New Static Compaction Techniques of Test Sequences for Sequential Circuits

F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda

Politecnico di Torino
Dipartimento di Automatica e Informatica
Torino, Italy

Abstract® compacted while still guaranteeing the same detection
capabilities. The techniques belonging to the former
group are known as dynamic compaction techniques

This paper describes an algorithm for compacting the [PoRe96b], those belonging to the latter one as static
Test Sequences generated by an ATPG tool withouttompaction techniques [RNPA88][PoRe96a].
reducing the number of faults they detect. The The main advantage of static compaction techniques
algorithm is based on re-ordering the sequences sois that they are independent of the adopted ATPG tool
that some of them can be shortened and some other&nd can thus be implemented as a separate package. On
eliminated. The problem is NP-complete, and we adoptthe other side, as the performance of ATPGs often
Genetic Algorithms to obtain optimal solutions with depends on the length of the generated sequences,
acceptable computational requirements. As it requires including a dynamic compaction technique into the
just one preliminary Fault Simulation experiment, the ATPG algorithm can sometimes result in a significant
approach is much more efficient than others proposed reduction in the CPU time required by the whole test
before; experimental results gathered with Test Setsprocess.
generated by different ATPG tools show that the In this paper, we show how to reduce the length of
method is able to reduce the size of the Test Set by &vailable test patterns using a static compaction
factor varying between 50% and 62%. approach under the assumption that they can be
partitioned into independent sequences, each starting
either from a state which can be forced by the outside
1.Introduction or from the all-Xs state. This situation occurs, for
example, when the circuit has an external reset signal,

Traditionally, Automatic Test Pattern Generators SO that any flip flop can be easily forced in the reset
(ATPGs) for sequaial circuits are evaluated according Staté when required. The circuits we will use for
to three parameters: the attained Fault Coverage, th&XPerimentally evaluating our method satisfy this
required CPU time, and the number of generated Testcondition. Moreover, we assume that the set of test
Vectors. vectors generated by the ATPG only includes 0 and 1

When the last parameter is considered, several VaUues. _ _
techniques can be exploited to improve the We_: propose a compaction algorithm based on re-
performance of an ATPG tool: some of them require Ordering the sequences so that some of them are
modifying the tool itself to make it able to generate shorteneq, and some others ehmm_at_ed._Thls requires
shorter test sequences, others simply perform a post:‘he solution of an NP-complete optimization problem,

processing of the sequences, which can thus pe2nNd we adopt Genetic Algorithms to obtain a sub-
optimum solution with eceptable compgational

requirements.

* This work has been partially supported by MURST _ Our method is somehow similar to the Vector
through the 40% projediffidabilita e Diagnostica in ~ Selection procedure described in [PoRe96a]; however,
Elettronica Contact address: Paolo Prinetto, it IS much more efficient, as it only requires a

Dipartimento di Automatica e Informatica, Politecnico Preliminary fault simulation phase, in which all the
di Torino, Corso Duca degli Abruzzi 24, 1-10129 Seduences are simulated once and for all. Experimental

Torino (Italy), e-mail Paolo.Prinetto results on the ISCAS’89 circuits are reported, showing
@polito.it

ED&TC 97 on CD-ROM

Permission to make digital/hard copy of part or all of thiswork for personal or classroom use is granted without fee provided that copies are not made or distributed

for fee or commercial advantage, the copyright notice,the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or afee. 0 1997 ACM/0-89791-849-5/97/0003/$3.50

the approach efficiency even when sequences generate8. Problem Definition
by different ATPG tools are considered.

