
Abstract
A target structure for implementing fast edge-triggered

control units is presented. In many cases, the proposed con-
troller is faster than a one-hot encoded structure as its
correct timing does not require master-slave flip-flops even
in the presence of unpredictable clocking skews.

A synthesis procedure is proposed which leads to a per-
formance improvement of 40% on average for the standard
benchmark set whereas the additional area is less than 25%
compared with conventional finite state machine (FSM)
synthesis. The proposed approach is compatible with the
state-of-the-art methods for FSM decomposition, state en-
coding and logic synthesis.

Keywords: FSM synthesis, performance driven synthe-
sis, synthesis of testable controllers

1.  Introduction
In recent years, the performance of datapath/controller-

systems has been increased distinctively mainly by optimi-
zations of the datapath. Powerful techniques like pipelining
and massive parallelism as well as innovative computing al-
gorithms improve the maximum speed of the datapath but
require highly complex control units at the same time.
Hence, the performance of the entire system is more and
more determined by the speed of the control unit.

 The state diagram for such a datapath/controller-system
is not as densely meshed as for typical control dominated
designs. In particular, the controller does not have a large
number of wait states which corresponds to self-loops of the
state transition diagram. Instead of that a number of larger
cycles is implemented which corresponds to the instruction
cycles of the entire system.

It is well known that the fastest implementation style of
finite state machines is based on one-hot-encoding [16], as
the state transition function is reduced to a switching matrix.
But one-hot-encoding requires one flipflop for each state,
and this already leads to a tremendous amount of hardware
for medium sized control units. For this reason it has to be
combined with FSM decomposition techniques, so that the
entire controller is implemented by a distributed network of
communicating FSMs [1, 5, 19, 26]. But it cannot be guar-

anteed that the submachines are always smaller than the
original one, and in this case the FSM state transition dia-
gram has to be changed in order to get an implementation
which works with sufficiently high frequency.

But even if FSM decomposition leads to sufficiently
small submachines, the performance is affected by the need
of using master-slave flipflops in order to ensure a correct
timing of an edge-triggered design. This is illustrated by the
small example of figure 1. If the clock delay at flipflop FF2
is significantly smaller than the delay at FF1 then FF1 com-
putes its next state value based on the next state value of FF2
erroneously.

Figure 1: Incorrect function due to clocking skew

This problem is independent of the operating frequency,
and can only be solved by using two-edge-triggered or mas-
ter-slave flipflops. Figure 2 shows the timing diagram for
this design style.

Figure 2: Timing diagram using master slave flipflops.

Each flipflop stores its new state at the rising edge but
changes its output only during the falling edge. Only part∆2
of the entire clock phase∆1+∆2 is available for the propaga-
tion delay of both the combinational network and the set
time of the flipflops, and the frequency for this design style
is lower than for single-edge triggered flipflops. But in
many cases master-slave flipflops are required as we may
expect variations of the speed of the same gates up to the
factor of 4 for a typical 0.7µm library. Logic synthesis tools
which take timing variations into account provide solutions
for the worst case which are not optimal in general.

In this paper, we present a controller structure which
This work was supported by the DFG under grant Wu 245/1-1

In

Clk

1

1

FF1

FF2

=1

1 Out

Clk

In

FF1

FF2

∆1 ∆2

set master-FF

set slave-FF

Fast Controllers for Data Dominated Applications

Andre Hertwig,  Hans-Joachim Wunderlich
University of Stuttgart, Germany

Computer Architecture Lab

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc.  To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50



does not require master-slave flipflops for safe functioning,
which is significantly faster than solutions obtained by stan-
dard FSM synthesis but which is only moderately larger.

The following part of the paper is organized as follows:
In the next section some related work is discussed, and in
section 3, the target structure is presented in detail. In sec-
tion 4 it is shown that synthesis of these structures can be
reduced to a version the graph coloring problem, and exper-
imental results are discussed in section 5.

2.  State of the art
Figure 3 shows the standard implementation of a control

unit as a result of state encoding and logic synthesis by such
classical tools as NOVA, MUSTANG, ESPRESSO, MIS
e.g. [25,2]. A combinational block implements the state
transition function and the output function, and the edge-
triggered register represents the state.

