
Abstract

This paper presents a testability analysis and
improvement technique for the controller of an RT level
design. It detects hard-to-reach states by analyzing both the
data path and the controller of a design. The controller is
modified using register initialization, branch control, and
loop termination methods to enhance its state reachability.
This technique complements the data path scan method and
can be used to avoid scanning registers involved in the
critical paths. Experimental results show the improvement
of fault coverage with a very low area overhead.

1. Introduction
Many design for testability (DFT) techniques have been

developed to ease testing problems. However, they usually
require large area overhead and may degrade the
performance of a circuit. Some approaches have been
proposed to reduce these drawbacks by using techniques
which have low area and performance impact, such as
partial scan design [1, 2, 3, 4, 5]. For example, a testability
analysis and improvement technique based on partial scan
is presented in [3]. In this approach, design testability is
measured for all nodes in the data path. Although the
difficulty of state transitions in the controller is considered
in the data path testability analysis, there is no testability
measurement for the controller. Partial scan register
selection is only carried out for the data path of a design.
When the selected registers are involved in critical paths,
this approach can not be used.

Recently Dey et al. proposed a DFT technique to
improve the controller testability for designs which consists
of a controller and a data path [8]. A technique has been
developed to identify the control signal conflicts due to
control signal correlation imposed by the controller
specification. The controller is re-designed in such a way
that the identified implications are eliminated by adding
extra control vectors.

A synthesis-for-testability approach that uses control
points at the conditional branches to improve testability has
been proposed [9,10]. An analysis of the controllability of
branch conditions in the control-data flow graph identifies
hard-to-control loops. The controllability of the hard-to-

control loops is enhanced by inserting control points at the
exit conditions of these loops. Test statements are also
added if necessary to allow hard-to-control variables to be
directly controllable from existing primary inputs.

In this paper, we propose a general testability analysis
and enhancement technique for the controller of a design. It
measures the combinational and sequential hardness to
reach any state in the controller. The register initialization,
branch control and loop termination methods are developed
to improve the state reachability of hard-to-reach states.
This technique compliments the data path scanning
technique and can be used to avoid scanning registers
involved in the critical paths.

The rest of the paper is organized as follows. First our
design representation and data path testability analysis are
presented. The state reachability definition and its algorithm
are then given. They are followed by the state reachability
improvement methods. Finally, we conclude the paper by
experimental results.

2. Preliminaries
In this section, we introduce our design representation

and testability analysis of data path. Our design
environment allows designers to specify their designs in
behavioral VHDL. The specification is later translated into
an internal representation, called ETPN [6] which consists
of two parts: a data path and a controller. Figure 1 presents
an example of a behavioral VHDL specification and the
corresponding ETPN representation. The data path is a
directed graph with nodes and lines (arcs) where a node
represents storage or manipulation of data and a line
connecting two nodes represents the flow of data. The
controller is modeled as a timed Petri net. The two parts are
related through the states (Petri net places) in the controller
controlling the data transfers in the data path, and the
condition signals in the data path controlling some
transition(s) in the controller. As an example, in figure 1
stateS4 in the controller is used to control the data transfer
from input portP1 to registerY in the data path. WhenS4
holds a token, this transfer will take place. Condition nodes
C1 andC1 in the data path control the transitions fromS3 to

A Controller Testability Analysis and Enhancement Technique

Xinli Gu Erik Larsson, Krzysztof Kuchinski and Zebo Peng
Synopsys, Inc. Dept. of Computer and Information Science

700 E. Middlefield Road Linköping University
Mountain View, CA 94043, USA S-581 83 Linköping, Sweden

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

S6 and the transition fromS3 to S4 in the controller
respectively. StateS0 initially holds a token. The token will
be transferred to the other consequent state(s) in the next
clock cycle. The execution will terminate when all tokens in
the controller are consumed. For example, in figure 1, when
the token in stateS1 is consumed the execution will stop.

The testability analysis of the data path [3] is defined by
the measurements of controllability and observability. The
controllability measures the cost of setting up any specific
value on a line. The observability, on the other hand,
measures the cost of observing any specific value on a line.
The controllability and observability measurements reflect
respectively two procedures during test generation and test
application, the fault sensitization and the fault propagation.
Both the controllability and the observability are further
defined by two factors: combinational factor and sequential
factor. We have therefore four measurements for testability
of the data path: combinational controllability (CC),
sequential controllability (SC), combinational observability
(CO) and sequential observability (SO) [7].

The testability analysis takes into account the structure of
a design, the depth from I/O ports and the characteristics of
the components used. It reflects the test generation

complexity and test application time for achieving high
fault coverage. Improving testability in the data path is done
by transforming some registers with the worst testability
analysis measurements to scan registers [3].

