
ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

Random Benchmark Circuits with Controlled Attributes

Kazuo Iwama� Kensuke Hinoy Hiroyuki Kurokawaz Sunao Sawada�

�Dept of Computer Science and

Communication Engineering

Kyushu University, Japan

yIndustrial Instrumentation &

Control Systems Department,

TOSHIBA Corporation, Japan

zResearch & Development,

JUSTSYSTEM Corporation,

Japan

e-mail : [iwama, sawada]@csce.kyushu-u.ac.jp

Abstract

Two major improvements, controlled fan-in and au-
tomated initial-circuit production, were made over the
random generator of benchmark circuits presented at
DAC'94. This is an important progress towards our
goal of random benchmarking: more general and se-
cure testing, increasing the naturality of random cir-
cuits by controlling their attributes, and obtaining test
results by which the di�erence of performances under
evaluation can be made clear.

1 Introduction

No one disagrees that how to select benchmarks is
a key issue in evaluating empirically the performance
of CAD systems, including logic optimizers discussed
in this paper. For example, the MCNC benchmark set
[11] includes more than 70 combinatorial circuits (and
also other types of circuits). Those circuits are care-
fully selected with a wide variety and appear to have
been accepted in the logic-design community. How-
ever, it is an unforgettable fact that only a �nite num-
ber of particular circuits are involved. Natural con-
cern is its generality: There is no way of proving that
algorithms being good for the benchmarks are good
for every circuit. We cannot even deny the possibility
of cheating, or unnatural tune of algorithms for the
benchmarks, either.

To relief this concern, the best way seems to
add random test-instances, or random circuits in the
present case, into benchmarks. This approach is al-
ready common in some other areas like graph algo-
rithms [10] and combinatorial optimization [3]. How-
ever, generating \reasonable" random circuits is not
easy. Critics always say that random instances are
too arti�cial and far from the real world. It also suf-
fers from the di�culty of controlling several features
and attributes of instances. For example, suppose that
random circuits are generated just as random graphs,
i.e., by placing connections between gates at random.
Then it turns out that by a good chance the resulting
circuits realize the constant (0 or 1) logic function.

In [2], Iwama and Hino introduced random gen-
eration by random transformation of multi-level logic
circuits, for the purpose of testing the performance of
logic optimizers such as MIS [1], SIS [8] and Transduc-
tion Method [7]. The algorithm starts with an initial

circuit and then applies a sequence of random trans-
formations. Each transformation is selected at ran-
dom from the set of transformation rules. Each rule
is an equivalent transformation, namely, it does not
change the logic function. Its single application can
be done quickly (in polynomial time). The set of rules
is complete, which means there exists a sequence of
rules that changes any circuit to any equivalent cir-
cuit. Thus, many test circuits of di�erent sizes can be
generated from a (small-sized) initial circuit and then
can be fed to the optimizers to test them.

Unfortunately, this generator was rather experi-
mental and included two major problems: One is that
we can control virtually no attributes of circuits such
as the maximum fan-in of logic gates. Note that this
is a consequence of the completeness of our transfor-
mation rules; our rules can generate any equivalent
circuits which obviously include those using large-fan-
in gates. So this problem is rather intended but it is
also true that circuits in practice are usually fan-in
restricted such as four. The second problem is that
we did not mention how to select the initial circuit.
One reasonable way was to select it from the bench-
mark set. However, it is clearly a demerit for the pri-
mary goal of random benchmarks, i.e., the variety of
instances, since the generated circuits realize only a
limited small number of logic functions. MCNC The
objective of this paper is now obvious: We shall �rst
show a complete set of transformation rules for circuits
of NAND gates whose fan-in is up to k (k is a �xed
integer � 2). Note that this new �nding of the com-
plete set and its proof are much more nontrivial than
it might look: Recall that what we wish to do is to
transform a circuit, C1, of max-k fan-in into any cir-
cuit, C2, of the same restriction. Only to this goal, the
rule set in [2] does work since it can change any circuit
to any equivalent one. However, one can see that there
can be intermediate circuits that violate the fan-in re-
striction in the course from C1 to C2. Our new rules
never violate the restriction, namely, any application
(sequence) of the rules produces circuits of max-k fan-
in if the original circuit is also of max-k fan-in. Such
a complete set of rules was not known with the best
knowledge of the authors.

We also present a new procedure for random gen-
eration of the initial circuits. Generation of the initial

circuit is almost the same as generation of a logic func-
tion. Our approach is to generate prime implicants at
random. It can control basic attributes including the
size of the on-set of the function and the degree of its
complexity, which also meets the �rst requirement of
controllable attributes. Now our generator produces
a variety of random circuits from less than ten simple
parameters, by which we can get rid of rather trou-
blesome procedures of selecting the initial circuit and
typing it into the computer.

As for the circuits of limited fan-in, experiments
are at the primary stage, but the experimental data
for SIS and Transduction Method show clear di�er-
ences of their performances for particular circuits.
As for the generation of initial random circuits, a
fairly large amount of experimental data has been ob-
tained. We tested SIS and Transduction Method us-
ing two types of circuits, one is generated by initial
circuits followed by random transformations (MCNC-
RT instances) and the other by random initial cir-
cuits and random transformations (R-RT instances).
Roughly speaking: (i) R-RT instances appear to be
much harder than MCNC-RT ones for both SIS and
Transduction Method. The degree of optimization is
close to one (the output of the optimizers is almost of
the same size as the best possible) for MCNC-RT in-
stances but is as large as three (three times as bad as
the best possible) for R-RT instances. (ii) SIS with the
algebraic script occasionally showed signi�cantly bad
performance in terms of the degree of optimization.