Figure 3: Standard structure of a FSM

An important advantage of this structure is the simple
clocking scheme with a single clock which is not gated so
that correct function and timing can easily be verified. The
maximum speed of this structure is determined by∆1 which
is the time required for changing the outputs of the master
slave-flipflop, and by∆2 which is the maximum propaga-
tion delay through the combinational block. As this delay
directly corresponds to the size of the combinational block,
automata decomposition is mainly used for performance
improvements. A first decomposition approach was pro-
posed by Hartmanis and Stearns [12] who applied an
algebra on partitions of states. More efficient methods are
based on general factorization [1,5,19]. The result is a net-
work of communicating FSMs which is subject of further
optimizations [21,7,24]. The structure of each of the FSMs
may be synthesized by sophisticated encoding and logic
synthesis algorithms [9]. For fast controllers performance
driven logic synthesis should be applied [17,5,23,4], and the
resulting structure may be optimized by retiming algorithms
[20,8,10]. The performance should also be respected during
technology mapping and layout generation.

All these performance driven synthesis algorithms con-
tain essentially two phases: first, the FSM is mapped to the
target structure of figure 3, and next, performance driven
encoding and logic synthesis are carried out. In [14,15] the
target structure was already modified for performance, and
a pipeline controller structure was proposed as shown in fig-
ure 4. Here, the set of states is the product of two sets each

of them corresponds to one register. As both registers may
be controlled by different edges of the same clock signal,
master-slave flipflops are not required.

Figure 4: Pipeline controller by [14].

An important advantage of this structure is the existence
of a very efficient built-in self-test strategy. In order to
make the standard structure of figure 3 self-testable addi-
tional test registers are required either for pattern generation
or response evaluation [11]. For the pipeline controller no
additional test registers are required in order to implement
BIST, as both of the system registers may be implemented
as BILBO-like test registers [12] and perform pattern gen-
eration and response evaluation alternatingly.

As a drawback of this structure the combinational logic
may become in the worst case twice as large as a standard
realization. The target structure presented in the next sec-
tion avoids this drawback but preserves all the advantages
concerning speed and testability.

3.  Target structure
The general form of the pipeline controller of figure 4

uses both registers concurrently for encoding a single state,
and it is based on a sophisticated lattice algorithm. The al-
gorithm can be simplified to a graph coloring algorithm if
each state is represented by just one of the registers. In this
case, the state transition diagram has to be marked by two
colors, each of them representing one register. It is not al-
ways possible to color a graph by just two colors, for
instance if there is a cycle with an odd number of nodes this
coloring is impossible, and equivalent states have to be add-
ed to the state transition diagram. If the states are mapped to
three registers instead of two a 3-color problem has to be
solved. Any cycle with more than one node is colorable by
3 colors, and in general only few additional nodes have to
be added. Additional nodes are always required for self-
loops, for this reason the approach works best for data dom-
inated applications with a small number of wait-states. The
structure using three registers is shown in figure 5 as one of
the registers is bypassed by a direct line, we call this struc-
ture bypass-pipeline.

Each time, only one of the three registers determines the
state of the entire controller. This has to be ensured by an
appropriate encoding. The best way is to reserve one bit ti
of each register for this purpose, so that the remaining bits
can be used for an arbitrary strategy of state encoding. Any
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of the known performance driven encoding and synthesis
techniques may be applied to this structure, and as each of
the logic blocks is expected to be smaller than the standard
realization we will have performance improvements due to
the shorter paths. As a result we get a token bit architecture
as shown in figure 6.

Figure 5: Bypass-pipeline

 The register Ri determines the state of the controller if
ti=1. The two output functionτi passes the token to one of
the registers Rj, , in the next clock. Hence always ex-
actly one of the three bits t0, t1, and t2 is set.

The timing of this controller is safe if a 3-phase clock is
used. In the sequel we describe how a safe single clock
scheme can be implemented without general master-slave
flipflops. The basic idea is to implement only the three to-
ken flipflops in a master-slave style so that a robust token
passing is guaranteed. This will not slow down performance
as the token signals are never part of a critical path. They

Figure 7: Implementation of robust token passing

control the multiplexers which are at the end of the paths,
hence they are not needed before all the state transitions are
computed. Also token passing itself is not critical asτ has

to evaluate first the state of Ri in order to decide whether the
token must be passed. This leads to the actual implementa-
tion as shown in figure 7 for stage 0. The token signal is
further used for making the state transitions robust, too.
State transitions are made robust easily by exploiting the
fact that the content of a register Ri is completely irrelevant
if t i=0. Only in cases when ti=1 the register must stay stable.
But if ti=1 then we have ti=0 in the next cycle, and the reg-
ister is not needed. Hence, we are allowed to reload the state
of Ri if ti=1, and all the relevant information of the control-
ler is conserved sufficiently long (cf. figure 8).

Figure 8: Robust state transitions

All this additional circuitry is significantly less than the
overhead for master-slave flipflops. Moreover, these gates
only ensure that critical signals are stable for a sufficiently
long time but they do not prolong critical paths and they do
not slow down performance.4.  Synthesis by graph coloring

It is not possible to color the state transition graph using
standard algorithms as the graph has also to be modified
concurrently so that it is 3-colorable with a minimum num-
ber of additional nodes. In the sequel we use a heuristic
approach which is also used for register allocation during
compilation [3]. In a preprocessing step all self-loops are
cut by introducing equivalent states (fig.9).

