
New Static Compaction Techniques of Test Sequences for Sequential Circuits

F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*

This paper describes an algorithm for compacting the
Test Sequences generated by an ATPG tool without
reducing the number of faults they detect. The
algorithm is based on re-ordering the sequences so
that some of them can be shortened and some others
eliminated. The problem is NP-complete, and we adopt
Genetic Algorithms to obtain optimal solutions with
acceptable computational requirements. As it requires
just one preliminary Fault Simulation experiment, the
approach is much more efficient than others proposed
before; experimental results gathered with Test Sets
generated by different ATPG tools show that the
method is able to reduce the size of the Test Set by a
factor varying between 50% and 62%.

1.Introduction

Traditionally, Automatic Test Pattern Generators
(ATPGs) for sequential circuits are evaluated according
to three parameters: the attained Fault Coverage, the
required CPU time, and the number of generated Test
Vectors.

When the last parameter is considered, several
techniques can be exploited to improve the
performance of an ATPG tool: some of them require
modifying the tool itself to make it able to generate
shorter test sequences, others simply perform a post-
processing of the sequences, which can thus be

* This work has been partially supported by MURST

through the 40% project Affidabilità e Diagnostica in
Elettronica. Contact address: Paolo Prinetto,
Dipartimento di Automatica e Informatica, Politecnico
di Torino, Corso Duca degli Abruzzi 24, I-10129
Torino (Italy), e-mail Paolo.Prinetto
@polito.it

compacted while still guaranteeing the same detection
capabilities. The techniques belonging to the former
group are known as dynamic compaction techniques
[PoRe96b], those belonging to the latter one as static
compaction techniques [RNPA88][PoRe96a].

The main advantage of static compaction techniques
is that they are independent of the adopted ATPG tool
and can thus be implemented as a separate package. On
the other side, as the performance of ATPGs often
depends on the length of the generated sequences,
including a dynamic compaction technique into the
ATPG algorithm can sometimes result in a significant
reduction in the CPU time required by the whole test
process.

In this paper, we show how to reduce the length of
available test patterns using a static compaction
approach under the assumption that they can be
partitioned into independent sequences, each starting
either from a state which can be forced by the outside
or from the all-Xs state. This situation occurs, for
example, when the circuit has an external reset signal,
so that any flip flop can be easily forced in the reset
state when required. The circuits we will use for
experimentally evaluating our method satisfy this
condition. Moreover, we assume that the set of test
vectors generated by the ATPG only includes 0 and 1
values.

We propose a compaction algorithm based on re-
ordering the sequences so that some of them are
shortened, and some others eliminated. This requires
the solution of an NP-complete optimization problem,
and we adopt Genetic Algorithms to obtain a sub-
optimum solution with acceptable computational
requirements.

Our method is somehow similar to the Vector
Selection procedure described in [PoRe96a]; however,
it is much more efficient, as it only requires a
preliminary fault simulation phase, in which all the
sequences are simulated once and for all. Experimental
results on the ISCAS’89 circuits are reported, showing

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for fee or commercial advantage, the copyright notice,the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

the approach efficiency even when sequences generated
by different ATPG tools are considered.

The paper is organized as follows: Section 2
introduces some definitions and notations used in the
rest of the paper. Section 3 formally defines the
problem. Section 4 describes the proposed algorithm,
and Section 5 reports some experimental results. Some
conclusions are eventually drawn in Section 6.

2.Definitions and Notation

For the purposes of this paper, we will use the
notation described in this section, which is partly
derived from the one adopted in [PoRe96a].

A Test Sequence (or simply a Sequence) Si is an
ordered set of L Test Vectors (or simply Vectors)

Si=(vi,1v i,2...v i,L)
where vi,j is the Test Vector applied at time unit tj.

When the first Test Vector of every sequence is
applied, the circuit is supposed to be in the reset state.

We assume that a set of Test Sequences (i.e., a Test
Set T) is available, which is able to detect a subset FT of
the single stuck-at faults belonging to the full set F. An
order is also assigned to the sequences belonging to T,
and each sequence is responsible for detecting some
faults not covered by the previous sequences in T.