Finally in this section it should be noted again that
we do not claim that random circuits should replace
conventional (natural) benchmark circuits but we do
claim that random circuits should be added to com-
pensate what lacks in the conventional benchmarks.
One side e�ect is that we get a lot more chance of
checking incompleteness of the system using random
benchmarks. Our above experiment shows that there
were a good number of circuits for which SIS or Trans-
duction Method failed to run (some 8% for SIS and
10% for Transduction Method).

2 Random Transformation

2.1 Algorithm
The algorithm for transforming an initial circuit

into a test circuit is exactly the same as [2]. A cir-
cuit is described by a set of equations like

g[0] = ((x1; g[2]); (((g[1]; g[2]); (x3; (x4; x2)))));
g[1] = (x1; x2);
g[2] = (x2; x3),

which denotes the circuit, say, C0, of Figure 1. Here,
each equation is called the de�nition of a subcircuit,
say, g[0].

In this paper, we assume the circuit uses only
NAND gates. A k-NAND circuit denotes a circuit
of NAND gates with fan-in up to k. A transforma-
tion rule, or simply a rule, is denoted by f =) g.
A k-NAND circuit C1 is changed to an (equivalent)
circuit C2 by applying one of the rules in the set <k,

x

x

x

x

1

2

3

4

g [2]
g [0]

g [1]

Figure 1: The circuit described by the equations

which will be given in Section 2.2. The following ex-
ample would be bene�cial to see how this application
proceeds:

Example. Suppose that we wish to apply the rule

(x; (y; z)) =) (((x; (y)); (x; (z))))

to the subcircuit g[0] of the above circuit C0. Since
we allow x; y and z to match any subcircuit of C0, we
can set

x = (g[1]; g[2]); y = x3; z = (x4; x2);

which transforms C0 into C 0

0
, namely

g[0] = ((x1; g[2]); ((x; (y; z))))

= ((x1; g[2]); ((((x; (y)); (x; (z)))))) � � � rule (9)

= ((x1; g[2]); ((x; (y)); (x; (z)))) � � � � � � rule (8)

= ((x1; g[2]); (((g[1]; g[2]); (x3)); ((g[1]; g[2]);

((x4; x2))))): 2

The algorithm selects a transformation rule from
<k at random and applies it to the initial circuit, and
then repeats this operation:

Random Transformer RT.
Input: An initial circuit C1

Output: A circuit C2 that is equivalent to C1 and is
probably more complicated than C1.

Step 1: C C1

Step 2: Select a rule r at random from <.

Step 3: Apply r to C to get C0. If there are two or
more possibilities, select one of them at random,
where the probability of selecting each rule is
not uniform (see Section 2.2).

Step 4: C C0 and repeat Step 2{Step 4 some
speci�ed times or until the size of C gets to
some speci�ed value.

Step 5: C2 C

2.2 New Set of Rules
The set <k of transformation rules for k-NAND cir-

cuits consists of the following 12 rules, where f () g
stands for f =) g and g =) f , where Sx denotes a
subcircuit as described above. It is a little surprising
that <k is very similar to the rule set for unbounded
fan-in circuits[2]; only rule (5) is di�erent.

(1) (1)() 0 (2) (0)() 1
(3) (Sx; Sx)() (Sx) (4) (Sx; (Sx))() 1

(5) (a) Sx; ((Sy; Sz))() ((Sx; Sy)); Sz if k = 2 or
(b) (S1; S2; � � � ; Si)() (((S1; S2)); � � � ; Si)

for i = 3; � � � ; k if k is 3 or more
(6) Sx; Sy () Sy; Sx (7) (Sx;1)() (Sx)
(8) ((Sx))() Sx

(9) (Sx; (Sy; Sz))() (((Sx; (Sy)); (Sx; (Sz))))
(10) If g[`] = f is the de�nition of subcircuit g[`]

then g[`]() f .
(11) If g[`] is neither an output of the circuit nor

does not appear in the right-hand side of the
de�nition of any k-NAND circuit, then the
de�nition of g[`] is removed. This rule is
called a deletion.

(12) If the de�nition of label g[`] does not exist
in the right-hand side of any de�nition, then
g[`] = C is added, where C can be any
k-NAND circuit whose length is bounded
polynomially. This rule is called a creation.

Now we shall show that (i) k-NAND circuits are
closed under any operation in <k (Theorem 1 below),
and (ii) <k is complete (Theorem 2 below). Namely
suppose that the algorithm RT takes a k-NAND cir-
cuit C1. Then a circuit C2 can be obtained by RT with
positive probability if and only if C2 is a k-NAND cir-
cuit and C2 is equivalent to C1.

Theorem 1. Let C1 be any k-NAND circuit. Then
the circuit C2 obtained by applying any rule in <k

is also a k-NAND circuit which is equivalent to C1.
(Proof is omitted.)