Figure 9: Cutting self-loops

Now as many nodes as possible are colored by using just
three colors. Since in general the state transition graph will
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not be 3-colorable, a few nodes which are not colored are
left. The number of these nodes should be minimal, and the
experimental results of section 6 show that a standard algo-
rithm as proposed in [3] works sufficiently well.

In the last step, the uncolored nodes have to be substitut-
ed by introducing equivalent states and graph trans-
formations. Here we have to distinguish three cases:

Case 1: Node  is uncolored, and all its colored suc-
cessors  have the same color

 (cf. figure 10). In this
case, an additional node  is introduced and col-
ored by , and v is colored by

. Edges are introduced from  to all
successors , and all edges  are
redirected to  if .

Figure 10: Equivalent graph transformation in case 1

Case 2: Node  is uncolored, and there is one color
 not assigned to any direct predecessor

. Then there are successors
 with color , for each of

these nodes an equivalent state  is going to be
introduced. For each edge  a new edge

 is added, and  is redirected to
. Node  get the color  or
 if possible, otherwise  is not colored

Figure 11: Equivalent graph transformation in case 2

Case 3: All the other uncolored nodes are treated in two
steps: First, state  is splitted into two equivalent
states  and  so that no predecessor

 has color  and no predecessor
 has color . As this new situ-

ation corresponds to case 2 it is dealt with as
already described.

Figure 12: Equivalent graph transformation in case 3

 It should be noted that in all three cases a new state v’
is only created if there not already exists an equivalent state.
If there already exists an equivalent node with the required
color the edges are just redirected. This ensures the termina-
tion of the algorithm after a few iterations, at least when
each state has two equivalent nodes with different colors as
can be proved easily.

The target structure facilitates state encoding and logic
synthesis significantly as each register and combinational
block is dealt with independently. The well known encod-
ing techniques are applied directly with small modifications
which ensure that states of a certain color are assigned only
to one register. Results reported in the next section are
based on the encoding strategies of NOVA [25]. After en-
coding, the three truth tables of the functions (λi, δi, τ) are
established, and a logic synthesis method is applied. The re-
sults presented here are obtained by the standard script of
SIS.

5.  Experimental results
All the algorithms presented so far are implemented in

C++, and in this section we report results for the benchmark
set distributed for the Workshop on Logic Synthesis 1993
[22], for the control unit of the DLX processor [13], and re-
sults for an experimental controller accu16. In contrast to all
the other performance-driven synthesis methods, the algo-
rithm has its best results for the largest circuits which cannot
be dealt with by the known methods. For small controllers
the constant hardware overhead for the token control logic
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is dominating, and methods presented in [14, 15] may per-
form better. As 3 flipflops are already needed for the token
control we only investigated FSMs which have at least 33
states and require more than 5 flipflops.

Both bypass-pipelines and standard controllers are syn-
thesized by the same encoding and logic synthesis
algorithms based on SIS and NOVA, and the results are
compared.

First, the bypass-pipeline deals with three blocks inde-
pendently, each of them is smaller than the standard
structure, and the overall computing time for synthesizing a
bypass-pipeline is significantly smaller than the time for the
standard approach. Table 1 shows the computing time on a
SUN Sparc5 workstation required for state encoding.

Table 1: Run time for state encoding on a SUN Sparc5

Table 2 illustrates the effect of the graph coloring algo-
rithm. |S| denotes the number of states in the original FSM,
|Sl-free| is the number of states after preprocessing where all
states with selfloops are doubled. |Stotal| is the total number
of states after 3-coloring, and the remaining 3 columns de-
scribe how these states are distributed among the registers.

Table 2: Results of the coloring algorithm

It is interesting that most of the graphs are already col-
orable by three colors after self-loop cutting. Only the
experimental controller accu16 requires an introduction of
additional equivalent states. It should be noted that the FSM
s510 has a rather large number of wait states, and the total
number of states has already increased distinctly after pre-

processing. Obviously it is not part of a data dominated
application, and the algorithm is not expected to provide
best results here.

In the average the increment of the number of states is
small, and we expect that the bypass-pipeline is only mod-
erately larger than the standard structure. This is confirmed
by table 3 which shows the transistor count of the different
blocks. The last column gives the quotient of the transistors
required for the bypass-pipeline and for the standard struc-
ture. In general, the bypass-pipeline leads to 25% larger
circuits, only s510 requires 100%.

