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Abstract

A new method for state justi�cation is proposed

for sequential circuit test generation. The linear list of

states dynamically obtained during the derivation of

test vectors is used to guide the search during state

justi�cation. State-transfer sequences may already be

known that drive the circuit from the current state to

the target state. Otherwise, genetic engineering of

existing state-transfer sequences is required. In both

cases, genetic-algorithm-based techniques are used to

generate valid state justi�cation sequences for the cir-

cuit in the presence of the target fault. This approach

achieves extremely high fault coverages and thus out-

performs previous deterministic and simulation-based

techniques.

I Introduction

The majority of the time spent by automatic test generators

for sequential circuits is used to �nd test sequences for hard-to-

test faults. Deterministic test generators have been proposed

in the past, but they often require backtracing through com-

plex gates and ip-ops, and remodeling of such primitives is

often required. In addition, large numbers of backtracks are

often needed for the hard faults. Simulation-based test gener-

ators, on the other hand, avoid the complexity of backtracing

by processing in the forward direction only. However, previous

simulation-based approaches often fell short when targeting

the hard faults because they lacked information about state

justi�cation.

Previously, homing, synchronizing, and distinguishing se-

quences have been used to aid the test generator in improving

the fault coverage [1, 2, 3, 4, 5]. In [1, 2, 4], symbolic and state-

table-based techniques were used to derive these sequences in

the fault-free machine. Speci�cally, in [1], cube intersections

of ON/OFF-set representations were used to derive distin-

guishing sequences. Binary decision diagrams (BDD's) and

implicit state enumeration were used in [2] to derive synchro-

nizing sequences. In the work by Park et al., [4], functional

information was used to pre-generate sequences which sim-

pli�ed propagation of fault e�ects from the ip-ops to the

primary outputs (PO's), and state justi�cation was done by

using BDD's. Since these sequences are generated using the

fault-free machine only, they may become invalid in a faulty
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machine. Homing sequences composed of specifying and dis-

tinguishing portions were used to aid ATPG in [3], but they

had to be recomputed for each target fault.

Several approaches to test generation using genetic algo-

rithms (GA's) have been proposed in the past [5-14]. Fitness

functions were used to guide the GA in �nding a test vector

or sequence that maximizes given objectives for a single fault

or group of faults. However, hard-to-test faults often could

not be detected. In GATEST [9] and ALT-TEST [14], the

�tness functions were biased toward maximizing the number

of faults detected and the number of fault-e�ects propagated

to ip-ops; increasing the circuit activity was a major objec-

tive in CRIS [6] and GATTO [10]. Maximizing propagation

of fault e�ects to ip-ops and increasing circuit activity have

been shown to increase the probability of detecting faults at

the PO's. Although the fault detection probability improves,

activating a hard fault and propagating fault-e�ects from ip-

ops to a PO remain di�cult problems. Increasing circuit

activity may be ine�ective in activating a hard fault or propa-

gating fault e�ects to PO's. DIGATE [5] tackled the problem

of fault-e�ect propagation by intelligent use of distinguishing

sequences. However, DIGATE requires that faults be acti-

vated in order for it to be e�ectively applied. The hard-to-

activate faults in some circuits may require speci�c states and

justi�cation sequences in order for them to be activated, and

the previous GA-based test generators have failed to drive the

circuit to these speci�c states for fault excitation, resulting in

low fault coverages. For instance, GA-based test generators

have obtained low fault coverages for ISCAS89 circuits s820,

s832, s1488, and s1494 due to frequently deep and speci�c se-

quences necessary to excite the faults, but deterministic test

generators have been quite successful in generating tests for

them. The di�erences in fault coverages were as high as 30%

for such circuits. Even when a GA was speci�cally targeted

at state justi�cation, the simple �tness function used was in-

adequate for these circuits [12, 13].
Storing the state information for large circuits is impracti-

cal; similarly, keeping a list of sequences capable of reaching

each reachable state is infeasible. The scheme proposed in our

approach uses the linear list of states dynamically obtained

during the derivation of test vectors to guide state justi�ca-

tion. The storage necessary is on the order of the number of

vectors generated in this case. When justifying states that

have not been visited, several candidate sequences that lead

to previously visited states are used to help �nd the target un-

visited state. The candidate states are chosen such that they

are similar to the target state. The sequences that reach the

candidate states may be viewed as partial solutions to �nding
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Figure 1: Two-phase strategy.

a sequence that justi�es the target state. Genetic algorithms

[15] have been demonstrated to be e�ective in combining use-

ful portions of several candidate solutions to a given problem.