Theorem 2. Let C1 and C2 be any equivalent k-
NAND circuits. Then there exists a sequence of trans-
formation rules, each in <k, which transforms C1 into
C2.

Proof (Sketch). Note that rule (5-a) cannot be
used directly if k � 3. However (5-a) can be simulated
by using (5-b) and (6) several times (details are omit-
ted). Also, any k-NAND circuit can be transformed to
a 2-NAND circuit by applying rule (5-b) repeatedly.
From these two facts, we can claim that it is enough
to consider only the case for k = 2.

The idea of proof is the same as [2]: It is shown that
any 2-NAND circuit can be transformed into a circuit
of the canonical form that is unique for a particular
logic function. If C1 and C2 are equivalent then both
C1 and C2 can be transformed into the same canon-
ical form, say, C, by sequences r1 and r2 of rules,
respectively. Then, since each transformation rule is
bidirectional, we can get a sequence of rules r0

2
that

transforms C into C2. Now the sequence r1 followed
by r0

2
transforms C1 into C2.

The canonical form can be associated with the well-
known two-level NAND circuits as shown in Figure 2
(a), where each (unlimited fan-in) NAND gate cor-
responds to a minterm of DNF formulas. Then each
NAND gate is expanded to a circuit of 2-NAND gates,
as shown in Figure 2 (b) in the usual way. When a
2-NAND subcircuit takes the form of right-hand side
of Figure 2 (b), we call it a UNIT. Now one can see
that the canonical form is a tree such that its root part
must be a UNIT and its leaf parts must be also UNITs.

In Figure 2 (b), There is a 2-NAND gate whose out-
put is connected to both inputs of another 2-NAND
gate directly. Such a sequence of two 2-NAND gates
can be considered as a single gate and will be called
a 2-AND gate below. Furthermore, if we say that a
gate x is a 2-NAND gate, then we assume two inputs
of x are connected to di�erent two gates, i.e., it is not
a 2-AND gate.

.......

.......

.......

.......
.
.
.

(a) (b)

Figure 2: Canonical form of a circuit

Lemma 1. Suppose that at least one of subcir-
cuits Sx and Sy has a 2-NAND gate as its top (out-
put) gate. Then there exist a sequence of transforma-
tion rules, that realize the following transformations
for some subcircuits Sa and Sb.

(Sx; Sy) =) ((Sa; Sb))
((Sx; Sy)) =) (Sa; Sb)

Proof. Let the top of Sy be a 2-NAND gate,

(Sx; Sy) = (Sx; (S1; S2))
= (((Sx; (S1)); (Sx; (S2)))) � � � rule (9)
= ((Sa; Sb))
(i.e., Sa = (Sx; (S1)) and Sb = (Sx; (S2)))

((Sx; Sy)) = ((Sx; (S1; S2)))
= ((((Sx; (S1)); (Sx; (S2))))) � � � rule (9)
= ((Sx; (S1)); (Sx; (S2))) � � � rule (8)
= (Sa; Sb)

Note that if the top of Sy is a 2-AND gate, then we
cannot apply rule (9). 2

Lemma 2. Suppose that at least one of Sx and
Sy includes at least one 2-NAND gate (i.e., does not
consist of only 2-AND gates). Then there exist a se-
quence of transformation rules, that realize the follow-
ing transformations for some subcircuits Sa and Sb.

(Sx; Sy) =) ((Sa; Sb))
((Sx; Sy)) =) (Sa; Sb)

Proof. Find the 2-NAND gate g[0] which is lo-
cated at the most upper level. If it is at the top level,
then we can use Lemma 1 directly. Otherwise, apply
the transformation ((Sx; Sy)) =) (Sa; Sb) of Lemma
1 to the 2-AND gate to which the output of g[0] is
connected. Then we can move the 2-NAND gate \one
level up". Repeat this procedure. 2

Lemma 3. Suppose that Sx and Sy include no
2-NAND gate. Then the subcircuit (Sx; Sy) can be
transformed into the form of a UNIT.

Proof. Apply rule (5-a) (from left to right) repeat-
edly. 2

It is convenient to use a graph representation of
circuits as illustrated in Figure 3, where a vertex de-
noted by � represents a 2-NAND gate and � represents
2-AND gates. Note that Lemma 1 says that we can
change � into � if at least one of �'s two input vertices
is �.

.

.

.

.
 .
 .

Figure 3: Graph representation of circuit

Now one can see that the canonical form is a tree
such that its root must be � and there is exactly one
other �, called an intermediate � vertex, in each path
from the root to a leaf. Suppose that the tree for the
circuit C1 has a � vertex as its root. Then what we
have to do �rst is (i) to change this � root to � root.
Then we go down to level 2, level 3, and so on, where
(ii) if we encounter a � vertex then we try to change it
into a � vertex. To do (i) above, i.e., to change � into �,
we can use Lemma 2. To do (ii), i.e., to change � into �,
it turns out that we need another � vertex somewhere
below the current � vertex. If there is no such � then
the current � becomes the intermediate � vertex. After
that we can transform each subcircuit into the UNIT
form by Lemma 3. We also need several procedures
such as changing the order of literals, adding missing
literals and so on. For the complete proof, see [6]. 2

It should be noted that Theorem 2 guarantees that
there exists a path from a given circuit to any equiv-
alent circuit, including simpler or even optimal ones.
However, the theorem says nothing about how to get
such an optimizing sequence or how long it is. There-
fore, it is not realistic to try to use <k for the opti-
mization purpose. On the other hand, it is quite likely
that if we apply the rules at random, the circuit be-
comes more complicated. This is the basic idea of the
algorithm RT.

