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Abstract

In this paper a parametrizable architecture of a mo-

tion estimator (ME) is presented. The ME is designed

as a generic full pixel calculation module which can be

adopted for di�erent video standards. The parameters

by which the ME is described allow for a variety of

architecture implementations. The parameters specify

the level of parallelism re
ected by multiple allocation

of computational resources, and the use of con�gurable

cache memories. The obtained VHDL description of

the ME module is well suited for VLSI implementa-

tion.

1 Introduction

To achieve high compression rate for the coding of
video sequences, the coding algorithm must be based
on the exploitation of temporal redundancies, i.e. uti-
lizing the information from previous frames. This is
addressed by the motion estimation (ME) algorithm.

The motion estimation for hardware implementa-
tion is preferably realized using the full search block
matching algorithm (FBMA). This is because of the
inherent regularity that supports parallelism which is
a basic technique to substantially increase through-
put. The computational requirements of FBMA are
very high especially when investigating larger search
areas in a previous frame. The ME module is thus the
key component in video encoder applications. Some
relevant architectures of the ME [1-4] and video en-
coders [5] have been presented.

High speed requirements necessitate the implemen-
tation of critical parts of coding algorithms by a hard-
ware accelerator. The parametrizable architecture of
the accelerator is the solution to high performance
combined with 
exibility. An important issue is the
memory since it drastically in
uences the power con-
sumption of an application and has a major impact
on the performance. In order to reduce the memory
allocation and increase the memory bandwidth a ded-
icated and distributed memory is needed.

This paper will focus on the hardware implemen-
tation of the general full pixel motion estimator. In
contrast to the architectures [1-4] we will concentrate
on the 
exibility of the scheme to cover a large appli-
cation space while putting a special emphasis on the
memory optimization. The architecture is parametriz-
able and particular instances are generated by chosing
a speci�c parameter set. The parameter set deter-
mines the degree of parallelism and infers optimized
cache memory con�guration. The possible parallelism
spans requirements for the processing performance of
the H.263 standard up to HDTV.

The advantage of this approach is that a) it adapts
the architecture to the speed requirements through
the setting of the parameters; b) the generated VHDL
high-level description of the ME is technology inde-
pendent; c) it is extendible to the implementation of
di�erent video coding standards.

2 Architecture
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Figure 1: FBMA

The FBMA is based on the evaluation of the ab-
solute di�erence error between a macroblock (MB) in
the current picture frame and macroblocks in a search
area in the reference picture frame (Figure 1). The
error evaluation can be expressed as:

MAD(m;n) =

N�1X

i=0

N�1X

j=0

jx(i; j)� y(i+m; j + n)j (1)



where x and y are the pixel values of a current and a
reference picture frame, N is the macroblock size. The
m;n coordinates with the minimumMAD value yields
the motion vector (MV) of the encoded macroblock.
The displacement calculation is restricted to a search
range V such that �V � m;n � V � 1.

2.1 Macroblock parallelism

To access two frame memories directly would cause
a processing limitation, therefore intermediate cache
memories for the current (CW cache memory) and
the reference (SW cache memory) frames are needed.
Moreover we will try to reduce the size of the search
windowmemory since a SW cache memory can be very
large when dealing with possible motion vectors up to
64 pixels. The objective is to achieve this without
imposing limitations on the processing speed.

In Figure 2a the search areas of the MBs are divided
into vertical strips. Each MB's search area contains
S = (2V + N )=B strips. Let's allocate Q + 1 strips
for the SW cache memory where Q + 1 < S. Gener-
ally the minimum number of required strips (Q+1) is
given by Q = N=B+1, while the strip size is given by
B � (N + 2 � V � 1). B is the architectural parameter
which speci�es the width of the memory strip. Parti-
tioning of the SW cache memory into strips allows the
parallelism for the MAD calculation and the memory

loading processes.