Therefore, we have chosen to use genetic algorithms in this

work, both to derive and manipulate dynamic state-transfer

sequences and in the overall test generation process. Utilizing

the dynamic state traversal information allows us to overcome

the limitations of the previous genetic approaches and close

the gap of 30% fault coverage di�erence in some of the cir-

cuits; for the other circuits, extremely high fault coverages

have been obtained compared to other test generators.

II Algorithm Overview

Our test generation strategy uses several passes through the

fault list, with faults targeted individually in two phases. The

two-phase strategy is illustrated in Figure 1. The �rst phase

focuses on activating the target fault, while the second phase

tries to propagate the fault e�ects from the ip-ops to the

PO's. A target fault is selected from the fault list at the be-

ginning of the fault activation phase, and an attempt is made

to derive a sequence that excites the fault and propagates the

fault e�ects (FE's) to a PO or to the ip-ops. Once the

fault is activated, the fault e�ects are propagated from the

ip-ops to the PO's in the second phase with the assistance

of distinguishing sequences. The target fault is detected at

the PO's when the faulty machine state is distinguished from

the fault-free machine state. The second phase of test gener-

ation is similar to the algorithm in DIGATE [5] in which dis-

tinguishing sequences are used to propagate the fault-e�ects.

The main contribution of this work is in the �rst phase, which

consists of single-time-frame fault activation and state

justi�cation using dynamic state-transfer sequences.

During the fault activation phase, single-time-frame mode

is entered if no activation sequence can be found directly from

the state in which the previous sequence left o�. The aim

of single-time-frame fault activation is to �nd a test vector,

composed of primary input (PI) and ip-op values, that can

activate the target fault in a single time frame. Single-time-

frame fault activation is illustrated in Figure 2 and will be

described in detail in a later section. Once a vector (PI and

ip-op values) is successfully derived, the state (FF values) is

�rst relaxed to one that has as many don't-care values (X) as

possible and still can activate the target fault; this improves

the success rate of state-justi�cation which immediately fol-

lows [16, 17].
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Figure 2: Multistage fault activation.

State justi�cation is performed by using a GA with an ini-

tial population composed of random sequences and any useful

state-transfer sequences. If the relaxed state Sr matches a

previously visited state Sp, and a state-transfer sequence TSc
Sp

exists that drives the circuit from the current state Sc to state

Sp, the state justi�cation sequence T
Sc
Sp

is simply seeded into

the GA. However, if the relaxed state Sr does not match any of

the previously visited states, genetic-engineering of several se-

quences is performed to try to justify the target state. Several

candidate states are selected from the set of previously visited

states that most closely match the relaxed state Sr. The selec-

tion is based on the number of matching ip-op values in the

states. Let the set of selected candidate states be fSig; the set
of sequences that justify these states from current state Sc is

fTSc
Si
g. These sequences are used as seeds in the GA to aid in

evolving an e�ective state justi�cation sequence. Candidate

sequences in the GA population are simulated, starting from

the current state. The objective is to engineer a sequence that

justi�es the required state by genetically combining the can-

didate justi�cation sequences. Consider the situation shown

in Figure 3 in which an attempt is being made to justify state

1X0X10. Sequence T1 successfully justi�es all but the third

ip-op value; on the other hand, sequence T2 justi�es all but
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the �nal ip-op value. These two sequences T1 and T2 may

provide important information in evolving the complete solu-

tion, T3, which justi�es the complete state. They are used

as seeds for the GA in an attempt to genetically engineer the

sequence T3. Presence of the fault may invalidate a sequence

that was previously used to traverse a set of states. However,

since the GA performs simulation in the presence of the fault

to derive a sequence for the current situation, any sequence

derived will be valid.

To facilitate the dynamic state traversal algorithm, a table

of visited states is mapped to the list of vectors in the test

set, as shown in Figure 4. During state justi�cation, the goal

is to generate a sequence that will justify the desired state

from the current state. In Figure 4, the starting state (also

the current state) is reached at the end of vectors i, k, and

m, and the desired state (labeled End State) is reached at the

end of vectors j and l. Therefore, either sequence T1 (vectors

i + 1 to j) or T2 (vectors k + 1 to l) is su�cient to drive

the circuit to the ending state. However, if the desired state
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Figure 4: Data structure for dynamic state traversal.

has not been visited, a set of ending states that closely match

the desired state is formed from the visited state table; the

sequences corresponding to these states are seeded in the GA

in an attempt to engineer a valid justi�cation sequence for

the desired state. If the current state was not visited before

the ending states were reached, the n vectors that lead to the

ending states are seeded into the GA, where n is the current

GA sequence length.