In Step 2, we can set some biased probability for
selecting each rule (for example, the one like that
x; ((y; z)) =) ((x; y)); z should be applied 10 times as
often as the others). This probability setting is very
important to determine the feature of the �nally gen-
erated circuit. In other words, it is expected that we
can control several features of the circuit by elaborat-
ing this probability and/or by introducing conditional
probabilities (i.e., application of some rule being fol-
lowed by some speci�c rule much often). For example,
it would be desirable if we could generate those circuits
which have relatively large depth or long paths by this
improvement.

3 Random Generation of Initial Cir-

cuits

3.1 Basic Approaches
Recall that the generator RT can produce many

(theoretically all) di�erent circuits that realize the
same logic function de�ned by the initial circuit.
Therefore the role of the initial circuit can be con-
sidered as determining the logic function of generated
circuits. (We will sometimes call initial circuits initial
functions.) In this section we describe how to generate
initial functions also at random. In doing so, we have
to recall that random generation, in general, tends to
lack the ability of controlling features and attributes
of instances, which often results in too arti�cial or
practically meaningless instances.

Then what kind of attributes should be considered
for logic functions? Besides some trivial ones like the
number, n, of logic variables, the following two at-
tributes are obviously important:

(i) The size of the on-set, i.e., the number of truth as-
signments (out of 2n ones) which make the func-
tion's value 1 (true).

(ii) The complexity of the function which can be mea-
sured by the size and the depth of the optimal
circuit realizing the function. (Actually there is a
trade-o� between the size and the depth.)

An elemental way of specifying a logic function is
by a truth table. A random truth table can easily
be created by placing 0 or 1 at random in each of
2n entries. Obviously it is easy to control the size of
on-sets. However, it appears to be hard to control the
above second attribute. As is well known [9], statically
almost all logic functions need exponential circuit-size.
Therefore, with a high probability, the size of circuits
that realize such a random truth-table will be very
large even if they are optimal. This is exactly a \too
arti�cial nature" and must be a signi�cant drawback.
As mentioned in the �rst section, to draw a circuit as
a random graph is not so good, either.

Our algorithm is based on random generation of a
DNF formula like

x1x2x3 + x2x4x7x8 + x1x5 + � � � :

This method is clearly better than the previous one
in the controllability of the function's complexity by
the following reason: If we generate more (random)
terms and if we assume that most of those terms are
prime implicants, then it turns out that the complex-
ity of the function tends to increase. (Clearly we need
more gates if we try to realize the function with depth-
two circuits. In the case of multi-level circuits we are
now dealing with, there are some exceptions; e.g., the
parity function needs great many (2n�1) prime impli-
cants but it has a simple log-depth circuit of linear
size. However, this kind of exceptions do not seem se-
rious.) Thus we can get more complicated functions
by generating more terms in principle. Then how can
we control the size of on-sets? We have to be a bit
more careful about this problem.

3.2 Counting On-set
Several formal de�nitions are needed: a literal is

a variable, say, x, or its negation x. A term is a
product of literals like x1x2x3. A (DNF) formula is
a sum of terms. A (particular) truth assignment, say,
x1=x3=x4=1, x2=0 in the case of four variables, is
called a cell. A cell is said to be covered by a term C if
the truth assignment denoted by the cell makes that
term 1 (true). For example, term x1x2 covers the cell
of the above example. A term that covers many cells
is said to be large. Obviously a large term consists of
a few literals. A term including k literals is called a
k-term.

Our goal is to generate terms C1; C2; � � � in this or-
der and �nally to get the following formula of n vari-
ables:

f = C1 + C2 + � � �+ Cm + Cm+1 + � � � + Cm+t:

Each Ci must cover at least one \new" cell, namely,
the cell not covered by any of C1 through Ci�1. C1

through Cm are k1-terms, namely, all those m terms
are of the same size. Those terms are called pri-
mary terms. The size of the remaining t terms, Cm+1

through Cm+t, called secondary terms, is determined
at random between k2 and k3. Parameters k1; k2; k3
and t are given as the input. Another parameter X
determines the size of on-sets. X takes an integer be-
tween 1 and 99. The formula f must satisfy the condi-
tion that its subformula fm�1 = C1+C2+ � � �+Cm�1

covers less than X% of the whole (2n) cells and sub-
formula fm = C1 + � � � + Cm covers at least X% of
the whole cells. Namely we stop the generation of
k1-terms when the size of the on-set becomes at least
X% for the �rst time. Hence it does not make sense to
give, for example, X=5 and k1=3, for the �rst 3-term
solely covers 12.5% of the whole cells.

