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Abstract

Many Built-In Self Test pattern generators use Linear
Feedback Shift Registers (LFSR) to generate test
sequences. In this paper, we address the generation of
deterministic pairs of patterns for delay faults testing with
LFSRs. A new synthesis procedure for a n-size LFSR is
given and guarantees that a deterministic set of n
precomputed test pairs is embedded in the maximal length
pseudo-random test sequence of the LFSR. Sufficient and
necessary conditions for the synthesis of this pseudo-
deterministic LFSR are provided and show that at-speed
delay faults testing becomes a reality without any
additional cost for the LFSR. Moreover, since the
theoretical properties of LFSRs are preserved, our method
could be beneficially used in conjunction with any other
technique proposed so far.

1 Introduction

Nowadays, integrated circuits with millions of
transistors are common. The test of such circuits has
become a challenge, since it drives the reliability of
complete electronic products and impacts upon their final
quality. Unfortunately, the cost of testing increases
significantly with the complexity of these circuits. Hence,
different test strategies must be considered in a common
pool to find optimal solutions. It is now widely admitted
that extensive investments in Automatic Test Equipment
(ATE) are no longer sufficient to address the testing
problems. Instead built-in structures are required to help
solve this problem. Solutions such as Built-In Self Test
(BIST) appear to be very promising for large classes of
products [1−2]. BIST is well-know for its numerous
advantages. For instance, BIST allows at-speed test of
modules and high fault coverages using test point
insertion techniques [3]. It may also provides some on-
line test features [4]. BIST requires on-chip Test Pattern
Generators (TPGs) as well as Output Response Analyzers
(ORAs). The TPGs can be classified in two families: scan
based TPGs and at-clock speed TPGs. The principle of
scan based TPGs is to load test patterns serially into scan

chains. Usually, the TPG is an LFSR, sometimes with
reseeding or multiple polynomial capabilities [5], or bit-
flipping function with XOR gates [6]. At-clock speed
TPGs do not suffer from the long serial loading of scan
based techniques since they provide test patterns directly at
the inputs of each Circuit Under Test (CUT). Many
approaches to improve fault coverage have been shown in
this area: [7] presents the insertion of additional logic to
switch some random patterns into deterministic ones, [8]
does the same but for all the patterns, [9] gives the
optimal seed of an LFSR, [10] presents a mixed scheme
based on LFSR reconfigurations and [11] suggests the use
of counters to generate test patterns. These are some
examples.

The above approaches have two points in common: the
first is that they address only the detection of stuck-at
faults; the second one is that they are based on LFSR
structures with certain augmentations. So, the importance
of LFSRs in BIST solutions has been widely established.
For these reasons, the purpose of this paper is to analyze
the capability of LFSRs and to demonstrate its generation
of deterministic pairs of patterns, for the detection of
faults such as delay and stuck-open.