The paper is organized as follows: Section 2 Qur compaction algorithm is based on re-ordering
introduces some definitions and notations used in thethe Test Sequences generated by the ATPG. The
rest of the paper. Section 3 formally defines the rationale behind our approach is that a proper re-
problem. Section 4 describes the proposed algorithm,ordering of the sequences can modify the order in
and Section 5 reports some experimental results. Somgyhich they detect faults, thus reducing the effective test

conclusions are eventually drawn in Section 6. length of some sequences. In some case, the re-
ordering can even cause some sequence to become
2.Definitions and Notation useless and thus be discarded.
Example

For the purposes of this paper, we will use the Let us consider a sample case, in which the ATPG
notation described in this section, which is partly tool generated three sequences:isScomposed of 3

derived from the one adopted in [PoORe96a]. vectors, and detects faujtdt time unit t=1, and faulg f
A Test Sequencéor simply aSequence§ is an at time unit t=3. §is composed of 5 vectors, and
ordered set of Dest Vectorgor simplyVectors detects fault,fat time unit t=2, and faulg ft time unit
S=(Vi1Vio...ViL) t=5. Finally, S is composed of 4 vectors, and detects

where vy; is the Test Vector applied at time unit t fault f, at time unit t=3, faultsfat time unit t=1, and
When the first Test Vector of every sequence is fault f; at time unit t=4. This is graphically shown in
applied, the circuit is supposed to be in the reset state. Fig. 1.a, where a faults appears in bold when it is
We assume that a set of Test Sequences (ilesta detected for the first time.

SetT) is available, which is able to detect a subsetf F The Detection Matrix for this case is the following

the single stuck-at faults belonging to the full set F. An

order is also assigned to the sequences belonging to T, fp b f3 1

and each sequence is responsible for detecting some

faults not covered by the previous sequences in T. S 1 0 3 0
We will denote by E the subset of faults detected by

the Test Sequence F 0 F). We will also denote by S 2 5 0 0

F the set of faults detected by &d not detected by

any sequence in T before Sbviously, FO F. Given S 0 3 1 4

a sequence;Sthe time unit where a faulf & F is

detected for the first time is denoted by i@t The total length of the original Test Set composed of
To represent in a compact way the information sequences;SS;, and g (in that order) is 12.

defined above for a given Test Set, mx m integer If the new order § S, S of the sequences is

matrix can be used, whera is the number of considered, one can see that:
sequences, and the number of faults. The element of * sequence Sis not useful any more, as all the

the matrix with coordinates i,j holds the value 0, if the faults it detects are already detected bar®l $
sequence ;Sdoes not detect the fault br the value « the effective length of sequencg iS reduced to
tdet(f) otherwise. We will denote this matrix as 2, as } is already detected by.S

Detection Matrix As a result, the length of the same Test Set in the

The effective test length.«(S) of a sequence; & new order (§ S,) is 6. This is shown in Fig. 1.b,
the minimum length of a subsequence off@t starts ~ where useless vectors are filled in gray.
at time t=1 and extends to the detection time of every The problem we are addressing can thus be
fault detected by;%nd not detected by any sequence in formulated in the following way.
T before § or Given

Lex(S) = max {tde(f): fO R} + aset of faults F

The total length of the Test Set T generated by the <« a Test Set T composed of a set of Test Sequences
ATPG is thus supposed to be the sum of the effective SLS, LS
test lengths of the sequences belonging to T when -« the Detection Matrix for T
applied in the order specified by the ATPG.

find an ordering of the sequences in T, such that thecategories: cross-over (twparent individuals are

test length (i.e., the sum of the effective test lengths ofmerged), mutation (one individual is randomly
all the sequences, taken in that order) is minimum. modified), and heuristic operators (the best individual
is transformed according to a local optimization

s, i E procedure). Two alternativ&opping conditiongan be
fa Ss fa adopted: either the system reached stabfiig., no
; fa more improvements in the population fithess are
S, ! f, recorded for a given number of generations), or a
f, S, maximum predefined number of generations
f, f, MAX_GENERATION_NUM have been stepped
s, . S fy through. For the purpose of the experiments described
fj ! f, in Section 5 we always adopted the latter solution.
N by The characteristics of the algorithm are described in

more details in the following Subsections.