3. Controller Testability Analysis
The controller testability is measured in terms of the state

reachability for each state (Petri net place) of the controller.
The state reachability is defined by the difficulty of reaching
the state from an initial state. It consists of two
measurements: combinational state reachability (CSRi) and
sequential state reachability (SSRi), for a given stateSi.
Initial State: The initial state,S0, as illustrated in figure
2(a), has the best state reachability:

(1)

(2)

 is assigned to 1 because the probability of reaching
this state is 1 andSSR0 is assigned to 0 because no clock
cycles are required to reach this state.
Simple Construct: A simple construct consists of one
transition with a single input place (Si) and a single output
place (Sj) as illustrated in figure 2(b). The state reachability
will be calculated as:

(3)

(4)

The combinational state reachability for stateSj is the same
as that of stateSi. The sequential state reachability ofSj is
the state reachability ofSi plus one since one more clock
cycle is required to reach stateSj.
OR-Construct: An OR-construct consists of a set of
transitions such that a state can be reached by any of the
transitions in this set. For example, in figure 2(c), state Sk
can be reached either by the transition between stateSi and
stateSk or by the transition between stateSj and stateSk. The
state reachability is calculated based on the assumption that
we can always reach state Sk from a state with the best state
reachability. Therefore, we have:

(5)

(6)

whereSSRL is the largest sequential state reachability in the
design, which is an estimation of the longest path from the
initial state to the terminating state.
Conditional Construct: In a conditional construct, a state
can be reached through a transition only if the condition
attached to the transition is true. In figure 2(d), stateSi can
be reached from stateSk only if condition C is true.
Otherwise,C is true and stateSj will be reached from stateFigure 1. A design example in VHDL and ETPN

+ ³

C1

X

S5

 S7

 S5 S3 S3

 S3

C1

 S6

 S3

C1

 S0

 S2 S7

 S3

 S6 S4

 S1 S5

C1

 P2

 >

 Y
S5

(b) controller (c) data path

“0” “0” P1

 “0”

S2 S4

ENTITY counter IS
PORT(P1 : IN INTEGER;

P2 : OUT INTEGER);
END;

ARCHITECTURE behave OF counter IS
BEGIN

PROCESS(P1)
VARIABLE X, Y : INTEGER;

BEGIN
X := 0; Y := 0;
WHILE NOT (Y >0) LOOP

Y := P1;
X := X + Y;

END LOOP;
P2 <= X;

END PROCESS;
END;

 (a) behavioral VHDL

CSR0 1=

SSR0 0=

CSR0

CSRj CSRi=

SSRj SSRi 1+=

CSRk

CSRi if CSRi

SSRL
SSRi
-------------+ CSRj

SSRL
SSRj
-------------+> 

 

CSRj otherwise.

={

SSRk
SSRi 1+ if CSRk CSRi=

SSRj 1+ if CSRk CSRj=
= {

Sk. The state reachability is calculated by considering the
combinational controllability (CCc) and the sequential
controllability (SCc) of the condition node in the data path:

(7)

(8)

(9)

(10)

where CCc is the combinational controllability of the
condition attached on the state transition [7]. TheSCc is the
sequential controllability of the condition, i.e., the number
of clock cycles required to control the condition [7]. If the
condition is used to control the exit from a loop which has
a very large repetition count, we will have a largeSCc which
reflects the implication of this loop construct.
AND-Construct: An AND-construct consists of a
transition such that a state is reachable through the
transition when all input states to the transition are reached
(hold a token). In figure 2(e),Sk is reachable only when both
stateSi and stateSj are reached. The state reachability of
stateSk is calculated by:

(11)

(12)

Parallel Construct: In a parallel construct, a set of states

will be reached by firing of a transition. Figure 2(f). shows
a parallel construct. The state reachability of statesSi andSj
in the figure are calculated by the same formula as in the
simple construct.

4. State Reachability Analysis Algorithm
The state reachability analysis algorithm calculates the

combinational state reachability and the sequential state
reachability for all states in a controller. It starts by
assigning the state reachability to all initial states and
putting these states in a FIFO queue,Q. The breadth-first
search strategy is used during the selection of states for
calculation. In the next step, one stateS is taken out fromQ.
The construct type of the transition fromS to its consequent
state(s), for example AND-construct, is checked and the
appropriate formulae are used for calculating itsCSR and
SSR. This procedure is repeated untilQ is empty.
A1 Assign all initial states (use formulae 1 and 2).
A2 Put all initial states into queueQ.
A3 Assign the rest of the states with the worstCSR and

SSR: CSR := 0;SSR := SSRL;
A4 If Q is empty, then go to A9;

else assign the first state inQ to Sprev,
and remove it fromQ.