Since the synthesis constraints for TPGs are more
complex for two-patterns tests than that for single ones
more sophisticated solutions have been proposed in the
literature. In fact, detecting a delay fault or a stuck-open
fault requires the application of two distinct but
successive test patterns. The first one is called the
initialization vector and is followed by the propagation
vector; the circuit outputs are finally sampled at clock-
speed for the observation of the fault [12]. Moreover,
robust or nonrobust tests can be investigated. A
nonrobust test detects a delay fault only if non arbitrary
additional delay faults occurs at the same time in the
CUT; a robust test is not sensitive to these elements.
Additionally, two delay fault models are proposed in the
literature. The gate delay fault model considers a single
failure at a faulty gate [13] while the path delay fault
model considers that the failure caused by process
variations is distributed over a path [14]. Similar to stuck-
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at faults, the simplest approach to detect delay faults is an
exhaustive two-pattern test. For an n-input CUT, TPGs
must run through all the 2n×(2n-1) different possible pairs
of patterns. For instance [15] gives an approach dedicated
to datapaths that uses a counter and an accumulator for the
exhaustive generation of the pairs of patterns. To
circumvent the prohibitive test time, an adjacency test
method, based on the switching of a single bit in the test
pair, has been proposed in [16]. It requires only n×(2n−1)
pair of patterns. In [17] and [18] a Multiple Input Shift
Register (MISR) is reseeded several times with a constant
parallel input vector. Using an ATPG based selection
algorithm for the determination of the optimal input
vector, the MISR runs through its maximal length
sequence and provides a maximal robust path delay fault
coverage for a substantial decrease in the test sequence
length [18]. Similar to stuck-at fault testing, these
approaches can be classified as exhaustive and pseudo-
exhaustive TPGs for delay faults. Another important
category of TPGs for delay faults is composed of pseudo-
random architectures. For this purpose, the notion of
transition fault coverage has been introduced in [19]. This
qualifies the efficiency of pseudo-random TPGs to
generate transitions. Numerous studies compare LFSR
and Cellular Automata (CA) efficiencies for delay faults
testing [20][21]. They lead to new proposals: XLFSR-
XLCA [22], GLFSR [23] and circular self-test path [24].
For instance, in [25] necessary and sufficient conditions to
ensure complete/maximal transition coverage for LFSR
and CA are derived. Again, similar to stuck-at faults
testing, weighted pseudo-random testing has been also
proposed for delay faults [26]. The third category of “pure”
deterministic TPGs for delay faults testing is still an
empty set since its silicon area overhead is prohibitive.
Concerning the most promising approach of pseudo-
deterministic TPGs for delay faults testing, few proposals
have been reported and remain in numerous cases possible
extensions of the stuck-at fault case [27][10].

Our contribution in this paper is to address this issue
by proposing a synthesis method for pseudo-deterministic
LFSRs with at-clock speed of delay faults testing. For a
n-size LFSR, our technique allows the generation of n
deterministic pairs of test patterns embedded in a classical
pseudo-random test sequence. Since this value of n is low
in some cases and may appear restrictive, it must be
mentioned that all the basic properties of LFSR:
primitive polynomial, maximal sequence, etc, are
preserved in our algorithm and consequently, any other
TPG technique using LFSR can be beneficially applied in
conjunction with our proposal. Moreover, for our TPG no
extra logic is required (except additional inputs at the
XOR gates of the LFSR) and, to our best knowledge this
is the first attempt to detect delay faults with a n-stages

LFSR while n is the number of primary inputs of the
CUT.

This paper is organized as follows: in section 2 the
necessary background on LFSR is presented. In section 3,
the synthesis method for pseudo-deterministic LFSR is
developed. Section 4 discusses some of the limitations
and possible improvements of the methodology and
compares our technique with other proposals. Finally,
concluding remarks and future research directions are
presented in section 5.

2 Similar Matrices of LFSRs

Consider n-tuples of 0’s and 1’s into a field; that is all
the possible combinations of 0 and 1 with n bits. Such a
set of elements is called a Galois Field of characteristic 2
and of order 2n, abbreviated GF(2n) [28]. These n-tuples of
0’s and 1’s are easy to manipulate using digital circuitry
and can be stored in a row of n storage elements called a
register. Using also half-adder or exclusive-OR gate
(XOR), we obtain an LFSR. LFSRs have been widely
described [28-29] and they are basically known in their
two canonical forms; the standard and the Shift Division
Circuit (SDC) forms. The standard form of a LFSR of
size n is schematically represented in figure 1 and its
corresponding transition matrix T0 is on the form:
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 with VT0,t+1=VT0,t×T0 (Eq. 1)

With VT0,t as the current state of an LFSR and T0 as its
transition matrix, the next state of the LFSR VT0,t+1 is
completely defined by equation 1.

Figure 1: Standard form canonical LFSR
 The second canonical form of an LFSR is represented

in figure 2 and is also called a Shift Division Circuit
(SDC). In this case, the corresponding transition (or
companion) matrix Tc of p(x) is on the form:
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, with VTc,t+1=VTc,t×Tc (Eq. 2)

Figure 2: Shift Division Circuit, 2n d

canonical form LFSR
So, we can associate an LFSR with its characteristic



polynomial p(x) = c0x
0 + c1x

1 + ... + cnx
n. Considering a

primitive polynomial p(x) for the characteristic matrix Tc,
it is well known that its corresponding transition states
graph is of maximal length and equal to (2n-1) [28].
However, the matrix Tc defines only one switching
network for this state graph or equivalently corresponds to
one possible state assignment. In fact, for a given state
graph several networks can be found. Once a states
assignment is made, the state graph may be replaced by
its transition matrix; up to now we have just consider Tc.
So, in our case several linear switching networks can
provide exactly the same properties than the SDC - LFSR
except for the state assignments. Let us now consider a
linear  mapping over GF(2n), such that:

σ : VTc,t →VT,t = VTc,t × B
The linear mapping is totally defined by the

nonsingular n×n square matrix B. In this new base for
GF(2n), we can establish as for equation 2, the next state
equation for VT,t:

VT,t+1 = VT,t × T (Eq. 3)
Now, applying the linear mapping σ to VTc,t and

VTc,t+1, one can easily obtain: T = B-1 × Tc × B or
equivalently

Tc = B × T × B-1 (Eq. 4)
T and Tc are called similar matrices and have been

studied concerning linear algebra. Many theorems exist on
similar matrices, the most important show that all the
properties concerning the matrix Tc apply also to matrix
T. In our case, it means for instance that Tc and T have
the same characteristic polynomial p(x), then the same
length for the transition state graph, etc, except that their
states assignments are different. Then, the matrix T
characterizes a new switching network for an LFSR with
the same properties than their two canonical forms Tc and
T0. However, each jth column of this matrix T provides
the linear logic equation for the jth register cell of the
LFSR and can contain a larger number of “1” than the
corresponding columns of Tc or T0 (a “1” means an
additional input for the XOR gate at this stage). So, at
this point it must be mentioned that the matrix T
represents rather a Linear Finite State Machine (LFSM)
than one of the two canonical forms of LFSRs. However,
for clarity in the following, we call it also LFSR.

3 Pseudo-Deterministic LFSRs

In this section, we develop a new synthesis technique
for LFSR that guarantees a precomputed set of n pairs
patterns are embedded in the maximal length sequence
generated by this structure. Moreover, since the maximal
length sequence of the LFSR is preserved, the test
methodology assumed is a pseudo-deterministic test and
then both pseudo-random and deterministic patterns are
generated. The subset of the deterministic pairs of patterns

addresses the remaining hard to detect faults that are
resistant to the pseudo-random test. Since the LFSR is
ran at-clock speed, actual delay faults can be detected by
this technique.

3.1 Overview of the synthesis method

Let us consider first the nature of the test sequence to
generate. We assume that our method is not able to deal
with more than n pairs of patterns; n is the size of the
synthesized LFSR or the number of its registers. So, we
consider no more than n pairs of test patterns that have
been pre-computed with an ATPG tool for delay faults.
These pairs of patterns will be noted as: P1={V1.1;V1.2},
P2={V2.1;V2.2}, ... to Pn={Vn.1;Vn.2}

 For any 1≤k≤n, Vk.1 will correspond to the first
patterns of the pair kth, Vk.2 will correspond to the second
pattern of the pair. Since these pairs of patterns are not
correlated with each other and a specific order of test
application is not required between each pair, one assumes
that any other dummy patterns or states of the LFSR can
be inserted between each pair. Let’s call Di these sub-
sequences of non addressed states of the LFSR; Di are
sub-sequences of different lengths and not only single
pattern. Consequently, the sequence generated by the
LFSR is of the form:
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with [X] denotes sub-sequences Di of any length in the
matrix expression, and [ ]t the transpose matrix.

    Example:    Let us consider the sequence :
S= x 0101
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Now, we have seen in section 2.1 that a LFSR satisfies
equation 4: VT,t+1=VT,t × T. If we consider the same
relation complete applied to the sequence S, we obtain the
following equation:
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Since we need that the successors of the Vk.1 patterns
be the Vk.2 patterns, it implies that the St+1 matrix has
the indicated form. St and St+1 are matrices of sizes n
columns by l rows. Moreover, since the number of rows
corresponds to the number of patterns; that is the pairs of
test patterns plus the “dummy” patterns, it implies that l
is at least equal to (2×n).