Fig. 1. Faults detected by each vector before and after 4 1Encoding
re-ordering. ’

It is interesting to note that if the simplifying We adopted a straightforward encoding: each
assumption is made, that in each sequence all the fault§,, .o mosome is a string composedhajienes if being

detected by the sequence are detected by the last VeCtofha number of sequences), and directly corresponds to
then the problem defined above more simply an ordering.

corresponds to finding the minimum set of sequences As an example, let us consider again the Test Set

detecting all the faults. This correspond to finding a composed of three Sequences introduced before.
minimum cover for the fault graph, which is a well- Possible individuals are (1 2 3) and (2 3 1)
known NP-complete problem in the graph theory. '

Therefore, the test sequence compaction problem 3% 5 Fitness
defined in this paper also belongs to the same

complexity class. Lo .
piexity For every individual we compute an evaluation

function corresponding to the number of vectors
eliminated with respect to the original Test Set

. . . , . provided by the ATPG.
The input for our algorithm is the Detection Matrix We assign to each individual a fitness value which

for the available Test Set; this can be easily computedepresents the position of the individual in the ranking
through a proper fault simulation experiment with paseq on ordering the individuals according to their
Fault Dropping enabled just during the simulation of jncreasing evaluation function. This mechanism

each sequence. _ . reduces the risk for an individual with evaluation
In order to solve the search problem defined in the ,,ction much higher than the others to prevail in
previous Section, we adopted Genetic Algorithms every selection procedure.

[Gold89], which are known to be best suited for the
optimal solution of large problems.

The Genetic Algorithm we devised can be
summarized as shown in the pseudo-code of Fig. 2: a
Populationis a set ofindividuals each corresponding
to a possible solution of the problem, encoded as
string of integers (known agene$ The initial
population is randomly generated.Ftness Function
is associated to each individual, which is a measure of
its goodness as a solution of the search problem. The
current population is repeatedly modified through
generations by generating new individuaeng from
the existing ones using operators belonging to three

4.Compaction Algorithm

4.3.0Operators

The uniform cross-overis adopted: one half of the
genes of the son (randomly chosen) are kept from one

aparent, the others are kept form the other parents, in
the same order in which they appear in it.

Po = create_initial_population();
compute_fitness(Po);
i=0;
while (stopping_condition()
{ A= Pi;
[* generations cycles */
for j=0 to NEW_INDIVIDUALS
{ I* new element generation */
s1 = select_an_individual();
s2 = select_an_individual();
Sj = cross_over_operator(s
if(rand() <pm
Sj = mutation_operator(s
A= Alsj;
=it
}
compute_fitness(A);
Pir1 ={the POP_SIZE best individuals
Al;
if(rand() <ph)
{ s vest = best_individual(
S best = heuristic_operator(s

}

i=i+1;

#TRUE)

1,S 2);

i)

Pi1);
best);

Fig. 2. Pseudo-Code of the algorithm.

Example
Let us consider the following two individuals,

coming from a sample problem in which 6 sequences
have to be ordered:

531426

365241

One half of the genes of the new individual is taken
from the first parent:

-31-2-

The other genes are taken from the second parent,

using the values which have not been already inserted
in the order in which they appear in the second parent:

631524

Individuals are selected for being parents on the
basis of their fitness function: individuals with higher
evaluation function have a higher probability of being
selected. Roulette-wheelhas been adopted for this
purpose.

The mutation operator randomly selects two genes
in an individual and swaps them. It is activated with
probability g, on each newly generated individual.

The heuristic operator implements a simple local
optimization procedure on the best individual.

couples for possible swaps is repeated until no more
improvements are found.

It is activated at each generation with probability p
on the best individual of the current population.

5.Experimental Results

To implement the algorithm described above we
wrote two tools:

DMMaker aims at computing the Detection
Matrix: this tool is based on an efficient Fault
Simulator developed at our institution and based
on the PROOFS algorithm [NCPa92]

GACOMP implements the Genetic Algorithm:
its input is simply the Detection Matrix (it does
not perform any Fault Simulation) and its output
is the optimal sequence ordering it has found
(possibly with some sequence missing).

The two tools amount to about 3,000 and 1,000 C
code lines, respectively, and for the purpose of the
experiments described here have been run on a SUN
SPARCstation 5/110.

To evaluate the effectiveness of our approach, we
considered the test sequences generated by three ATPG
tools:

GATTO, a state-of-the-art tool developed at our
institution and based on also Genetic Algorithms
[CPRS964a]

HITEC, the state-of-the-art tool when

deterministic ATPG algorithm are considered

[NiPa91]

« Symbat [CCPS93], a prototypical tool we
developed, which implements an ATPG
algorithm exploiting BDs and symbolic

, traversal techniques [CHS093].