Table 3: Transistor count

The next table indicates that the small increase in area
corresponds to a significant improvement of the perfor-
mance. Table 4 shows the maximum propagation delay of
all the blocks. The speed of the bypass-pipeline is deter-
mined by the maximum of these 3 delays plus the delay of
the additional circuitry. It is shown that the total run time of
the bypass-pipeline is significantly lower than the time of
the standard solution. Mainly we have performance im-
provements of 40%.

Table 4: Propagation delays

Finally, table 5 compares the improvement of the perfor-
mance and the increase of the area for all the benchmarks
investigated. For all the controllers for data dominated ap-
plications with at least 33 states we get a significant gain in
the performance at very low cost. Only the FSM s510 with

Circuit Bypass-pipeline
(h:min:s)

Standard structure
(h:min:s)

dlx 0:0:7.9 0:0:22.8
planet 0:0:6.7 0:0:20.6

planet1 0:0:6.7 0:0:20.6
s1488 0:0:12.0 0:0:26.8
s1494 0:0:12.2 0:0:26.8

scf 0:0:56.9 0:7:22.9
s298 0:10:52.0 1:19:21.8

accu16 0:0:2.6 0:0:2.9
s510 0:0:8.3 0:0:12.2

circuit |S| |Sl-free| |Stotal| |S1| |S2| |S3| comp.
time

dlx 49 52 52 23 15 14 0.1s
planet 48 49 49 15 18 16 <0.1s
planet1 48 49 49 15 18 16 <0.1s
s1488 48 49 49 14 17 18 0.2s
s1494 48 49 49 18 17 14 0.2s

scf 121 122 122 36 48 38 0.2s
s298 218 219 219 64 83 72 1.2s

accu16 28 36 40 11 15 14 0.1s
s510 47 70 70 24 24 23 0.1s

Circuit Bypass-pipeline
(number of transistors)

Std. structure
(#transistors)

A

log.1 log.2 log.3 mux reg. total logic reg. total
dlx 1634 1206 1502 284 336 4962 4076 204 4280 1.16

planet 1150 1764 1158 384 336 4792 3544 204 3748 1.28
planet1 1150 1764 1158 384 336 4792 3544 204 3748 1.28
s1488 1980 2016 1486 396 354 6232 4990 204 5194 1.20
s1494 2392 1642 1302 396 354 6086 5078 204 5274 1.15

scf 3238 2702 2054 888 426 9308 6512 238 6750 1.38
s298 4316 7692 6174 312 462 18956 16360 272 16632 1.14

accu16 576 624 516 248 318 2282 1214 170 1384 1.64
s510 1058 1454 1256 272 372 4412 2002 204 2206 2.00

Circuit Bypass-pipeline Standard structure
logic 1 logic 2 logic 3 reg+

mux
total logic reg. total

dlx 23.40 19.62 20.91 5.52 28.92 46.76 6.30 53.06
planet 20.08 26.09 20.02 5.52 31.61 49.31 6.30 45.61

planet1 20.08 26.09 20.02 5.52 31.61 49.31 6.30 45.61
s1488 28.05 29.32 27.38 5.52 34.84 61.48 6.30 67.78
s1494 33.80 25.26 27.47 5.52 39.32 61.56 6.30 67.86

scf 40.40 34.97 30.63 5.52 45.92 72.45 6.30 78.75
s298 58.30 84.96 70.44 5.52 90.48 154.31 6.30 160.61

accu16 11.37 11.99 11.38 5.52 17.51 15.61 6.30 21.91
s510 21.74 31.07 25.36 5.52 36.59 33.93 6.30 40.23



a large number of wait-states is not suitable for the method
presented. This was already predicted after the preprocess-
ing step.

Table 5: Costs and performance for the bypass-pipeline

6. Conclusions
For controllers in data dominated applications a target

structure has been presented which allows a significantly
higher performance than standard realizations. The higher
frequency is possible since the combinational blocks are
smaller and the propagation paths are shorter, and also since
single-edge triggered flipflops are sufficient for guaranty-
ing correct timing.

A synthesis procedure has been presented, and the re-
sults show high improvements of the speed with rather
small hardware overhead. The approach is compatible with
the known state encoding and logic synthesis techniques,
and it may also be used for implementing basic blocks after
FSM decomposition.
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Circuit Delay [%] Transistors [%]
dlx - 45.50 + 15.93

planet - 30.70 + 27.85
planet1 - 30.70 + 27.85
s1488 - 48.60 + 19.98
s1494 - 42.06 + 15.40

scf - 41.69 + 37.90
s289 - 43.66 + 13.97

accu16 - 20.08 + 64.88
s510 - 9.05 + 100.00
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