process S1,S2,S3

loading S4

process S2,S3,S4 process S3,S4,S5 process S4,S5,S6

loading S5 loading S6 loading S7

M1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

V

N

B

M2 M3

N+2*V-1

S 1,2,3

S 2,3,4

S 3,4,5

S 4,5,6

S 5,6,7

S 6,7,8

S 7,8,9

S 8,9,10

process. need of MB

-> 1st MV

-> 2nd MV

-> 3rd MV

M1

M1

M1

M1

M2

M2

M2

M2

M3

M3

M3

M3

1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4

M1: x=-16 to -9 M1: x=-8 to -1 M1: x=0 to 7 M1: x=8 to 15

M2: x=-16 to -9 M2: x=-8 to -1

(a) (b)

(c)

Figure 2: Macroblock parallelism, example with
N=16, V=16, B=8, Q=3, P=2

In the example shown in Figure 2c Q strips
(S1; S2; S3) are processed by the full pixel calculation

estimator module (F-estimator), while 1 extra strip
(S4) is loaded from the frame memory. In the next
processing step Q � 1 strips (S2; S3) of the previ-

ous memory content can be reused while, note, one
additional strip (S4) has been loaded. This process-
ing step thus performs the calculation with the strips
(S2; S3; S4) while loading the strip S5 at the position
of S1, etc. The processing of Q strips means a MAD
evaluation of all possible MV displacements (hence-
forth only displacements) for the actual SW cache
memory content (so called strip processing).

The reduction of the SW cache memory causes that
at each processing step several successive MBs must
be available in the CW cache memory, except for the
beginning and the end of the row. Figure 2b shows
that two CW cache memory units (1 unit = 1 MB) are
needed to store two successive macroblocks. For ex-
ample, at the step where S3; S4; S5 are processed, the
same SW cache memory content is used (i.e. the same
pixel usage) for the MAD calculation of displacements
for di�erent x-slices for the macroblocks M1 and M2
(shown in Fig. 2c). The number of multiple allocation
of the CW cache memory units (P) required is given
by 2 � V=N . It means that the MAD calculation for
the same SW cache memory content is performed for
P successive macroblocks stored in CW cache mem-
ory at the same time (macroblock-parallelism). This
means a high utilization of the SW cache memory re-
sulting in a reduced number of memory accesses.

Finally by allocating one more CW cache unit we
can take advantage of the preloading mechanism to
avoid encountering wait states for the loading of the
CW cache memories at transitions. A special mapping
is needed to correctly distribute P+1 data supplied
by the CW cache memories among P processing units
inside of the F-estimator module. The remaining data
can be used by the half pixel calculation if provisioned.

In the example (Figure 2b) the MAD calculation
for one MB is spread over 4 processing steps while in
each step di�erent x-slice displacements are evaluated.
The �nal MV for the MB is issued after executing the
last processing step. The lifetimes for the calculation
of MVs for successive MBs overlap and the MVs are
generated in a pipelined fashion.

2.2 Strip parallelism

The strip parallelism is built on the macroblock par-
allelism. It can be illustrated on the snapshot of mac-
roblock parallelism (strip processing from Figure 2c)
considering one CW cache memory unit and the SW
cache memory (Figure 3). The goal is to investigate all
displacements of a MB stored in the CW cache mem-
ory within a portion of the search area represented by
the SW cache memory content.

Several passes through the CW and SW cache mem-
ories are necessary. The simple solution would be to
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Figure 3: Strip parallelism

investigate one displacement per pass. However the
strip parallelism suggests to investigate several dis-
placements. Having considered the sizes of the CW
and SW cache memories at the x-direction, N and
N + B respectively, the parallelism of size B can be
chosen. In other words the row of N +B � 1 pixels of
the SW cache memory is processed against the row of
N pixels of the CW cache memory, thus B displace-
ments per MB can be investigated in one pass. The
systolic array structures are suitable to implement this
kind of parallelism (Figure 4).
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Figure 4: Systolic array implementations

Using the 3D data
ow representation of FBMA,
several systolic array architectures were developed
by [1]. In our case the systolic array architecture
which performs the displacement calculation in the
x-direction is needed. Generally this is to perform
FBMA of the MB (N � N ) within the search area of
the size N * (N+B-1). The corresponding structure
(3 � 3 within 3 � 7) is shown in Figure 4a. The pre-

liminary synthesis results showed this is a highly area
consuming structure when using realistic parameters.
By another projection of 'matrix-shape' systolic array
structure the 'chain-shape' structure can be obtained
(Figure 4b), here for the particular case (1 � 3 within
1�7). This 'chain-shape' systolic array processing unit
(SAP) is the basic functional unit in the design.