The ISCAS’89 benchmark circuits [BBK0o89] and
those belonging to theAddendum benchmark set
[Adde93] have been adopted: as HITEC does not deal
with resettable Flip Flops, it has been run on a
modified version of the benchmark circuits, in which a
primary input has been added, and a multiplexer has
been inserted on the data input of each flip flop; by
driving the new input, it is possible to force all the flip
flops to hold the value 0.

The results of our experiments for the three ATPGs
are reported in Table 1, 2, and 3, respectively. Columns
2 and 3 give the number of sequences and vectors

It considers every couple of adjacent genes in thecomposing the Test Sets generated by the three ATPG

individual and checks whether swapping them
improves the fitness: only in the positive case the
individual is changed accordingly. Scanning the

tools, respectively. DMMaker was run on them, and
built the Detection Matrix. GAOMP has been fifly
run: the characteristics of the compacted test sets it

produced (in terms of number of sequences and6.Conclusions

vectors), together with the CPU time it required, are

reported in columns 4, and 5. In column 6 we show the This paper introduces a new approach to the static
achieved percent reduction in terms of number of compaction of Test Sets generated by ATPG tools. By
vectors. The CPU times required BMMaker and re-ordering the Test Sequences it is possible to
GACOMP have been reported in column 7. When eliminate some and to reduce the length of many of

running GACOMP the parameters appearing in Fig. 2 them without any reduction in the Fault Coverage they
have been set to the following values: POP_SIZE=50, attain. As finding the optimum reordering is an NP-

NEW_IN-DIVIDUALS=30, complete problem, we adopted Genetic Algorithms and
MAX_GENERATION_NUM=100, p=0.2, p=0.1. devised a solution able to produce optimal results with
Several observations can be made concerning theacceptable compational requirements. According to
data in Table 1, 2, and 3: our experiments, our algorithm is able to reduce the

* Symbat is not able to generate a Test Set for all total number of vectors by a factor varying from 50% to
the considered circuits, due to the limitation in 62%, depending on the ATPG tool the starting Test
the underlying algorithm; we reported the Sets were generated by.
compaction results for all the circuits it can deal We are now currently investigating other static
with; compaction techniqgues which can successfully

+ for some circuits (e.g., $9234 for GATTO, or complement the one presented in this paper and thus
s499 for HITEC) the ATPG tools generated a allow an even larger reduction in the number of Test
single sequence: in this case we were obviouslyVectors.
not able to apply our approach.

The experiments demonstrate that our algorithm is References

able to significantly compact Test Sets no matter the

ATPG they have been generated by and with acceptabl@yge93] These benchmark circuits are downloadable

CPU time requirements. In particular, it is worth at the addreshttp://www.cbl.ncsu.
noting that: edu/www/CBL_Docs/Bench.html

< the average reduction in the Test Sets we obtainelthKogg] F. Brglez, D. Bryant, K. Kozminski,
is about 50% for GATTO, 57% for HITEC, and “Combinational profiles of sequential
62% for Symbat. This can be explained by benchmark circuits,” Procint. Symp. on
observing that both HITEC and GATTO exploit Circuits And System4989, pp. 1929-1934
some sort of fault ordering strategy, and thisjccPS93] G. Cabodi, F. Corno, P. Prinetto, M. Sonza
obviously affects the order and size of the Reorda, “Symbat’s User GuidePolitecnico
generated sequences, too. In the case of the di Torino, Internal Report No. IR-
former tool the ordering is based on a preliminary DAI/CAD/ATSEC#3/93, Sept. 93
testability analysis on faults, in that of the latter[CHS093] H. Cho, G.D. Hatchel, F. Somenzi,
tool this ordering operation is automatically done “Redundancy ldentification/Removal and
by phase 1 when selecting target faults for phase Test Generation for Sequential Circuits
2 (se_e [CPRS964a] for more details on the GATTO Using Implicit State Enumeration,[EEE
algorithm). Trans. on CAD/ICASVol. CAD-12, No. 7,

» the CPU time requirements are always much pp. 935-945, July 1993
lower that the ones required by the three ATPG§CPRS96a] F. Corno, P. Prinetto, M. Rebaudengo, M.
to generate the Test Sets; detailed information Sonza Reorda, “A Genetic Algorithm for
about the parameters we used to run them and Automatic Test Pattern Generation for
about their requirements can be found in Large Synchronous Sequential Circuits,”
[CPRS96D] IEEE Trans. on CAD/ICASVol. CAD-15,

e comparison with other compaction tools can No. 8, August 1996

hardly be done, as they normally do not assume
the availability of a reset signal.