During state justi�cation, a sequence that correctly justi-

�es one portion of the required state may simultaneously set

an incorrect value on the other portion(s), resulting in con-

icts. Nevertheless, the justi�cation sequences for each partial

state may be viewed as partial solutions in �nding the justi-

�cation sequence for the complete state. Because important

information about the assignment of PI's for justifying a spe-

ci�c part of a state is intrinsically implied by each sequence,

this information may be important and useful in searching for

the complete justi�cation sequence. Stated di�erently, each

partial solution is a chromosome in the evolutionary process;

the desired solution may be evolved from the population of

chromosomes with appropriate �tness functions. The GA is

capable of combining several partial solutions, under arbitrary

constraints, to form a complete solution to a problem via the

evolutionary processes.

If a sequence is found that justi�es the required state, the

sequence is appended to the test set, a fault simulator is in-

voked to remove any additional faults detected by the se-

quence, and the test generator proceeds to the fault propa-

gation phase. Otherwise, the current target fault is aborted,

and test generation continues for the next fault in the fault

list. In the fault propagation phase, the GA is seeded with dis-

tinguishing sequences for the ip-ops to which fault e�ects

have propagated, and propagation of fault-e�ects is done in a

manner similar to the algorithm introduced in DIGATE [5]. If

a sequence that drives the fault-e�ects to the PO's is success-

fully obtained, the sequence is added to the test set, and the

fault simulator is used to identify other detected faults that

may be dropped. Test generation continues with the next

target fault.

III Genetic Algorithms

The GA framework used in our work is similar to the sim-

ple GA described by Goldberg [15]. The GA contains a

population of strings, also called chromosomes or individu-

als, in which each individual represents a sequence of test

vectors. A binary coding is used, and therefore, each char-

acter in a string represents the logic value to be applied to

a PI in a particular time frame. The test sequence length is

a function of the structural sequential depth, where sequen-

tial depth is de�ned as the minimum number of ip-ops in

a path between the PI's and the furthest gate. In the �rst

stage of test generation, the sequence length is set equal to

the structural sequential depth. The sequence length is dou-

bled in the second stage and doubled again in the third stage,

since harder faults may require longer sequences for activation

and/or propagation. The population size used is a function

of the string length, which depends on both the number of

PI's and the test sequence length. Larger populations are

needed to accommodate longer individual test sequences in

order to maintain diversity. The population size is set equal

to 4� square root(sequence length) when the number of PI's

is less than 16 and 16 � square root(sequence length) when

the number of PI's is greater than 15.

Each individual has an associated �tness, which measures

the test sequence quality in terms of fault detection, dynamic

controllability and observability measures, and other factors.

The �tness function used in this work depends on the phase

of test generation and will be explained in a later section.

The population is initialized with random strings, and if any

state-transfer or distinguishing sequences exist which are ap-



propriate under the current situation, they are used as seeds

as well. A fault simulator is used to compute the �tness of

each individual. Then the evolutionary processes of selection,

crossover, and mutation are used to generate an entirely new

population from the existing population. Two individuals are

selected from the existing population, with selection biased

toward more highly �t individuals. The two individuals are

crossed by randomly swapping bits between them to create

two entirely new individuals, and each character in a new

string is mutated with some small mutation probability. The

two new individuals are then placed in the new population,

and this process continues until the new generation is entirely

�lled. Evolution from one generation to the next is contin-

ued until a sequence is found to activate the target fault or

propagate its e�ects to the PO's or until a maximum number

of generations is reached. Because selection is biased toward

more highly �t individuals, the average �tness is expected to

increase from one generation to the next. However, the best

individual may appear in any generation.

IV Single Time Frame Mode

When a hard-to-activate fault is targeted and the GA fails to

generate an activation sequence, a second attempt is made to

activate the fault in a single time frame. The aim here is to

engineer a vector, composed of PI and ip-op values, capable

of activating the target fault (i.e., exciting the target fault and

propagating its e�ects to at least one ip-op) in a single time

frame. Initially the GA is seeded with random vectors, and

the evolution process continues until a vector is found or a

maximum of eight generations is reached.