A5 Check the output transition(s) type fromSprev:
a) if it is a simple construct:

go to A6 (use formulae 3 and 4).
b) if it is an AND-construct:

check if all the other input state(s) have been
calculated.
if “yes”, go to A6 (use formulae 11 and 12).
if “no”, then putSprev to Q and go to A4.

c) if it is an OR-construct:
go to A6 (use formulae 5 and 6).

d) if it is a conditional construct or parallel construct:
go to A6 (use formulae 7,8, 9 and 10 or
formulae 1 and 2).

e) if it is a terminating transition (leading to an
empty state): go to A4.

A6 Reach the consequent state(s)Scons and calculate its
CSRandSSRby the corresponding formulae.

A7 If the newly calculatedCSR andSSR are better than
stored ones forScons, replace the storedCSR andSSR
by the newly calculated ones and putScons into Q.

A8 Go to A4.
A9 End.

The calculation of reachability measurements for states
included in loops is difficult. Their reachabilities depend not
only on some reachabilities already computed but also on
reachabilities not yet computed for the states involved in the
loop. Our algorithm deals with this problem by first
assigning to each state the worst reachability and then
updating the reachability only when it is better than theFigure 2. Different constructs

Si Sj

Sk

(f) parallel construct

Si

Sj

(b) simple construct

S0

(a) initial state

Si

Sk

Sj

(c) OR-construct

Sk

Si

C C

Sj

(d) conditional construct

Si Sj

Sk

(e) AND-construct

CSRi CSRk CCC×=

SSRi Max SSRk SCC,{ } 1+=

CSRj CSRk CC
C

×=

SSRj Max SSRk SC
C

,{ } 1+=

CSRk CSRi CSRj×=

SSRk Max SSRi SSRj,{ } 1+=

previously assigned value (A7 in the algorithm).
It has to be noted that a loop consists of both conditional

and OR-constructs and formulae 5-10 are used to compute
their reachabilities. These computations involve calculation
of controllability factors for the conditions controlling the
loop execution and thus our reachability calculation takes
into account the additional difficulty of controlling the loop
exit. The controllability factor calculation for conditions is
carried out separately during the data path testability
analysis process [7].

The algorithm produces two reachability measurements
for every stateSi, CSRi andSSRi. To evaluate the total state
reachability we combine these two measurements using the
following formula:

whereSSRL is the largestSSR in the design andk is the ratio
betweenCSR andSSR given by designers. This formula is
used in selecting the difficult-to-reach states for
improvement.

5. Controller Testability Enhancements
After analyzing and evaluating the state reachability for

all states in the controller, we can identify the hard-to-reach
states. Different techniques are then used to make these
states easy to be reached. In the following, we will discuss
several of these techniques.

5.1 Register Initialization
When a register in the data path is hard to be initialized

due to the hard-to-reach state in the controller, the register
initialization/setting technique can be used to improve this
situation. Figure 3 illustrates the method of enhancing the
controllability of setting/initializing registerRegj through
registerRegi. This method finds an accessible point in the
data path (either a scan register or an input port, such as scan
registerRegi in the figure) which has a short “distance” to
the input of the register to be initialized (such as register
Regj in the figure 1) and a short “distance” from the state
controlling the accessible point to the state controlling the
register in the controller. The distance in the data path is
measured by the number of components between the
accessible point and the register. The distance in the
controller is measured by the number of transitions between
the state controlling the accessible point and the state
controlling the register.

In the controller, we improve the state reachability of
setting/initializing the register by introducing an extra
conditional transition from an initial state to the state
controlling the accessible point directly. The condition is
controlled by a test signal,T1. Thus, the transition can be
fired when theT1 signal is true and we can easily set/
initialize a register through the closest accessible point to

the register. This method has another more important
feature that the start execution point of a circuit can be
controlled by transferring token(s) from the initial state(s)
directly to the state(s) that we want to start the execution
and getting the input value(s) from the input port(s) and/or
scan register(s). This feature can significantly improve the
efficiency of test generation.

5.2 Branch Control
The state reachability enhancement for a state which is

reached through a transition controlled by a condition is
required when the controllability of the condition is poor.
We assume that the controllability of conditionC in figure
4 is poor. To enhance the state reachability of stateSi, we
modify conditionC to C∨T2 andC to C∧T2,whereT2 is a
test signal. WhenT2 is true, the transition controlled by the
new conditionC∨T2 will be fired, no matter what valueC
has. If we only need to enhance the reachability of stateSi,
i.e., stateSk and other previous states are not required during
test, we can use the same method as the control
enhancement for register setting/initialization to enhance
the reachability of stateSi.

5.3 Loop Termination
Feedbacks usually take huge computing time in test

generation. The control of feedback termination can not
only simplify test generation and shorten test application,
but more importantly it can increase the fault coverage by
making fault detection easier. Assume a loop running from
10 down to 0. The register keeping the loop variable will
contain 0 at the end of the loop. It will ease testing if we can
get other values in the register at the end of the loop. By

CSRi k
SSRL
SSRi
-------------+

Figure 3. Initialize or set Regj through Regi.