[CPRS96Db] F. Corno, P. Prinetto, M. Rebaudengo, M,
Sonza Reorda: “Comparing topological,
symbolic and GA-based ATPGs: an
experimental approach,” ProdEEE Int.
Test Conf.October 1996

[Gold89] D.E. Goldberg, “Genetic Algorithms in
Search, Optimization, and Machine
Learning,” Addison-Wesley, 1989

[NCPa92] T.M. Niermann, W.-T. Cheng, J.H. Patel,

“PROOFS: A Fast, Memory-Efficient

Sequential Circuit Fault Simulator/EEE

Trans. on CAD/ICASVol. 11, No. 2, pp.

198-207, February 1992

[NiPa91] T. Niermann, J.H. Patel, “HITEC: A Test

Generator Package for Sequential Circuits,”
Proc European Design Automation Cagnf.

1991, pp. 214-218

[PoRe96a] |I. Pomerantz, S.M. Reddy, “On Static

Compaction of Test Sequences for

Synchronous Sequential Circuits,” Proc.
ACM Design Automation Confl996

[PoORe96b] I|. Pomerantz, S.M. Reddy, “Dynamic Test

Compaction for Synchronous Sequential

Circuits using Static ~ Compaction

Techniques,” ProclEEE Fault Tolerant

Computing Symp1996, pp. 53-61

[RNPA88] R.K. Roy, T.M. Niermann, J.H. Patel, J.A.

Abraham, R.A. Saleh, “Compaction of

ATPG-Generated Test Sequences for

Sequential Circuits,” ProdEEE Conf. on

Comp. Aided Desigri988, pp. 382-385

Circuit | Original Test Compacted Test Set CPU
Set time
#seq| #vectors #seq. #vectars % fed. [
s208 36 1,096 b 74P 31.646 8
$298 24 302 11 16[L 46.69 1}
s344 19 14] 10 7p 4641 47
s349 19 144 11 6p 58.33 47
s382 17 84 1 355 57.14 38
s386 38 41 15 197 52.87 2147
s400 16 914 1 414 54.40 319
s420 33 791 464 41.18 4/321
s444 22 1,434 D 646 54.95 5/}2
s499 29 4641) 278 41.29 2/19
s510 37 98 1 75p 23.96 3/18
s526 18 1,050 D 28 73.24 5/14
s526n 16 862 b 33p 60.67 4/12
s641 48 391 24 174 55.95 3/p5
s713 55 557 23 30 44.88 4/10
s820 38 66 14 32p 5187 5/14
s832 33 421 10 22p 46.12 4/12
s838 37 1,328 1L 850 35.15 13/6
s938 37 1,328 1L 850 35.15 1316
s953 75 1,099 3p 560 49.04 12/p0
s967 72 1,228 3L 554 54.70 1319
s991 20 44) 88 8147 3I5
s1196 133 1,80p B 6714 62.66 25§43
s1238 123 1,554 R 547 64.80 25460
s1269 52 45 29 206 5444 127
s1423 107 2,691 2B 1,497 4771 68}46
51488 65 1,824 1p 878 51.86 21p4
s1494 62 1,244 1p 592 52.41 185
s1512 52 772 14 483 37.44 15/p7
s3271 137 2,52p 50 997 60.p8 262/411
s3330 10§ 2,028 a4 941 52.61 89/110
s3384 54 888 2P 478 46.17 70/p0
s4863 112 1,53B ap 747 48.66 163/154
s5378 71 919 41 426 53.65 78/1B9
s6669 64 592 36 289 51.18 170/114
s13207 34 544 D 357 34.38 287/207
s15850 1d 158 B 6P 59.48 111/p6
s35932 54 9038 B 596 34.11 3,239/
706
$38417 95 1,61y 3L 920 43.10 5,919/
1,601
$38584 271 8,06p 108 4,716 4153 35,425/
4,918

Tab. 1: results for the GATTO Test Set.