    Example:    From the previous example, we obtain:
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Our goal is to determine the transition matrix T of the
LFSR. The following equation gives us the solution for
T: St

−1×St+1=Τ (Eq. 6). St
−1 is the left pseudo-inverse of

St. If St is a (n×l) matrix, its left pseudo-inverse St
−1 is a

(l×n) matrix, such that St
−1×St=ΙN; ΙN identity matrix of

order n. More details on generalized pseudo-inverses can
be found in [34]. Assuming that the matrix St contains at
least n linearly independent vectors, the pseudo-inverse St

−

1 is always computable. Moreover, if we assume that
these n linearly independent patterns chosen in St

correspond to the Vk.1 first patterns of the detecting pairs,
the pseudo-inverse matrix St

−1 will always have the
following form: St

−1= x x x x x0 0 0 0 01 1 2 1 1 1[ ] [ ] [ ] [ ] [ ][ ]VI VI VIk VIn. . . .

VIk.1 are 1 column vectors of n row sizes and are the
corresponding solutions of the pseudo-inverse calculation
for the respective patterns Vk.1 of the initial St matrix.
For all the other dependent rows of St , it can be observed
that the corresponding columns of the St

−1 matrix are null
columns; [x0] denotes to these null columns.
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with St
−1×St=Ι4.

Consequently, for the St
−1×St+1=Τ product, only the

rows of St+1 which index row k do not corresponds to a
null column of St

−1 will participate to the result for the
matrix T. Exactly, in the St+1 matrix, these rows
correspond to the 2nd patterns of the detecting pairs, that is
Vk.2. According to this, the previous equation 6 can be
simplified by the following equation:

S’t
−1×S’t+1=Τ (Εq .7)

S’t and S’t+1 are then (n×n) square. S’t is composed only
of n linear independent vectors of width n, and moreover
we have assumed that these vectors are the Vk.1 vectors.
Consequently, S’t is invertible and gives S’t

−1 another
square (n×n) matrix. Also, T is a square (n×n) matrix but
its rank still depends on the content of the matrix S’t+1.
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The reader can easily verify that the LFSR of
characteristic matrix T allows the generation of the 4th

pairs of patterns, P1 to P4. However, for this value of T,
the cycle of the LFSR is not unique and not of maximal
length. With such a technique, we argue that the n pairs of
test patterns Pi will be included in the sequence generated
by the synthesized LFSR of transition matrix T given by
equation 7, if the following criteria are satisfied:

Criteria 1: The set of n first patterns of the test pairs
form an invertible (n×n) size matrix.

Criteria 2: The transition matrix of the synthesized
LFSR has a rank equal to n.

Criteria 3: The characteristic polynomial of the
synthesized LFSR is primitive.

These three criteria lead to the conclusion that the
synthesized LFSR has also a primitive polynomial and
consequently will generate a maximal length sequence.
Then, any maximal length sequence contains also all the
Vk.1 first patterns of the deterministic pairs to generate.
Also, the LFSR has been synthesized to satisfy the n
transitions from Vk.1 to Vk.2 and then we can conclude
that it will generate the n pairs of deterministic patterns
P1 to Pn. In the following, we will develop conditions
and techniques that corresponds to the initial assumptions
and that guarantee each of these three criteria.

3.2 Linear dependency of 1st pair patterns

Criteria 1 requires that the n first patterns of the n
considered transitions form an invertible matrix S’t. If it
is not naturally the case and the linear independence of the
first pair patterns cannot be satisfied, we can use the
following technique to gaurantee an invertible S’t matrix.
The basis of this technique is to add log2w extra bits to
solve the dependencies; w is the order of the dependencies.

    Example:    let us consider the previous example and
replace the past last vector v1.4=[1111] by the new vector
v1.4=[1110]. The reader can easily verify that V1.4 is
now a linear combination of the V1.2 and V3.1 vectors

and that the new matrix S’t is equals to: S’t=
0101
1100
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If we add an extra bit x45∈{0,1}  to the V1.4 vector, the
size of the LFSR will be now equals to n=5 and
V1.4=[1110x45]. Since V1.4 was before a linear
combination of the vectors V2.1 and V3.1, its implies
that the linear sum of the 5th bits added to each of these
vectors (vectors from which the linear dependency comes),
must be equal to x45. Obviously in this case, since the
number of patterns from which the linear dependency
comes from is odd, the 5th bits of the vectors V2.1 and
V3.1 could not be equal. Consequently, two solutions
exist for the new vectors V2.1 and V3.1; they are Sol1 =
{ V2.1=[1100x45], V3.1=[0010x45]}  or Sol2 =
{ V2.1=[1100x45], V3.1=[0010x45]} . The new extended
matrix S’tx is then equal to:

S’tx1=
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1110
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Now, let us show also that since the vector V1.1 was
not a linear combination of the vectors V2.1, V3.1 and
V4.1 with its four 1st bits, we can assume any new value
for x15∈{0,1} . Consequently, one can obtain four different
matrices for S’tx corresponding to the four possible
combinations of x15 and x45.



However, the size of the matrix S’tx is now 4 rows by 5
columns, consequently we have to add also an extra row
to S’tx so as to obtain definitively an invertible (n×n)
square matrix; n=5. But, the rank n=5 of the matrix S’tx

must be preserved and only a linearly independent extra
row must be added to the four previous ones. The
obtainment of such a solution is not so difficult since it
exists exactly (2n-1-1) possible solutions for this choice,
that is half of the space defined by n linearly independent
vectors (except the null vector). Such a choice can be
moreover be facilitated after having diagonalize or
triangularize the first (n-1) vectors. Finally, by
considering this latter property, the matrix S’tx can be
expressed of the form:

S’tx1 = 
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1100 45
0010 45
1110 45
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Concluding this example, criteria 1 can always be
satisfied by increasing the size n of the LFSR. It has been
also shown that such an extension allows to select the
matrix S’tx inside a large set of possible solutions for the
LFSR. Also, the extension process progresses at the low
rate of log2w extra bits, not penalizing too much the
initial solution; this value is low compared to the initial
rank of the matrix. However, managing xij values is a
little bit tedious since analytical computations are now
required.

3.3 Conserving the rank n for T

By equation7, the characteristic matrix T of the LFSR
will be a (n×n) square matrix. However, its rank is
unknown. Since the matrix S’t is built so as to be
invertible, its rank is equal to n. Consequently, the rank
of the matrix T depends on the rank of the matrix S’t+1. If
S’t+1 has a rank lower than n, it implies that T will get
the same rank than S’t+1 [34]. Consequently, so as to
guarantee a rank equal to n for T, it is mandatory that the
rank of S’t+1 been also equal to n. Let us remind that S’t+1

is the matrix composed of the 2nd patterns of the detecting
pairs, that is all the Vk.2 patterns. Consequently, the
criteria 2 will be satisfied if and only if the n second
patterns of the detecting pairs form also a set of linear
independent vectors. If this condition is not naturally
satisfied, the same technique as the one described in the
previous paragraph can be applied to S’t+1.

3.4 Guarantee of a primitive polynomial for T

The last criteria to verify is guaranteeing that the
characteristic polynomial of the matrix T is primitive.
Since we know that a primitive polynomial for the matrix
T corresponds to an LFSR that will generate a maximal
length sequence, this implies that any Vk.1 test patterns

will be included in this sequence. Moreover, since the
matrix T has been computed to preserve the n transitions
from the test patterns Vk.1 to the patterns Vk.2, it means
that the LFSR of matrix T will generate the n transitions
pairs of test patterns.

At this step the computation of the characteristic
polynomial of the matrix T is required, see [28]. By
comparing the resulting value of p(x) with a pre-computed
table of primitive polynomials, we can easily decide if the
sequence will be unique and of maximal length. Tables of
primitive polynomials can be found in [28] or [30]. If
p(x) is primitive, then the LFSR defined by the matrix T
will generate the required transition pairs and corresponds
to the unique solution. If p(x) is not a primitive
polynomial, the only way to obtain a new polynomial
p’(x) primitive is to modify the transition matrix T.
Then, two different cases can be described depending on
the existence of don’t care values in the components of
the matrix T. Let us consider successively these two
cases:

“Don’t care bits exist”: Now, if don’t care values
from ATPG exist originally in the matrix T, we can
select the appropriate combinations of these so as to
obtain a primitive polynomial. To illustrate this
procedure, let us consider again the example of S’tx

matrices described in paragraph 3.2.
    Example:    we have obtained:

S’tx1 = 
0101 15
1100 45
0010 45
1110 45

51 52 53 54 55

x
x
x
x

x x x x x



















 or S’tx2 = 
0101 15
1100 45
0010 45
1110 45

51 52 53 54 55

x
x
x
x

x x x x x



















.

