically dominatesthetotal executiontime
when the hierarchical Schur algorithm isused. It turns out
that alot can be gained by calculeting the G, withatheaid
of a multipole expansion. This scheme, where multipoles
are used to evauate individual influence matrix elements,
isobvioudly very different from the use of multipoleexpan-
sionsin FASTCAP.

2 Multipole expansion

To calculate the influence matrix elements we need the
Green function G(To,Tc), which gives us the potential at
the observation position T, due to a unit point charge at the
charge positionT.. The most general case that we consider
isacircuit above aground planeat z= 0, embedded in a di-
electric that isuniformin x and y direction. In thiscase the
Green function can bewritten as an infinite sum over image
charges,

G(To,Tc) =

JZO\/ =(0jzc+dj)]? + [Xo=X]* + [Yo—¥c]?

(2)
as mentioned above. For the calculation of the weights A;,
signsoj = *1, and distances d; seee.g. Reference[8]. The

influence matrix elements are given by

Gy _/dzro/dzrC o

Various choices for shape functions f(© and weight func-
tions (2 are commonly used. In the Ga erkm method the

shape function f ) and the wei ight function f ) are equal;
hereweusea f\ﬂ ) constant onBE v, zero el sewhere, and nor-

malized suchthat [ d2r £{°(7) = 1. Thecollocation method
saves some work by omitting the integration over the obser-
vation BE (i.e. by choosing for the weight function fﬁo) a
delta function at the center of BE W), at the expense of re-
duced precision and an unphysical, though generaly dight,
asymmetry of the influence matrix.

When evaluating the elements of the influence matrix we
shall interchange the summation in (2) with theintegrations
in (3). In each term theintegration is then of the form

/ d%r, / d2rc fo(Fo) Flrclfc(?c) , 4

G(fo, T 1) . (3)

where the trandation d and sign ¢ have been shifted from
the potential into the shape function f. (not indicated ex-
plicitly for notationa simplicity). Thanks to special prop-
erties of the Coulomb potential, the multipole expansion is
here equivalent to Taylor expansions around the centers R,
and R; of the supports of f, and fc, respectively. Perform-
ing such adoubleTaylor expansion theintegral (4) becomes,
with ! =F,— R, etc.,

/d2 y /d2 Ic fo( Ro-i-rl) fc(Rc-l-r)

o+ (Ro=Re) =Tel
:ioZO iczo(_l)i {io! /dzréf°(§°+rcl>)(f'é)i°}®i°
p) io+ic 1 .
Kﬁ) |F*eo—fec|] B
{% / dzr’cfc(ﬁcwg)(rg)ic} . (5)

In thisequation a™ denotesthe mth tensorial power of avec-
tor &, and A®™ B the m-fold contraction of two tensors A, B
of ranks na, Ng = m; in components

(AO™B)iy, ingm i, ing =

Y A ingemknkaBr ke v - (6)
k1, ,km

The terms between braces in Equation (5) are the multipole
moments; note that their structure is the same for charge-
and observation-point. The Taylor seriesof 1/|F - R|in pow-
ers of T only converges if r < R Therefore, the multipole
expansion cannot be used if the center-to-center distance
IR, — Rc| is smaller than the convergence radius

Reonv. = max re  + max re.
fo( Ro+75)7#0 fe(Re+7)#0

A number of advantages of the multipole expansion are

immediately obvious:

1. Only elementary integrations are needed to evaluate the
multipole moments. This can easily been done analyti-
caly, and theresulting formulas do not contain transcen-
dental functionsthat are time-consuming to compute.

2. Once the multipole moments have been calculated, they
can be used over and over again for each term inthe sum-
mation over image charges. They do not change when
the charge domain is shifted, and the multipole moments
of the original charge distribution and its mirror image
only differ by a sign in some components. In the sum
over images of the charge domain it only rests to con-
tract themulti polemomentswiththe derivativesof thein-
verse center-to-center distance. If themultipolemoments
are kept in memory, they can furthermore be used again
for different combinations of charge- and observation-
domain.
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Figure 1: A static SRAM cell. The structure has a minimum
distance of 0.3p and a maximum distance of 3.9u from a con-
ducting ground plane; it is embedded in a 5u thick SO, layer.
The footprint of the structure measures 8y x 8.

3. Thecontractionsin (5) requirelittle CPU timewhen both
multipoleordersio andic aresmall. The contractionsmay
become expensive for high-order multipoles, but, since
each multipole order adds a factor 1/|R, — R;|, the con-
tribution of high-order multipolesis small except when
the center-to-center distance is close to the convergence
radius. The number of multipolesto be included can be
chosen according to theratio |Ro — Re|/Reonv; if itislarge,
already the monopole approximation suffices.

4. Numerica integration routines need to compute the
squareroot functiontime and time again when evaluating
the Coulomb potentia in the integrand. With the multi-
pole expansion, on the other hand, one square root cal cu-
| ation suffices per charge-image/observation pair. There-
mai ning operationsare just multiplicationsand additions.
On RISC machines, this helpsin reducing the execution
time.

A closdly related utilization of amultipole-expansion has
been presented by Andersson [9]. However, this author em-
ployed the more conventional expansion in terms of spheri-
cal harmonics. Inthat case very many time-consuming eval-
uationsof trigonometricfunctionsare needed, and we found
that on our computer the multipol e-expansion then leads to
an increase, instead of adecrease in CPU time. Therefore,
itiscrucial to use the Cartesian implementation of the mul-
tipole expansion presented here.