We add the secondary terms Cm+1 through Cm+t,
to increase the complexity of the function. Not to
change the size of the on-set too much, those terms
should be small, namely k2 and k3 should be large.
Suppose that we wish to generate a formula of 20
variables and X=50. Then suggested values for those
parameters are 3 for k1, 15 and 20 for k2 and k3, re-
spectively. Since k2 and k3 are large (each term Cm+i

is negligibly small), the value of t can be set without
concern about the increasing size of the on-set. The
standard value for t, however, is around 10. Now here
is the algorithm:
Generator of Random Initial Circuit RIC-
GEN
Input: n = the number of variables, k1, k2, k3, t and
X as described above.
Output: DNF formula C1+ � � �+Cm+t as described
above.
Step 1: P 0, i 1 and j 1.
Step 2: Generate a random k1-term C and com-

pute the number h of new cells covered by C,
i.e., covered by C but not by any of C1 through
Ci�1.

Step 3: If h > 0 then Ci C, P P + h and
i i + 1. Else (i.e., if C covers no new cells),
go back to Step 2.

Step 4: If P < (X=100) � 2n then go to Step 2.

Step 5: Choose k such that k2 � k � k3 at random.
Generate a random k-term C.

Step 6: If C covers at least one new cell then Ci
C and i i+ 1. Else go back to Step 5.

Step 7: if j = t then stop. Else j j + 1 and go
back to Step 5.

Step 2 (Computing the number h) is harder than it
looks (same for Step 6). For example, we can do so by
memorizing all the cells covered so far. However, this
method needs a lot of memory space to hold up to 2n

cells and also computation speed is slow. Our method
is a combination of the inclusion-exclusion principle
used in [4] and a backtrack tree search developed in
[5]. Details are omitted.

4 Experiments

4.1 4-NAND Benchmarks
All experiments were conducted in SUN SPARC-

station 10. For experiments on 4-NAND circuits, we
selected an initial circuit that is similar to \con1"
in MCNC benchmark set. Then it was transformed
30 (equivalent but) di�erent circuits which are shown
as \c-out01" through \c-out30" in Table 1. \con-
in" is the initial circuit. The data of these cir-
cuits including \con-in", denoted by the number of
gates/connections/depth, are shown in the second col-
umn. Those test circuits are given to logic optimizers,
SIS a, SIS b and Trans. Here:

SIS a: SIS with the algebraic script, 4-input NAND
and NOR gates.

SIS b: SIS with the boolean script, 4-input NAND
and NOR gates.

Trans.: Optimization based on TransductionMethod,
developed in Kyoto Univ. 4-input NAND gates.

Table 1 shows, for example, SIS a simpli�ed input
circuit c-out01 from 411 gates / 680 connections / 19
levels into 39 gates / 75 connections / 12 levels. The
data is interesting: Generally speaking, Trans exhibits
stable performance for each test circuit. SIS b is bet-
ter than Trans in many examples but sometimes very
bad.

4.2 Unlimited Fan-in Benchmarks
About 200 R-RT (random initial circuit + random

transformation) instances were generated, which are
categorized by the following parameters:

(1) No. of variables: 10, 20, 30.

(2) Size of on-sets: 1, 5, 50, 95, 99(%). Also, we
generated initial functions that consist of only one
min-term, i.e., they become 1 for only one cell out
of 2n ones.

(3) No. of secondary terms: 0, 10.

For example, 10-.50-0 denotes the initial function of 10
variables, 50% on-set and no secondary terms. 10-.50-
0(1) and 10-50-0(2) are di�erent initial function with
the same parameters. In the case of 50% on-set, we
set k1=4, namely, each primary term includes 4 liter-
als, to make the number of primary terms reasonable.

name init. SIS a SIS b Trans.