For the values x5j, we have seen that it exist exactly (2n-

1-1) possible combinations that satisfied the requirements.
Since the calculation of S’txi

-1 will be too tedious to
obtain with the analytical values for x5j, we choose
arbitrarily one available combination for x5j and express
for instance the matrix S’tx1 only in function of x15 and
x45. Choosing for instance [x51x52x53x54x55]=[00011] and
trying to diagonalize the matrix S’tx1 in order to calculate

its inverse results in: S’tx1(equivalent)= 
1000 15 45
0100 15
0010 45
0001 1
0000 45

x x
x
x

x

⊕



















.

In order to conserve a rank n=5, this partial result
implies that x45=0, and then for the two possible
remaining values of x45, we can obtain the following
solutions for S’tx1 and S’txi

-1:

S’tx1-1=
01011
11000
00101
11100
00011

















 and S’tx1-1
-1=

11001
10001
01010
01111
01110

















 for [x51x52x53x54x55] =

[00011], [x45] = [0] and [x15] = [1].

S’tx1-2=
01010
11000
00101
11100
00011

















 and S’tx1-2
-1=

10111
11111
01010
01111
01110

















 for [x51x52x53x54x55] =

[00011], [x45] = [0] and [x15] = [0].



Now, we have to compute equation 7, S’tx1-i
-1×S’(t+1)x1-i

= T to obtain the connectivity matrix T. For this, again
many unknown variables appear in the expression of
S’(t+1)x1-i that lead to the expression:

Tx1-1=S’tx1-1
-1×S’(t+1)x1-1=

11001
10001
01010
01111
01110

















×
1100
1110
1000
0011

15
25
35
45

51 52 53 54 55

x
x
x
x

x x x x x

'
'
'
'

' ' ' ' '

















 or

Tx1-2=S’tx1-2
-1×S’(t+1)x1-2=

10111
11111
01010
01111
01110

















×
1100
1110
1000
0011

15
25
35
45

51 52 53 54 55

x
x
x
x

x x x x x

'
'
'
'

' ' ' ' '

















The x’ij variables in the expression of S’(t+1)x1-i must be
chosen so as to guarantee a rank of this matrix equals to
5, but also so that the characteristic polynomial of Tx1-i be
primitive. Then, again many solutions exist and we just
give below one of them for Tx1-1:

If we choose [x’51x’52x’53x’54x’55] = [00001], we obtain

Tx1-1=
0010 15 25
1100 15
1101 25 45
0101 25 35 45
0101 25 35 45

x x
x

x x
x x x
x x x

' '
'

' '
' ' '
' ' '

⊕

⊕
⊕ ⊕
⊕ ⊕



















. Now, trying to diagonalize Tx1-1

and then expressing it as standard form LFSR, see section

2.1, we obtain Tx1-1(equivalent)=
0000 1
1000 35
0100 15 35
0010 15 25
0001 15 25 45

x
x x
x x

x x x

'
' '
' '

' ' '

⊕
⊕

⊕ ⊕



















Now by choosing p(x) = 1+x2+x5 = c0x
0 + c1x

1 + ... +
ckx

k + ... + cnx
n, a primitive polynomial and solving the

relation 
1
35

15 35
15 25

15 25 45

x
x x
x x

x x x

'
' '
' '

' ' '

⊕
⊕

⊕ ⊕



















=
c
c
c
c
c

0
1
2
3
4

















; 
x
x
x
x

'
'
'
'

15
25
35
45

















=
0
1
0
0














 and Tx1-1=

00100
11001
11011
01010
01011

















.

The reader could easily verify that the sequence
generated by the LFSR of transition matrix Tx1-1 is of
maximal length and also includes the four initial pairs of
deterministic patterns.

“Don’t care bits does not exist”:  If any don’t
care value does not exist in the matrix T and the
characteristic polynomial of T is not primitive, the only
remaining possibility is to modify at least one test vector
in one pair of the initial test set. For this, consider again
the previous example and calculate its characteristic
polynomial.