We will denote by F≤i the subset of faults detected by
the Test Sequence Si (F≤i ⊆ FT). We will also denote by
Fi the set of faults detected by Si and not detected by
any sequence in T before Si. Obviously, Fi ⊆ F≤i. Given
a sequence Si, the time unit where a fault fj ∈ Fi is
detected for the first time is denoted by tdeti(fj).

To represent in a compact way the information
defined above for a given Test Set, an n x m integer
matrix can be used, where n is the number of
sequences, and m the number of faults. The element of
the matrix with coordinates i,j holds the value 0, if the
sequence Si does not detect the fault fj, or the value
tdeti(fj) otherwise. We will denote this matrix as
Detection Matrix.

The effective test length Leff(Si) of a sequence Si is
the minimum length of a subsequence of Si that starts
at time t=1 and extends to the detection time of every
fault detected by Si and not detected by any sequence in
T before Si, or

Leff(Si) = max { tdeti(f): f ∈ Fi }
The total length of the Test Set T generated by the

ATPG is thus supposed to be the sum of the effective
test lengths of the sequences belonging to T when
applied in the order specified by the ATPG.

3.Problem Definition

Our compaction algorithm is based on re-ordering
the Test Sequences generated by the ATPG. The
rationale behind our approach is that a proper re-
ordering of the sequences can modify the order in
which they detect faults, thus reducing the effective test
length of some sequences. In some case, the re-
ordering can even cause some sequence to become
useless and thus be discarded.

Example
Let us consider a sample case, in which the ATPG

tool generated three sequences: S1 is composed of 3
vectors, and detects fault f1 at time unit t=1, and fault f3

at time unit t=3. S2 is composed of 5 vectors, and
detects fault f1 at time unit t=2, and fault f2 at time unit
t=5. Finally, S3 is composed of 4 vectors, and detects
fault f2 at time unit t=3, fault f3 at time unit t=1, and
fault f4 at time unit t=4. This is graphically shown in
Fig. 1.a, where a faults appears in bold when it is
detected for the first time.

The Detection Matrix for this case is the following

f1 f2 f3 f4

S1 1 0 3 0

S2 2 5 0 0

S3 0 3 1 4

The total length of the original Test Set composed of
sequences S1, S2, and S3 (in that order) is 12.

If the new order S3, S2, S1 of the sequences is
considered, one can see that:

• sequence S1 is not useful any more, as all the
faults it detects are already detected by S3 and S2

• the effective length of sequence S2 is reduced to
2, as f2 is already detected by S3.

As a result, the length of the same Test Set in the
new order (S3, S2, S1) is 6. This is shown in Fig. 1.b,
where useless vectors are filled in gray.

The problem we are addressing can thus be
formulated in the following way.

Given
• a set of faults F
• a Test Set T composed of a set of Test Sequences

S1, S2, …, Sn

• the Detection Matrix for T

find an ordering of the sequences in T, such that the
test length (i.e., the sum of the effective test lengths of
all the sequences, taken in that order) is minimum.

Fig. 1. Faults detected by each vector before and after
re-ordering.

It is interesting to note that if the simplifying
assumption is made, that in each sequence all the faults
detected by the sequence are detected by the last vector,
then the problem defined above more simply
corresponds to finding the minimum set of sequences
detecting all the faults. This correspond to finding a
minimum cover for the fault graph, which is a well-
known NP-complete problem in the graph theory.
Therefore, the test sequence compaction problem as
defined in this paper also belongs to the same
complexity class.

4.Compaction Algorithm

The input for our algorithm is the Detection Matrix
for the available Test Set; this can be easily computed
through a proper fault simulation experiment with
Fault Dropping enabled just during the simulation of
each sequence.

In order to solve the search problem defined in the
previous Section, we adopted Genetic Algorithms
[Gold89], which are known to be best suited for the
optimal solution of large problems.