con-in 16/27/5 12/21/5 10/19/6 13/24/5

c-out01 411/680/19 39/75/12 37/70/17 15/31/7

c-out02 645/1165/33 85/170/25 46/93/17 16/32/7

c-out03 632/1150/33 85/170/25 46/93/17 15/30/9

c-out04 258/449/30 27/59/9 11/21/6 13/26/7

c-out05 641/1098/28 41/81/13 11/21/6 15/28/9

c-out06 545/966/21 55/113/17 10/19/6 14/26/9

c-out07 621/1140/23 62/122/17 10/19/6 11/23/4

c-out08 416/727/17 11/20/5 10/20/5 13/25/8

c-out09 354/644/19 11/22/6 10/19/4 14/29/6

c-out10 295/514/19 47/89/17 11/20/5 18/30/9

c-out11 469/814/19 37/73/11 10/19/6 14/26/7

c-out12 1017/1720/23 89/182/17 10/19/6 18/32/9

c-out13 195/351/24 40/76/14 12/21/5 11/22/5

c-out14 384/692/21 46/92/19 25/45/13 13/25/8

c-out15 498/873/23 39/74/19 13/24/6 16/29/7

c-out16 301/528/26 16/31/8 10/19/6 13/24/5

c-out17 1516/2767/25 53/112/13 40/79/12 17/33/7

c-out18 437/774/25 56/112/19 10/19/6 12/24/5

c-out19 396/688/23 28/55/12 15/25/9 15/27/7

c-out20 209/366/16 14/26/6 10/19/6 13/25/6

c-out21 219/383/18 14/26/6 10/19/6 10/21/4

c-out22 709/1361/20 51/99/15 15/28/6 12/26/7

c-out23 303/515/25 12/21/5 10/19/6 14/27/5

c-out24 314/548/24 21/39/12 17/31/8 13/24/5

c-out25 882/1539/25 57/114/15 11/21/5 13/29/7

c-out26 753/1327/25 32/65/10 10/19/6 11/24/6

c-out27 261/484/25 66/131/15 11/20/6 14/28/7

c-out28 388/685/19 86/175/15 22/42/10 10/18/5

c-out29 355/671/17 60/117/21 18/34/8 14/28/7

c-out30 294/543/19 35/66/13 10/19/6 13/24/7

Table 1: Experimental result of 4-NAND circuits

(It was 10 or 11 in this setting.) For other on-set ra-
tios, we set k1=3, 3, 9 and 10 for 99%, 95%, 5% and
1%, respectively. The number of primary terms is ap-
proximately between 20 and 30. Secondary terms are
added only to 50% on-set instances, which makes the
number of the whole terms around 20. Computation
time mostly depends on the number of terms gener-
ated, i.e., if the size of on-sets is large then it is slow.
In the case of 99% on-set, it took about 10 sec (CPU
time), 102 sec and 103 sec for functions of 10, 20 and
30 variables, respectively.

Those initial functions (circuits) are then fed to the
random transformer. Again for each initial circuit, we
generated three (di�erent) circuits. They are denoted,
for example, by 10-.50-0(1,1), 10-.50-0(1,2) and 10-
.50-0(1,3), which are �nal test-circuits and were made
sure (just in case of program errors) to be equivalent
to the initial circuit (i.e. 10-.50-0(1)) using a program
developed by the third party. We then ran the ran-
dom transformer RT until the number of gates reached
around 1000, for which it took about 103 sec.

We also generated MCNC-RT instances. As initial
circuits, we picked 9symml, cm82a, z4ml, frg1 and
cordic. From each initial circuit, about 10 �nal cir-
cuits were generated by the random transformer. In
this case we executed 2000 times of rule applications.

4.3 Responses of SIS and Transduction

Method
Table 2 to table 5 are part of experimental results.

See Table 2, which is the responses of SIS a and Trans.
for 10-.50-0(2,1), 10-.50-0(2,2) and 10-.50-0(2,3). Note
that SIS a and Transduction Method take unlimited
fan-in circuits and they output simpli�ed circuits with
fan-in up to 4. The table consists of four major rows:
The �rst row shows the optimization results for the
initial circuit 10-.50-0(2). The following three major
rows are for the above three test circuits. For example,
circuit 10-.50-0(2,1) is composed of 1000 gates, 2161
connections and 23 levels, which are reduced into 45,
91 and 11, respectively, by SIS a and into 38, 87 and
9, respectively, by Trans. We assume that the data for
the optimal circuit is close to 26 gates, 61 connections
and 5 levels, namely, that is the minimization data
for the initial circuits (we take the better one in the
number of gates). Under this assumption, we calcu-
late the degree of gate{optimization for 10-.50-0(2,1)
as 45/26=1.73 for SIS a and 38/26=1.46 for Trans.
Similarly for connections and levels. The forth col-
umn shows CPU time in second.

Tables 3 to 6 are similar. The degree of optimiza-
tion is sometimes large, for example, as large as 4.5 in
Table 4. Note that in Table 3, Trans. is quite worse
than SIS a for the initial circuit. (Hence SIS a data
is taken as the assumed optimal.) It should be noted
that we only used the algebraic script of area-priority
for SIS. According to the previous Table 1, SIS with
the boolean script would be better in terms of simpli-
�cation. Table 5 is for MCNC-RT instances.

Table 6 is a grand summary of the experiments.
Each row shows average values over three (sometimes
two when SIS a or Trans. failed) circuits for each ini-
tial function. The column denoted by \deg" is for the
degree of optimization. The t/s column shows (deg for
Trans. � deg for SIS a). The \diver" column shows
the divergence, i.e., (max deg among three � min deg
among three).

1. The deg column for MCNC-RT holds mostly less
than 2 but the value for R-RT is mainly between
2 and 4. Thus R-RT seems to be more di�cult to
be optimized than MCNC-RT.

2. See the t/s column. Many values are less than 1,
namely, Trans. overperformed SIS a. However,
SIS a is generally faster than Trans.

3. Degree of optimization does not di�er so much
due to the di�erence of the initial function. For
example, 20-.50-10 should have larger complex-
ity than 20-.50-0, but the deg values are similar.
However, as for computation time, the former is
obviously slower than the latter.

4. Finally, it should be remarked that there is a
wide discrepancy in the computation time. Some-
times the divergence reaches almost 100 times
even among the circuits from the same initial
function.