Circuit | Original Test Compacted Test Set CPU Circuit | Original Test Compacted Test Set CPU
Set time Set time
#seq| #vectors #seq. #vectqrs % [s] #seq| #vectors #seq. #vectqrs % [s]
red. red.

5208 44 741 1 45D 39.37 W3 5208 64 2,049 34 695 66.08 4/4
$298 19 21] 1 99 54.38 1j2 $298 34 344 1y 150 56.10 W3
s344 10 6] 4 15 7541 11 s344 47 18] 23 7p 59.36 q4
s349 15 84 g 20 76.19 1J2 s349 46 184 24 71 6141 25
s382 15 35 2 20B 43.45 243 $382 59 2,580 2b 1,262 51.09 /8
s386 58 25 31 9p 62.19 28 s386 76 34 43 136 60.00 2/j1
s400 15 357 2 20[L 43.70 .) s400 59 2,538 26 1,186 53.p7 /8
s420 51 78 1 518 34.90 4/10 s420 49 9,377 2b 629 93.29 6242
s444 17 30 2 10B 66.56 .) s444 39 2,034 24 772 62.05 g/6
s510 37 841 27 22B 73.47 J6 s499 33 41 23 12p 71.29 X7
s526 17 26 2 8y 66.534 2|5 s510 59 1,066 41 256 75.98 4/9
s526n 16 256 p 8p 65.23 A4 s526 74 3,607 3L 1,928 46.55 17114
s641 78 304 36 136 55.36 3/}2 s526n 73 3,578 3L 1,894 46.9p9 17{14
s713 74 27 34 9P 63.33 4/14 s635
820 12Q 1,179 64 498 57.44 13B3 s641 160 516 oY 176 65.89 7/p7
$832 111 1,058 6D 439 58.51 1283 s713 164 53 10D 182 66.17 9/B6
s838 52 671 12 366 45.93 9/p4 820 203 1,42p 109 645 54.74 19454
5938 52 671 12 366 45.93 9/p4 $832 195 1,37p 10[7 602 56.p6 18455
s953 111 82% 38 421 48.97 14/B5 s838
s967 120 831 38 424 48.98 15/B9 5938
s991 50 83 21 3y 55.42 4/14 s953 155 1,26 8p 500 60.85 2146
51196 184 509 10D 170 66.60 18§69 s967 162 1,32p 8B 527 60.14 2217
51238 191 518 10B 141 64.72 2083 s991
51269 66 25% 25 9P 61.18 9/p8 51196 297 618 20D 237 61.34 26/109
51423 49 283 16 95 66.43 12/B3 51238 30(619 20p 234 62.20 27/132
51488 24 6 16 1B 81.16 3/18 51269
51494 60 523 48 9p 81.97 13/B3 51423
s1512 59 283 14 166 41.70 9/B5 51488 157 1,70p 90 599 64.95 36464
s3271 61 984 2P 496 49.10 122p7 51494 16(1,78)f 100 647 63./9 38J68
s3330 132 764 8p 215 71.86 59/160 s1512
3384 17 212 B 4y 77.93 18/p2 s3271
54863 104 376 5 119 68.35 74/169 s$3330
s5378 95 25 49 9B 60.80 52/1p4 3384
56669 69 466 2P 207 55.%8 135/117 54863
59234 6 19]) 52.68 13/40 s5378
513207 14 97 b 3p 59.19 71/p6 6669
515850 14 39 1 24 38.46 96/1p6 59234
35932 376 1,71p 13 1,468 14.p5 7,5B0/ 513207

4,259 515850
38417 28(80p 1 674 16.38 3,581/ 535932

4,828 $38417
38584 44 509 3p 74 85.46 2,315/ 38584

1,000

Tab. 2: results for the HITEC Test Set. Tab. 3: results for the Symbat Test Set.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