The Genetic Algorithm we devised can be
summarized as shown in the pseudo-code of Fig. 2: a
Population is a set of Individuals, each corresponding
to a possible solution of the problem, encoded as a
string of integers (known as genes). The initial
population is randomly generated. A Fitness Function
is associated to each individual, which is a measure of
its goodness as a solution of the search problem. The
current population is repeatedly modified through
generations by generating new individuals (sons) from
the existing ones using operators belonging to three

categories: cross-over (two parent individuals are
merged), mutation (one individual is randomly
modified), and heuristic operators (the best individual
is transformed according to a local optimization
procedure). Two alternative stopping conditions can be
adopted: either the system reached stability (i.e., no
more improvements in the population fitness are
recorded for a given number of generations), or a
maximum predefined number of generations
MAX_GENERATION_NUM have been stepped
through. For the purpose of the experiments described
in Section 5 we always adopted the latter solution.

The characteristics of the algorithm are described in
more details in the following Subsections.

4.1.Encoding

We adopted a straightforward encoding: each
chromosome is a string composed of n genes (n being
the number of sequences), and directly corresponds to
an ordering.

As an example, let us consider again the Test Set
composed of three Sequences introduced before.
Possible individuals are (1 2 3) and (2 3 1).

4.2.Fitness

For every individual we compute an evaluation
function corresponding to the number of vectors
eliminated with respect to the original Test Set
provided by the ATPG.

We assign to each individual a fitness value which
represents the position of the individual in the ranking
based on ordering the individuals according to their
increasing evaluation function. This mechanism
reduces the risk for an individual with evaluation
function much higher than the others to prevail in
every selection procedure.

4.3.Operators

The uniform cross-over is adopted: one half of the
genes of the son (randomly chosen) are kept from one
parent, the others are kept form the other parents, in
the same order in which they appear in it.

S1

S2

S3

f1

f3

f1

f2

f2

f4

f3

S1

f1

f3

S2

f1

f2

S3 f2
f4

f3

a) b)

P0 = create_initial_population();
compute_fitness(P0);
i=0;
while (stopping_condition() ≠TRUE)
{ A = Pi ;

/* generations cycles */
for j=0 to NEW_INDIVIDUALS
{ /* new element generation */

s1 = select_an_individual();
s2 = select_an_individual();
s j = cross_over_operator(s 1, s 2);
if(rand() ≤pm)

s j = mutation_operator(s j);
A = A ∪ s j ;
j=j+1;

}
compute_fitness(A);
Pi+1 ={the POP_SIZE best individuals ∈

 A };
if(rand() ≤ph)
{ s best = best_individual(Pi+1);

 s best = heuristic_operator(s best);
}
i=i+1;

}

Fig. 2. Pseudo-Code of the algorithm.

Example
Let us consider the following two individuals,

coming from a sample problem in which 6 sequences
have to be ordered:

5 3 1 4 2 6
3 6 5 2 4 1
One half of the genes of the new individual is taken

from the first parent:
- 3 1 - 2 -
The other genes are taken from the second parent,

using the values which have not been already inserted,
in the order in which they appear in the second parent:

6 3 1 5 2 4
Individuals are selected for being parents on the

basis of their fitness function: individuals with higher
evaluation function have a higher probability of being
selected. Roulette-wheel has been adopted for this
purpose.

The mutation operator randomly selects two genes
in an individual and swaps them. It is activated with
probability pm on each newly generated individual.

The heuristic operator implements a simple local
optimization procedure on the best individual.

It considers every couple of adjacent genes in the
individual and checks whether swapping them
improves the fitness: only in the positive case the
individual is changed accordingly. Scanning the

couples for possible swaps is repeated until no more
improvements are found.

It is activated at each generation with probability ph

on the best individual of the current population.

5.Experimental Results

To implement the algorithm described above we
wrote two tools:

• DMMaker aims at computing the Detection
Matrix: this tool is based on an efficient Fault
Simulator developed at our institution and based
on the PROOFS algorithm [NCPa92]

• GACOMP implements the Genetic Algorithm:
its input is simply the Detection Matrix (it does
not perform any Fault Simulation) and its output
is the optimal sequence ordering it has found
(possibly with some sequence missing).

The two tools amount to about 3,000 and 1,000 C
code lines, respectively, and for the purpose of the
experiments described here have been run on a SUN
SPARCstation 5/110.