The advantage of this line-against-line approach is
that the input to the array structure is serial thus pos-
ing traditional requirements on a memory access. Fur-
ther on this array structure allows for possible stacking
of SAP elements (supports scalability) thus achieving
higher processing performance tailored to the speci�c
needs. Finally the systolicity of the output is also of
great advantage as will be shown later.

2.3 Intrablock parallelism

This parallelism in the architecture is based on
stacking of several SAP elements which operate on
di�erent parts of an image, i.e. within MB. This is
because of the commutativity of the FBMA calcula-
tion where the investigation of a displacement means
the sum of the pixel di�erences. This way we may di-
vide the MB area into several equal parts while each
of these parts is processed by a unique SAP element.
If the division is de�ned by R, any displacement cal-
culation is accelerated by the factor R, too. At the
end the partial error sums are summed up to get a
MV evaluation. To make it possible we need to have
multiple access to the CW and SW cache memories to
feed R SAP units by two sets of R data sets.

Now we have to consider a distribution of data
from the CW and SW cache memories for multiple
passes through these memories in order to evaluate y-
direction displacements, i.e. N rows of MB against
the search area of the size 2�V +N �1 rows (Fig. 3).
This means that at the �rst pass the rows 1 to N (1..N)
of the SW cache memory are compared with the CW
cache memory, in the second pass the rows 2..N+1, in
the third one 3..N+2, etc. As an example, if R = 4,
we allocate 4 SAP units while each SAP must process
N/4 rows of both memories in each pass. The obvious
requirement is that these SAPs must work in parallel.

Since each SAP accesses di�erent data from mem-
ory and the requirement is to have a single memory ac-
cess, the memory must logically be divided into 4 (R)
memory submodules. To reach e�cient parallelism we
have to ensure that at any time each SAP fetches the
data from a di�erent memory submodule. The solu-
tion is to provide the special data distribution (needs
special loading mechanism) for both cache memories
according to Fig. 5a (the numbers inside of the mem-
ories indicate the original pixel row position).



Previously we assigned the calculation of B dis-
placements in the row manner to the SAP unit. So
generally spoken having R SAP units causes accelera-
tion of the MB pass by factor R while investigating B
displacements in one pass.
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Figure 5: Memory partitioning and data distribution

Figure 5b shows the calculation of di�erent y-
direction displacements and corresponding require-
ments of memory row distribution for SAP units. The
row position corresponds to a di�erent step of the SAP
processing and the column position represents the pro-
cessing of the particular SAP unit. The important is-
sue is that in each row of the table the di�erent mem-
ory submodules (the numbers in brackets) are accessed
by each SAP which allows the e�cient usage of single
port memories only.

2.4 Parallelism in the design

The product of the degree of the macroblock, strip

and intrablock parallelism P � B � R represents the
overall architectural parallelism. The degree of paral-
lelism is proportional to the amount of allocated SAP
units. The allocation of the SAP calculation units
(that is a major area contribution) can be reduced us-
ing the hierarchical mode (D parameter), that is by
a factor D. Instead of evaluating B displacements per
MB within the SAP units simultaneously, using the
so called x-direction interleaving, only B=D displace-
ments are calculated, thus reducing the SAP area by
almost the factor D. The interleaving is also performed
in the y-direction by handling the row counter. D = 1
results in an exhaustive full pixel search. D = 2 eval-
uates the full MV with the precision given by 2 pixels,
etc. The coarse speed-up can thus be characterized by
B � P �R �D.