3 Example: SRAM cell

Asapractical example we consider the SRAM cell shown
in Figure 1. Animpression of the error introduced by em-
ploying the multipole expansion for the caculation of the
influence matrix elements is given in Figure 2. Here the
relative frequency with which an element G, occurs is
plotted versus the minimum distance ratio |R, — Re|/Reonv
of all the corresponding charge-image/observation pairs of
BEs, and versus the relative error of G,y that results when
this matrix element is evaluated by multipole expansion to
guadrupolar order. We see that a threshold distance ratio
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Figure 2: Relative frequency of influence matrix elements,
plotted as function of the BE-distance (normalized by the
convergence radius of the multipole expansion) and of the
relative error introduced by the multipole expansion. The
data correspond to the SRAM cell of Figure 1. The Galerkin
method is used, and the highest included multipoles are
quadrupoles.

Table 1: Total execution time (on a HP 9000/735 computer)
for capacitance extraction of the SRAM cell using the SPACE
extractor, with a ground plane at z=0, a oxide layer extend-
ing from z=0 to z=5y, and air above. The data in the sec-
ond row were obtained with a threshold distance ratio of 2,
and quadrupoles as highest included multipoles. The win-
dow size w of the hierarchical Schur algorithm is 4.

collocation | Galerkin
numerical integration 435 sec. | 4450 sec.
multipole expansion 177 sec. | 201 sec.

IRo — R/ Reonv = 2 suffices when a precision of one percent
isrequired; for smaller distance ratios conventional numer-
ical integration should be used. Indeed, with this distance
threshold and quadrupol esincluded, the error in thefinal re-
sult for the short-circuit capacitance matrix due to the mul-
tipole expansion lies below 0.5 percent.

While the multipole expansion thus does not impair the
precision of the calculation, it has a very substantia influ-
ence on the execution time. Thetotal CPU times (including
mesh generation, /O etc.) for capacitance extraction of the
SRAM cdll are shown in Table 1. The accel eration amounts
toabout afactor 2 for the coll ocation method, and afactor 22
for the Galerkin method. The multipole expansion also re-
duces the execution timeratio between the Gal erkin method
on one hand, and the collocation method on the other hand
from about 10 to about 1.1. Thismakesthemore precise and
more robust Galerkin method much more attractive.

When the ground plane and/or the diel ectric discontinuity
dueto theembedding SO, layer are omitted, the speed gain
obtained by application of the multipole expansion is less



Table2: As Table 1, butin vacuum (i.e. with the ground plane
and the dielectric SiO, layer removed).

collocation | Galerkin
numerical integration 166 sec. | 430 sec.
multipole expansion 143 sec. | 160 sec.

dramatic. The reason is that then there is a most one mir-
ror image of charges, not an infinite number of such image
charges. Thusthe possihility to re-use once cal culated mul-
tipolemomentsis strongly reduced. Nevertheless, an accel-
eration of thecal culation by factor 1.2t0 2.7 isstill achieved,
as shown in Table 2.

We end this section by a short performance compari-
son with FASTCAP. For the SRAM example with ground
plane, but without dielectric medium, the execution times
of SPACE islonger than that of FASTCAP: using the mesh
for the cell as generated by SPACE, consisting of 880 BEs,
and an explicitly specified ground plane with 400 BEs,® we
found that FASTCAP needs 30 seconds and SPACE 142 sec-
onds (with the collocation method also used by FASTCAP).
The higher memory requirements of FASTCAP, however,
prohibititsusefor larger ICs. SPACE, withits O(v/N) stor-
age complexity, has much less stringent limitations. A 144-
transistor test circuit, with amesh consisting of 42,664 BEs,
was extracted by SPACE in 32 minutes using only 22 Mbyte
of core memory, whereas FASTCAP needed more than the
210 Mbyte available on our machine. With that amount
of core, FASTCAP (version 2.0) can handle at most about
20,000 BEs.

4 Conclusion and outlook

We have shown that by using a multipole method for the
evaluation of the influence matrix el ements, the total time
needed for 3-D capacitance extraction with the Galerkin
boundary element method and the hierarchical Schur ago-
rithm can be reduced by about a factor 20, as compared to
the case when al influence matrix elementsare eval uated by
numerical integration. For the collocation method theaccel -
eration amounts to about afactor 2. Thisgainisonly possi-
bleif the number of callsto time-consuming, transcendental
functions is kept low, which requires a Cartesian formula
tion of the multipoleexpansion. The smaller the cut-off dis-
tance w can be chosen, the more does the cal culation of the
influence matrix dominate the execution time, and thelarger
isthe accel eration due to the multipole expansion.

The gain in speed is largest when many image charges,
due to a ground plane and dielectric discontinuities, must
be taken into account. In the SRAM example discussed in
thispaper, only two different didectriclayers (SiO, and air)
were used. When more dielectric layers, and consequently

3FasTCAPhasnobuilt-infacility for ground planeand dielectric layers,
so that these must be specified explicitly.

more image charges are present, we expect the acceleration
due to the multipol e expansion to improve further.

Finally we would like to point out that the method can be
applied to other problems than capacitance extraction only;
examples from the field of 1C design are the calculation of
substrate resistances [10] and thermal conduction proper-
ties.
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