To evaluate the effectiveness of our approach, we
considered the test sequences generated by three ATPG
tools:

• GATTO, a state-of-the-art tool developed at our
institution and based on also Genetic Algorithms
[CPRS96a]

• HITEC, the state-of-the-art tool when
deterministic ATPG algorithm are considered
[NiPa91]

• Symbat [CCPS93], a prototypical tool we
developed, which implements an ATPG
algorithm exploiting BDDs and symbolic
traversal techniques [CHSo93].

The ISCAS’89 benchmark circuits [BBKo89] and
those belonging to the Addendum benchmark set
[Adde93] have been adopted: as HITEC does not deal
with resettable Flip Flops, it has been run on a
modified version of the benchmark circuits, in which a
primary input has been added, and a multiplexer has
been inserted on the data input of each flip flop; by
driving the new input, it is possible to force all the flip
flops to hold the value 0.

The results of our experiments for the three ATPGs
are reported in Table 1, 2, and 3, respectively. Columns
2 and 3 give the number of sequences and vectors
composing the Test Sets generated by the three ATPG
tools, respectively. DMMaker was run on them, and
built the Detection Matrix. GACOMP has been finally
run: the characteristics of the compacted test sets it

produced (in terms of number of sequences and
vectors), together with the CPU time it required, are
reported in columns 4, and 5. In column 6 we show the
achieved percent reduction in terms of number of
vectors. The CPU times required by DMMaker and
GACOMP have been reported in column 7. When
running GACOMP the parameters appearing in Fig. 2
have been set to the following values: POP_SIZE=50,
NEW_IN-DIVIDUALS=30,
MAX_GENERATION_NUM=100, pm=0.2, ph=0.1.

Several observations can be made concerning the
data in Table 1, 2, and 3:

• Symbat is not able to generate a Test Set for all
the considered circuits, due to the limitation in
the underlying algorithm; we reported the
compaction results for all the circuits it can deal
with;

• for some circuits (e.g., s9234 for GATTO, or
s499 for HITEC) the ATPG tools generated a
single sequence: in this case we were obviously
not able to apply our approach.

The experiments demonstrate that our algorithm is
able to significantly compact Test Sets no matter the
ATPG they have been generated by and with acceptable
CPU time requirements. In particular, it is worth
noting that:

• the average reduction in the Test Sets we obtained
is about 50% for GATTO, 57% for HITEC, and
62% for Symbat. This can be explained by
observing that both HITEC and GATTO exploit
some sort of fault ordering strategy, and this
obviously affects the order and size of the
generated sequences, too. In the case of the
former tool the ordering is based on a preliminary
testability analysis on faults, in that of the latter
tool this ordering operation is automatically done
by phase 1 when selecting target faults for phase
2 (see [CPRS96a] for more details on the GATTO
algorithm).

• the CPU time requirements are always much
lower that the ones required by the three ATPGs
to generate the Test Sets; detailed information
about the parameters we used to run them and
about their requirements can be found in
[CPRS96b]

• comparison with other compaction tools can
hardly be done, as they normally do not assume
the availability of a reset signal.

6.Conclusions

This paper introduces a new approach to the static
compaction of Test Sets generated by ATPG tools. By
re-ordering the Test Sequences it is possible to
eliminate some and to reduce the length of many of
them without any reduction in the Fault Coverage they
attain. As finding the optimum reordering is an NP-
complete problem, we adopted Genetic Algorithms and
devised a solution able to produce optimal results with
acceptable computational requirements. According to
our experiments, our algorithm is able to reduce the
total number of vectors by a factor varying from 50% to
62%, depending on the ATPG tool the starting Test
Sets were generated by.

We are now currently investigating other static
compaction techniques which can successfully
complement the one presented in this paper and thus
allow an even larger reduction in the number of Test
Vectors.