2.5 Global architecture

The main parameters which describe an architec-
ture are the following ones.

N macroblock size
V maximum motion vector
B width of the search memory strip
D step of the hierarchical search
R intrablock parallelism
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Figure 6: Architecture example

The architecture example for the parameter set N
= 8, V = 8, B = 4, R = 4 is shown in Figure 6.
The F-estimator module is designed such that it gen-
erates the addresses for a pixel fetch from the cache
memories. In the next cycle the data are expected
to be ready at the data input ports. The loading
of the cache memories is provided by data transfer
modules (S-loader, C-loader). The processing of the
F-estimator is synchronized with these cache loading
processes by the controller which �res these processing
modules and steers some additional signals. It makes
sure the memories are �lled with the proper data and
keeps the order of the processing. The architecture
requires single port memories only.

A more detailed look at the F-estimator module is
shown in Figure 7. The DISTR module takes care of
the reading of the data from the cache memories and
distributing them among the SAP units. The SAPS
module consisting of multiple SAP units performs the
FBMA calculation in a way that each SAP produces
B=D partial error sums generated at di�erent time
steps. The ACCBUFF module sums and stores these
partial error sums and �nally evaluates MV. Thanks
to the systolicity of the output from the SAP units
the ACCBUFF module exhibits the high degree of



N V B R D Parallelism Frame Frame Rate Area SAP area
(B*P*R) size /sec (mm2) (%)

16 16 8 4 1 64 CCIR 5.1 18.5 81
16 16 8 16 1 256 CCIR 20.5 65.0 87
16 16 16 16 1 512 CCIR 30.4 118.3 92
16 16 16 16 1 512 HDTV 5.2 118.3 92

Table 1: Performance analysis and synthesis results (obtained by Synopsys)
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Figure 7: F-estimator module

resource sharing. Generally there are P allocations
of the SAPS and the ACCBUFF modules while the
DISTR module is shared.

3 Results

The processing performance evaluation is depen-
dent on the parameter set. Assuming the size of
a frame is I � J macroblocks, the number of strip
processings Nsp within one row of MBs is Nsp =
N=B � (J � 1) + V=B. The number of cycles for a
strip processing can be expressed as Csp = Npass�Cmb

where Npass is the number of passes within a strip pro-
cessing de�ned by Npass = 2V and Cmb is the number
of cycles for one pass through the macroblock de�ned
by Cmb = (N+B�1)�N=R. Finally the number of cy-
cles for the processing of the whole frame is expressed
by Nsp �Csp � I.

A customized ME architecture is generated accord-
ing to the speci�ed set of parameters. The VHDL
generic constructs allow to describe the con�gurable
architecture. Thus the input parameters decide upon
the number of resource allocations and are also respon-
sible for a functional modi�cation of some resources.

The table shows synthesis results (the F-estimator
module only, the interconnection area considered to be
0) of some architectural implementations along with
the throughput. The results were obtained using MI-
ETEC technology 5V, 0.7um, assuming a ME process-
ing clock cycle of 20 ns (50 MHz). The percentage of
the SAP units' area in the design shows the very high

hardware resource utilization since the auxiliary cir-
cuitry area is minimal.

4 Conclusion

A parametrizable scalable parallel architecture for a
motion estimator was developed which allows for a va-
riety of con�gurations. The architectural parametriz-
ability of the module leads to an e�cient customized
implementation.

The parameter settings along with the hardware
speci�cations (memory access time, processing clock
cycle) determine the speed and the area characteris-
tics of the ME module. Di�erent speed requirements
are satis�ed architecturally through the choice of the
degree of parallelism and are tuned further by high-
level synthesis tools. The hardware optimization is
possible thanks to the high level description which is
technology independent.

The key issue in this approach is an optimization of
the ME module taking into account its memory orga-
nization. The e�cient cache memory strategy consid-
erably relaxes frame memory bandwidth limitations,
thus makes the ME module suitable for di�erent video
encoder architectures.
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