    Example:    we have obtained in section 3.1: Τ = 
0111
1001
1000
0101














.

The characteristic polynomial of T is p(x) = 1 + x + x2

+ x3 + x4, not primitive and the corresponding LFSR
describes three different cycles.

So, even if the four transition pairs P1 to P4 exist in
the sub-sequences, they could not be generated without
any extra mechanism to switch from a sub-sequence to
another one. This solution is not acceptable and
consequently we have to modify at least one pattern to
obtain a new primitive transition matrix for T. Let us
consider that we modify a second pattern of any test pair

instead of a first pattern. This can be justified by the fact
that the matrix S’t+1 do not need to be inverted in equation
7, S’t

−1×S’t+1=Τ. An opposite point of view is also
possible, but it will lead to a symbolic calculation for the
inverse S’t

−1. So, let us call Px the modified pair from the
initial set such that Px={Vk.1;Vk.2=[x0,x1,...,xn-1]}; k
may take any value from 1 to n. Then, using equation 7
again, we calculate a new value for T, called Tx whose
contents depends on the [x0,x1,...,xn-1] coefficients. By
selecting appropriate values for xi, we can ensure a
primitive polynomial for Tx. If such a result is not
possible for the selected value of k, we can choose a
different value for k and repeat the process. If all the
values of k from 1 to n lead to unsatisfactory solutions,
one can decide to modify a Vk.1 vector instead of a Vk.2
vector. Also, in an extreme case, the selection of an
additional Px’ to Px is possible and provide much more
degrees of freedom, but of course one less pair.

    Example:    in our example, we select k=4 for the V4.2
pattern. Then the transition P4 will be no longer
generated and using equation 7, we obtain:

S’t
-1×S’t+1=Tx=

1011
1111
0010
0111














×

1100
1110
1000

0 1 2 3X X X X














=

X X X X
X X X X

X X X X

0 1 2 3
0 1 2 3

0 1 2 3
1 0 0 0

















In this example, the coefficients Xi must be chosen so
that the rank of the matrix Tx remains equal to n=4 but
also so that the new characteristic polynomial p(x) is now
primitive. An exhaustive study for the 16 possible values
of  leads to fix x3=1 so as to conserve a rank equal to 4
for the matrix Tx. Then, depending on the values of x0,
x1 and x2 it remains 8 possible solutions to obtain a
primitive characteristic polynomial for Tx. Six of them
lead to multiple sub-sequences or cycles described by their
corresponding LFSR, and do not correspond consequently
to primitive polynomials. The two remaining possible
solutions with a primitive polynomial are then the
following:

    Example:   

Tx=
0101
1011
1000
0111














 for [X0X1X2X3]=[0011] and p(x)=1+x3+x4 or

Tx=
1111
0001
1000
1101














 for [X0X1X2X3]=[1011] and p(x)=1+x+x4

For these two different LFSRs, the corresponding state
sequences are then of maximal length and include the pairs
P1, P2 and P3, but not the pair P4 since this latter has
been deleted to fulfill the primitive nature of the
characteristic polynomial.

In conclusion, when don’t care values exist from ATPG
or are added with the extension process of the number of
bits, this small example has shown that a large number of
solutions are available to satisfy a primitive characteristic
polynomial for the transition matrix T. In fact, one can



say that since the number of unknown variables is large,
it is even much more difficult to enumerate all the
solutions without symbolic calculations.

4 Comparison to other proposals

Now, let us experiment a comparison of our solution
with various TPGs already proposed for two-patterns
testing. As it has been explained in the introduction,
managing the complexity of a TPG is really a trade-off
between three parameters: the expected fault coverage, the
test time (equivalent to the length of the test sequence)
and finally the hardware cost. For instance, assuming a
maximal fault coverage, a reduction in the test sequence
length implies most of the time an increase of the TPG
hardware cost, and vice-versa. Hereafter, in our attempt of
comparison, we will give some indications on these
parameters. To consider a comprehensive list of two-
patterns test TPG approaches will be a cumbersome task,
hence we will just analyze the following outstanding
contributions in this field. We selected [31] [16] [19] [22]
[24] [17] [18] [15] and [25] for the comparison. Table 1
reports our perception of these contributions. The first
column contains authors with the year of contribution.
The complete publications are listed in the reference list.