Circuit gate conn. level time

input 20 59 3 {

Initial SIS a 28 60 7 2.1

Trans 26 61 5 1.5

input 1000 2161 23 {

No.1 SIS a 45 91 11 16.7

Trans 38 87 9 134.4

input 1188 2236 22 {

No.2 SIS a 124 258 19 28.1

Trans 42 98 11 139.9

input 1114 2405 15 {

No.3 SIS a 71 144 21 24.7

Trans 44 106 11 100.1

Table 2: 10-.50-0(2)

Circuit gate conn. level time

input 38 271 4 {

Initial SIS a 83 189 12 14.4

Trans 148 320 10 5.1

input 1154 3235 19 {

No.1 SIS a 309 691 22 116.3

Trans 202 451 22 169.4

input 1041 2883 16 {

No.2 SIS a 188 434 18 50.0

Trans 179 421 14 133.2

input 1053 3586 14 {

No.3 SIS a 192 443 16 86.9

Trans 207 475 16 190.7

Table 3: 10-.05-0(2)

Circuit gate conn. level time

input 27 70 3 {

Initial SIS a 27 61 6 2.0

Trans 32 69 5 2.5

input 1007 2378 24 {

No.1 SIS a 79 162 25 17.8

Trans 55 127 13 169.1

input 1278 2439 21 {

No.2 SIS a 119 236 17 26.1

Trans 56 124 11 106.6

input 1058 2181 19 {

No.3 SIS a 100 207 19 19.9

Trans 40 90 9 170.7

Table 4: 20-.50-0(1)

Circuit gate conn. level time

input 167 401 13 {

Initial sis 177 385 13 13.0

trans 153 384 13 8.2

input 1190 2818 19 {

No.1 sis 219 479 19 39.6

trans 207 509 15 92.9

input 1365 2950 26 {

No.2 sis 404 845 25 90.7

trans 199 499 19 103.8

input 1344 2682 22 {

No.3 sis 305 642 25 55.7

trans 189 462 21 98.3

Table 5: 9symml

5 Conclusion

The discussion using �xed benchmarks usually goes
like \one system is better than theirs by 8.3% on av-
erage." The di�erence is this small. Our experiments
show that if we use random benchmarks then this dif-
ference can get as large as 400%. Furthermore, the dif-
ference is signi�cantly larger for R-RT instances than
for MCNC-RT instances. Note that R-RT instances
are \more random" than MCNC-RT instances. Thus
it is quite reasonable to claim that random bench-
marks are harder or more intractable than �xed bench-
marks for logic optimizers.

References

[1] R.K.Brayton, R.Rudell, A.L.Sangiovanni-
Vincentelli, and A.R.Wang,
\Mis: A Multiple-level Logic Optimization Sys-
tem," IEEE Trans. CAD, 6, pp. 1062-1081, 1987.

[2] K. Iwama and K. Hino, \Random Genera-
tion of Test Instances for Logic Optimizers,"
31st ACM/IEEE Design Automation Conference,
pp. 430-434, 1994.

[3] B. Cha and K. Iwama, \Performance Test
of Local Search Algorithms Using New Types
of Random CNF Formulas", in Proc. Interna-
tional Joint Conference on Arti�cial Intelligence
(IJCAI-95), Montreal, Aug 1995.

[4] K. Iwama, \CNF Satis�ability Test by Counting
and Polynomial Average Time," SIAM J. Com-
puting, 18,2, 385-391, 1989.

[5] O. Kanmoto and K. Iwama, \On Improve-
ment of the Satis�ability Test by Counting us-
ing Backtracking," Record of Joint Conference of
Electrical and Electronics Engineers in Kyushu,
1505, Kumamoto, 1994.

[6] H. Kurokawa, S. Sawada and K. Iwama, \A
Complete Set of Transformation Rules for Fan-
in Restricted NAND Circuits," Technical Report,
96C-06, CSCE Dept., Kyushu Univ., 1996.

[7] S. Muroga, Y. Kambayashi, H. C. Lai, and
J. N. Culliney, \The Transduction Method {
Design of Logic Networks Based on Permissible
Functions," IEEE Trans. Comput. 38, 10, 1989.

[8] E. M. Sentovich, K. J. Singh, et al., \SIS: A
System for Sequential Circuit Synthesis," Memo-
randum No. UCB/ERL M92/41, 1992.

[9] J. Savage, The Complexity of Computing, Wiley,
New York, 1976.

[10] G. Tinhofer, \Generating Graphs Uniformly
at Random," in Computational graph theory,
pp. 235-255, Springer, 1990.

[11] S. Yang, \Logic Synthesis and Optimization
Benchmarks User Guide Version 3.0," in 1991
MCNC International Workshop on Logic Synthe-
sis.

gate conn. level time
Initial Circuit deg. t/s diver. deg. t/s diver. deg. t/s diver. av. t/s diver.

SIS a 2.03 1.84 1.73 1.76 1.71 1.32 63.9 2.57
9symml Trans 1.26 0.62 1.11 1.26 0.73 1.10 1.35 0.79 1.53 89.9 1.41 2.92

SIS a 1.08 1.31 1.03 1.35 1.73 1.67 10.0 2.46
cm82a Trans 0.95 0.88 1.33 0.98 0.95 1.23 1.27 0.73 1.67 71.4 7.13 23.92

SIS a 2.90 2.31 2.86 3.04 2.30 2.18 23.5 2.65
z4ml Trans 1.02 0.35 1.32 1.02 0.36 1.21 1.18 0.51 1.25 96.5 4.10 18.01

SIS a 1.71 1.70 1.72 1.65 1.24 1.35 37.0 2.88
frg1 Trans 1.23 0.72 1.27 1.41 0.82 1.35 1.14 0.92 1.24 3201.0 86.63 2.55