Regi

 S0

 Si

T1
SI SO

Regj

Si
T1

Figure 4. Select branch by T2

 Sk

 Sj Si

C ∨T2 C∧ T2

adding a test point, we make other values possible. In the
example we may terminate the loop at any value from 0 to
10. Thus, we will achieve higher fault coverage.

We assume that the controllability of conditionC in
figure 5 is poor. To enhance the state reachability of stateSi,
we modify conditionC to C∨T3 andC to C∧T3, whereT3
is a test signal. WhenT3 is true, the transition controlled by
the new conditionC∨T3will be fired, no matter what value
C has.

6. Experiments
We used the Mentor Graphics synthesis and test

generation tools as an experimental platform with the
default setting used in its test generation process.

The benchmarks we used are a counter, a differential
equation (diff), and mag. The results are presented in table
1, where the area is measured in mm2 . We applied the loop
termination technique to two benchmarks, counter and diff.
In the counter benchmark, the fault coverage with no DFT
technique is 25.23% and the fault coverage with loop
termination technique is increased to 84.67%, an
improvement of 235.63%. The area overhead is only 0.25%.
In general, the loop termination technique has very low area
overhead and is efficient when a design has complicated
control loop(s). In benchmark mag, there is no loop. We

used the branch control technique instead. The fault
coverage increased from 51.17% to 65.23% and the area
overhead is 0.5%. When the register initialization method is
used, considerable improvement in term of fault coverage
has also been achieved. For example, with diff, the fault
coverage is increased from 13.20% to 98.06%, with a
overhead of 1.27%.

7. Conclusions
In this paper, we have presented a method to analyze the

testability of a controller. It measures the combinational and
sequential hardness to reach each state in the controller.
Based on this result, hard-to-reach states are detected and
three testability enhancement techniques are developed to
improve the state reachability.

This method has the advantage that it does not suffer
from the timing penalty which data path scan technique
usually does. It can be used as complement to data path scan
in order to achieve better test quality and less area and
timing penalties.

Experimental results show that this method can
effectively improve fault coverage with a very limited area
overhead.

8. References
[1] C.-H. Chen, T. Karnik and D. G. Saab, Structural and

Behavioral Synthesis for Testability Techniques,IEEE
Trans. Computer-Aided Design, 13(6), pp. 777-85, 1994.

[2] S. Dey, M. Potkonjak and R. Roy, Exploiting Hardware
Sharing in High Level Synthesis for Partial Scan
Optimization, Proc. International Conference on
Computer-Aided Design, November 1993.

[3] X. Gu, K. Kuchcinski and Z. Peng, Testability Analysis and
Improvement from VHDL Behavioral Specifications,Proc.
EURO-DAC’94, pp. 644-649, Grenoble, September 1994.

[4] T. C. Lee, N. K. Jha and W. H. Wolf, Behavioral Synthesis of
Highly Testable Data Paths under Non-Scan and Partial Scan
Environments,Proc. Design Automation Conference, pp.
292-7, 1993.

[5] T. Thomas, P. Vishakantaiah and J. A. Abraham, Impact of
Behavioral Modifications for Testability, Proc. the 12th IEEE
VLSI Test Symposium, pp. 427-32, April 1994.

[6] Z. Peng and K. Kuchcinski, Automated
Transformation of Algorithms into Register-Transfer
Level Implementations,IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol. 13, No.2,
pp. 150-66, February 1994.

[7] X. Gu, RT Level Testability Improvement by Testability
Analysis and Transformations, PhD Dissertation, No. 414,
Linköping University, Sweden.

[8] S. Dey, V. Gangaram and M Potkonjak, A Controller-Based
Design-for-Testability Technique for Controller-Data Path
Circuits,ICCAD 1995, pp 640-645.

[9] F. Hsu, E. Rudnick, J. Patel, Testability Insertion in
Behavioral Descriptions, Proc.ISSS 1996, pp 139-144.

[10] F. Hsu, E. Rudnick, J. Patel, Enhancing High-Level Control-
Flow for Improved Testability,Proc. ICCAD 1996.

 Table 1 Summary of Experimental Results

design DFT technique fault coverage area

counter
no DFT 25.23% 0.5525

loop termination 84.67% 0.5539

diff

no DFT 13.20% 7.3596

loop termination 96.33% 7.3674

register initialization 98.06% 7.4534

mag

no DFT 51.17% 1.6435

branch control 65.23% 1.6528

register initialization 77.73% 1.6989

Figure 5. Terminate feedback by T3

 Sk

 Sj Si

C ∨T3 C∧T3

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