References

[Adde93] These benchmark circuits are downloadable
at the address http://www.cbl.ncsu.
edu/www/CBL_Docs/Bench.html

[BBKo89] F. Brglez, D. Bryant, K. Kozminski,
“Combinational profiles of sequential
benchmark circuits,” Proc. Int. Symp. on
Circuits And Systems, 1989, pp. 1929-1934

[CCPS93] G. Cabodi, F. Corno, P. Prinetto, M. Sonza
Reorda, “Symbat’s User Guide,” Politecnico
di Torino, Internal Report No. IR-
DAI/CAD/ATSEC#3/93, Sept. 93

[CHSo93] H. Cho, G.D. Hatchel, F. Somenzi,
“Redundancy Identification/Removal and
Test Generation for Sequential Circuits
Using Implicit State Enumeration,” IEEE
Trans. on CAD/ICAS, Vol. CAD-12, No. 7,
pp. 935-945, July 1993

[CPRS96a] F. Corno, P. Prinetto, M. Rebaudengo, M.
Sonza Reorda, “A Genetic Algorithm for
Automatic Test Pattern Generation for
Large Synchronous Sequential Circuits,”
IEEE Trans. on CAD/ICAS, Vol. CAD-15,
No. 8, August 1996

[CPRS96b] F. Corno, P. Prinetto, M. Rebaudengo, M.
Sonza Reorda: “Comparing topological,
symbolic and GA-based ATPGs: an
experimental approach,” Proc. IEEE Int.
Test Conf., October 1996

[Gold89] D.E. Goldberg, “Genetic Algorithms in
Search, Optimization, and Machine
Learning,” Addison-Wesley, 1989

[NCPa92] T.M. Niermann, W.-T. Cheng, J.H. Patel,
“PROOFS: A Fast, Memory-Efficient
Sequential Circuit Fault Simulator,” IEEE
Trans. on CAD/ICAS, Vol. 11, No. 2, pp.
198-207, February 1992

[NiPa91] T. Niermann, J.H. Patel, “HITEC: A Test
Generator Package for Sequential Circuits,”
Proc. European Design Automation Conf.,
1991, pp. 214-218

[PoRe96a] I. Pomerantz, S.M. Reddy, “On Static
Compaction of Test Sequences for
Synchronous Sequential Circuits,” Proc.
ACM Design Automation Conf., 1996

[PoRe96b] I. Pomerantz, S.M. Reddy, “Dynamic Test
Compaction for Synchronous Sequential
Circuits using Static Compaction
Techniques,” Proc. IEEE Fault Tolerant
Computing Symp., 1996, pp. 53-61

[RNPA88] R.K. Roy, T.M. Niermann, J.H. Patel, J.A.
Abraham, R.A. Saleh, “Compaction of
ATPG-Generated Test Sequences for
Sequential Circuits,” Proc. IEEE Conf. on
Comp. Aided Design, 1988, pp. 382-385

Circuit Original Test
Set

Compacted Test Set CPU
time

#seq. #vectors #seq. #vectors % red. [s]
s208 36 1,096 6 749 31.66 1/8
s298 24 302 11 161 46.69 1/8
s344 19 141 10 75 46.81 1/7
s349 19 144 11 60 58.33 1/7
s382 17 840 7 355 57.74 3/8
s386 38 418 15 197 52.87 2/17
s400 16 916 7 414 54.80 3/9
s420 33 797 8 464 41.78 4/21
s444 22 1,434 9 646 54.95 5/12
s499 29 465 9 273 41.29 2/19
s510 37 989 7 752 23.96 3/18
s526 18 1,050 9 281 73.24 5/14
s526n 16 862 6 339 60.67 4/12
s641 48 395 24 174 55.95 3/25
s713 55 557 23 307 44.88 4/10
s820 38 669 14 322 51.87 5/14
s832 33 425 10 229 46.12 4/12
s838 37 1,323 11 850 35.75 13/16
s938 37 1,323 11 850 35.75 13/16
s953 75 1,099 32 560 49.04 12/20
s967 72 1,223 31 554 54.70 13/19
s991 20 448 9 83 81.47 3/5
s1196 133 1,805 73 674 62.66 25/43
s1238 123 1,554 72 547 64.80 25/50
s1269 52 450 29 205 54.44 12/17
s1423 107 2,691 28 1,407 47.71 68/46
s1488 65 1,824 19 878 51.86 21/24
s1494 62 1,244 19 592 52.41 18/25
s1512 52 772 14 483 37.44 15/27
s3271 132 2,529 50 997 60.58 262/111
s3330 108 2,028 44 961 52.61 89/110
s3384 58 888 22 478 46.17 70/60
s4863 112 1,533 42 787 48.66 163/154
s5378 71 919 41 426 53.65 78/139
s6669 64 592 36 289 51.18 170/114
s13207 34 544 9 357 34.38 287/207
s15850 10 153 3 62 59.48 111/96
s35932 59 903 8 595 34.11 3,239/

706
s38417 95 1,617 31 920 43.10 5,919/

1,601
s38584 271 8,065 108 4,716 41.53 35,025/

4,918

Tab. 1: results for the GATTO Test Set.