In table 1, Column 2 - TPG Structure tries to
categorize the contributions depending on the basic
architecture of the TPG: LFSR and NLFSR - Linear and
Non-Linear Finite State Registers, CA - Cellular
Automata, SR and MISR - Shift Register and Multiple
Inputs Shift Register, or ACCUmulator. Column 3 -
Category classifies it into: D - a deterministic approach, E
or PE - an exhaustive or pseudo-exhaustive approach, PR
- a pseudo-random approach and PD - a pseudo-
deterministic approach. Then, the fault coverage (FC), the
test sequence length and the hardware cost are estimated.
The test length and the hardware are given in function of

the number of flip-flops of an equivalent n-size LFSR but
also with the addition of Control Logic (CL), BILBO
(Built-In Logic Block Observer) or Accumulator and
Counter. The Fault Coverage (FC) is reported depending
on the fact that it can be Maximal (Max) or lower than
maximal (High). For this last case, the interpretations of
high is delicate in the sense that some more or less
percentages for the FC must be analyzed extremely
carefully in function of the circuit, the test length and
many others parameters.

From table 1, it appears that solutions can be classified
in two (maybe three) sets concerning the hardware. A first
set requires only n flip-flops while a second set uses
generally 2×n flips-flops and most often with the addition
of some control logic (CL). Then, from these two sets,
the test sequences become generally lower or equal to (2n-
1) and 2n(2n-1) respectively. The corresponding fault
coverages are consequently maximal (Max) if the test
sequences are exhaustive or pseudo-exhaustive (E or PE),
still maximal in the case of Deterministic or Pseudo-
Deterministic (D or PD) and lower than maximal, that is
high, if the test sequences are pseudo-random sequences.
Then, selecting the best approach for your application
depends on the test approach (PR, PD or D), also on the
possible availability of resources in your chip: SCAN,
BILBO, accumulator and so on. In this context, our
proposal is, to our best knowledge the first pseudo-
deterministic technique for two-patterns testing and
consequently offers: a maximal fault coverage, for smaller
test sequences than pseudo-random ones and that, for a
slight increase of the hardware cost. Certainly the most
important thing is that our scheme is not in conflict with
other techniques, such as [22] or [25], and consequently
when merged, should lead to interesting practical
solutions.

Contributions TPG Cat. F C Length Hardware Cost Remarks
[31] Starke - 1984 NLFSR D Max Low 2n+CL CL is excessive
[16] Craig - 1985 NLFSR PE adj. High n(2n-1) 2n+CL
[19] Furuya - 1991 LFSR PR High <(22n-1) 2n transition FC
[22] Zhang - 1992 XLFSR PR High <(2n-1) n
[24] Pilarski - 1993 SR PR High <(22n-1) 2n Circular BIST
[17] Vuksic - 1994 MISR E Max 2n(2n-1) n+BILBO need BILBO
[18] Wurth - 1995 MISR E Max <2n(2n-1) n+BILBO =[17]+Optimization
[15] Voyiatzis - 1995 ACCU E Max 2n(2n-1) Accu+Counter for Datapaths
[25] Chen - 1996 LFSR-CA PR High <(2n-1) n generalize [22], =[21]
our scheme LFSR PD Max Medium n 1st PD technique

Table 1: Comparison of two-pattern test TPGs

4 Conclusion

Linear Feedback Shift Registers have proved in the past
to be key elements for BIST architectures. In this paper, it

is shown that an LFSR can be synthesized so as to embed
in its sequence some deterministic pairs of patterns for
delay faults testing. Key features of LFSRs have been
analyzed in section 2 as well as more advanced properties



concerning transition matrices. A three criteria algorithm
is described and discusses the necessary and sufficient
conditions to synthesize a pseudo-deterministic LFSR. It
is shown through an example, that many possibilities
exist to satisfy these conditions and may also offer some
optimization approaches. Finally, some limitations and
possible improvements of the method are reported. It is
demonstrated that this scheme can be used in conjunction
with any other existing proposals.
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