SIS a 1.88 1.47 1.88 1.47 1.72 1.93 26.1 2.51
cordic Trans 1.29 0.69 1.65 1.33 0.71 1.78 1.35 0.78 1.50 139.2 5.32 27.29

SIS a 2.87 2.86 2.76 2.73 1.76 1.71 37.1 1.44
10-.01-0(1) Trans 2.10 0.73 1.31 1.94 0.70 1.26 1.33 0.76 1.50 360.5 9.71 4.13

SIS a 3.83 2.84 3.64 2.70 1.97 1.58 660.3 26.96
10-.05-0(1) Trans 2.28 0.60 1.06 2.29 0.63 1.04 1.50 0.76 1.38 145.6 0.22 1.13

SIS a 2.77 1.64 2.76 1.59 1.56 1.38 84.4 2.33
10-.05-0(2) Trans 2.36 0.85 1.13 2.38 0.86 1.13 1.44 0.92 1.57 164.4 1.95 1.43

SIS a 2.26 2.05 2.01 2.11 3.00 2.38 17.3 1.61
10-.50-0(1) Trans 1.41 0.62 1.03 1.42 0.76 1.04 2.07 0.69 1.22 144.4 8.33 2.99

SIS a 3.08 2.76 2.69 2.84 3.40 1.91 23.2 1.68
10-.50-0(2) Trans 1.59 0.52 1.16 1.59 0.59 1.22 2.07 0.61 1.22 124.8 5.39 1.40

SIS a 3.25 2.47 3.40 2.40 2.56 1.90 20.9 2.32
10-.95-0(1) Trans 1.93 0.59 1.22 2.13 0.63 1.18 1.89 0.74 1.30 120.9 5.78 4.93

SIS a 3.47 3.37 3.11 3.41 3.20 1.91 26.4 1.70
10-.95-0(2) Trans 1.74 0.50 1.15 1.67 0.54 1.14 2.80 0.88 1.15 102.0 3.87 1.31

SIS a 7.33 1.89 8.00 1.92 2.60 1.89 20.7 1.39
10-.99-0(1) Trans 1.71 0.23 1.05 1.67 0.21 1.03 1.70 0.65 1.43 106.75 5.16 1.84

SIS a 4.80 1.61 5.59 1.57 3.50 1.47 44.2 2.39
10-.99-0(2) Trans 1.88 0.39 1.14 2.10 0.38 1.12 1.58 0.45 1.11 301.1 6.81 6.72

SIS a 1.09 1.09 1.13 1.07 1.80 1.25 74.8 1.71
20-.01-0(1) Trans 1.47 1.35 1.04 1.40 1.24 1.06 2.00 1.11 1.00 331.7 4.43 1.11

SIS a 3.68 1.51 3.31 1.46 3.39 1.47 21.3 1.47
20-.50-0(1) Trans 1.86 0.51 1.40 1.86 0.56 1.41 1.83 0.54 1.44 148.8 7.07 1.60

SIS a 2.58 1.44 2.34 1.44 3.53 1.77 23.5 2.33
20-.50-0(2) Trans 1.48 0.57 1.25 1.58 0.68 1.24 2.20 0.62 1.44 503.1 21.41 10.43

SIS a 1.73 1.25 1.61 1.25 2.24 1.27 100.2 5.12
20-.95-0(1) Trans 1.59 0.92 1.11 1.58 0.98 1.16 2.14 0.96 1.00 397.8 3.97 1.59

SIS a 2.04 1.72 1.83 1.75 2.33 1.46 31.4 1.53
20-.95-0(2) Trans 1.55 0.76 1.16 1.55 0.85 1.20 2.33 1.00 1.13 328.1 10.46 2.84

SIS a 1.51 1.55 1.51 1.52 1.71 1.56 20.2 1.27
20-.99-0(1) Trans 1.68 1.12 1.11 1.89 1.25 1.16 1.95 1.14 1.15 264.7 13.1 1.31

SIS a 1.36 1.66 1.39 1.63 1.86 2.33 18.0 1.52
20-.99-0(2) Trans 1.49 1.10 1.14 1.66 1.20 1.19 1.67 0.90 1.18 191.2 10.65 1.76

SIS a 3.04 3.08 3.00 2.84 2.10 2.82 91.0 7.34
10-.50-10(1) Trans 2.14 0.71 1.04 2.29 0.76 1.04 1.80 0.86 1.40 5191.9 57.09 93.06

SIS a 1.67 1.09 1.62 1.17 1.07 1.13 103.7 3.93
20-.50-10(1) Trans 2.08 1.25 1.14 1.98 1.22 1.16 1.07 1.00 1.20 614.0 5.92 2.57

SIS a 1.00 1.00 1.00 1.00 1.00 1.00 14.3 1.62
10-s-0(1) Trans 2.56 2.56 1.14 1.69 1.69 1.22 2.44 2.44 1.33 676.1 47.28 3.78

SIS a 1.00 1.00 1.00 1.00 1.00 1.00 10.2 2.71
20-s-0(1) Trans 1.95 1.95 1.08 1.43 1.43 1.02 2.00 2.00 1.67 279.0 27.35 30.37

Table 6: Summary of the Experiments

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