Circuit Original Test
Set

Compacted Test Set CPU
time

#seq. #vectors #seq. #vectors %
red.

[s]

s208 44 741 10 450 39.27 1/3
s298 19 217 7 99 54.38 1/2
s344 10 61 6 15 75.41 1/1
s349 15 84 9 20 76.19 1/2
s382 15 359 2 203 43.45 2/3
s386 58 258 31 96 62.79 2/8
s400 15 357 2 201 43.70 2/4
s420 51 788 10 513 34.90 4/10
s444 17 308 2 103 66.56 2/4
s510 37 847 27 223 73.67 3/6
s526 17 260 2 87 66.54 2/5
s526n 16 256 2 89 65.23 2/4
s641 78 306 36 136 55.56 3/12
s713 74 270 34 99 63.33 4/14
s820 120 1,170 64 498 57.44 13/33
s832 111 1,058 60 439 58.51 12/33
s838 52 675 12 365 45.93 9/24
s938 52 675 12 365 45.93 9/24
s953 111 825 38 421 48.97 14/35
s967 120 831 38 424 48.98 15/39
s991 50 83 25 37 55.42 4/14
s1196 189 509 109 170 66.60 18/69
s1238 191 513 108 181 64.72 20/83
s1269 66 255 25 99 61.18 9/28
s1423 49 283 16 95 66.43 12/33
s1488 24 69 16 13 81.16 3/18
s1494 60 523 43 99 81.07 13/33
s1512 59 283 14 165 41.70 9/35
s3271 61 984 22 495 49.70 122/57
s3330 132 764 85 215 71.86 59/150
s3384 17 212 8 47 77.83 18/22
s4863 105 376 57 119 68.35 74/169
s5378 95 250 49 98 60.80 52/194
s6669 68 466 22 207 55.58 135/117
s9234 6 19 1 9 52.63 13/50
s13207 14 97 6 39 59.79 71/96
s15850 14 39 4 24 38.46 96/126
s35932 376 1,712 13 1,468 14.25 7,530/

4,259
s38417 280 806 14 674 16.38 3,581/

4,828
s38584 48 509 30 74 85.46 2,375/

1,000

Tab. 2: results for the HITEC Test Set.

Circuit Original Test
Set

Compacted Test Set CPU
time

#seq. #vectors #seq. #vectors %
red.

[s]

s208 64 2,049 34 695 66.08 4/4
s298 34 344 17 151 56.10 1/3
s344 47 187 23 76 59.36 1/4
s349 46 184 24 71 61.41 2/5
s382 59 2,580 25 1,262 51.09 8/8
s386 76 340 43 136 60.00 2/11
s400 59 2,538 26 1,186 53.27 9/8
s420 49 9,377 25 629 93.29 62/12
s444 39 2,034 24 772 62.05 8/6
s499 33 418 23 120 71.29 2/7
s510 59 1,066 41 256 75.98 4/9
s526 74 3,607 31 1,928 46.55 17/14
s526n 73 3,573 31 1,894 46.99 17/14
s635
s641 160 516 97 176 65.89 7/27
s713 164 538 100 182 66.17 9/36
s820 202 1,425 109 645 54.74 19/54
s832 195 1,370 107 602 56.06 18/55
s838
s938
s953 155 1,261 85 500 60.35 21/46
s967 162 1,322 88 527 60.14 22/47
s991
s1196 297 613 200 237 61.34 26/109
s1238 300 619 206 234 62.20 27/132
s1269
s1423
s1488 157 1,709 99 599 64.95 36/64
s1494 160 1,787 100 647 63.79 38/68
s1512
s3271
s3330
s3384
s4863
s5378
s6669
s9234
s13207
s15850
s35932
s38417
s38584

Tab. 3: results for the Symbat Test Set.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