To improve the chances of activation for hard faults, dy-

namic �tness objectives are set up for each target fault. Fig-

ure 5(a) illustrates the justi�cation frontier for a stuck-at-0

fault at the output of gate k. The justi�cation frontier con-

sists of values necessary for justifying a desired value. During

the single-time-frame fault activation, the �tness function for

fault excitation tries to maximize the number of justi�cation

frontier values justi�ed. Once a target fault is excited, its

fault-e�ects need to be propagated to at least one PO or ip-

op. Figure 5(b) shows the propagation frontier for this case.

The �tness function aims to dynamically advance the propa-

gation of fault-e�ects beyond the current propagation frontier.

In the example shown in the �gure, the fault-e�ects are not

yet propagated beyond gates b and d. Therefore, the dynamic

�tness objectives will place emphasis on setting a 1 on line A

and a 0 on line C to advance the fault-e�ects beyond gates b

and d. The dynamic objectives are updated after every gen-

eration of the GA is evolved.

Because an unjusti�able state is undesirable, the �tness

function also uses the dynamic controllability values of the

ip-ops to guide the search toward more easily justi�able

states. The dynamic controllability measures correspond to

the frequency of setting/clearing a particular ip-op. With

these measures, there is still no guarantee that the resulting

state is indeed justi�able. Therefore, a further relaxation step

is performed. Let S denote a state to be justi�ed and si the

ith ip-op in state S. The state S0 is obtained by inverting

the value of si. If the target fault is still activated by S0,

then the ith ip-op can be relaxed to the unknown value X.
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Figure 5: Dynamic objectives for the target fault.

This implies that activation of the target fault does not de-

pend on the assignment of si. The order in which the ip-ops

are relaxed is determined in a greedy fashion: from the least

controllable to the most controllable ip-op. When state re-

laxation is �nished, the relaxed state has to be justi�ed. The

GA is seeded with the state-transfer sequences as described in

Section II. The remaining individuals, if any, are seeded with

random sequences. The GA then attempts to combine the

partial solutions to form the complete solution that justi�es

the relaxed state.

V Test Generation Procedure
The test generator is comprised of three stages; each stage

involves several passes through the fault list, and a stage is

�nished when little or no improvement in fault coverage is

achieved. Faults are targeted individually within each stage,

and GA's are used to activate a fault and propagate the fault

e�ects to the PO's. Di�erent test sequence lengths for indi-

viduals are used in the GA population for the di�erent stages.

Since the time required for the �tness evaluation is directly

proportional to the test sequence length, the shorter sequences

are tried �rst, and faults are removed from the fault list once

they are detected. Test generation for a target fault is divided

into fault activation and fault propagation phases as de-

scribed earlier. The GA is initialized with random sequences,

and any useful state-transfer or distinguishing sequences are

used as seeds in place of some of the random sequences in the

fault activation and fault propagation phases.

A Fitness functions

Since the fault activation and fault propagation phases tar-

get di�erent goals, their corresponding �tness functions di�er.

The parameters that a�ect the �tness of an individual in the

GA are as follows:

P1: Fault detection

P2: Sum of dynamic controllabilities

P3: Matches of ip-op values



P4: Sum of distinguishing powers

P5: Induced faulty circuit activity

P6: Number of new states visited

Parameter P1 is self-explanatory, in particular during the

fault propagation phase. It is included in the fault activation

phase to cover faults that propagate directly to the PO's in

the time frame in which they are excited. To improve state

justi�cation and fault detection, ip-ops which are hard to

control or hard to observe are identi�ed dynamically during

the process and are given lower controllability values; as a

result, justi�cation of di�cult states in the �rst phase and

propagation of fault e�ects to the hard-to-observe ip-ops

in the �rst and second phases may be avoided. P2 indicates

the quality of the state to be justi�ed. Maximizing P2 during

single-time-frame fault activation makes the state more easily

justi�able and also avoids unjusti�able states. On the other

hand, minimizing P2 during state justi�cation expands the

search space by forcing hard-to-justify states to be visited. A

sequence that justi�es a hard-to-justify state is favored during

test generation, since the GA is more likely to bring the cir-

cuit to previously unexplored state spaces as a consequence.

P3 guides the GA to match the required ip-op values in

the state to be justi�ed during state justi�cation, from the

least controllable to the most controllable ip-op value. P4

measures the quality of the set of ip-ops reached by the

fault e�ects. Maximizing P4 increases the probability that

the fault-e�ects reach ip-ops having more powerful distin-

guishing sequences and thus indirectly improve the chances

for detection. P5 measures the number of events generated

in the faulty circuit, with events on more observable gates

weighted more heavily. Partial cones are computed and set

up for the PO's and ip-ops as in DIGATE [5]. Events are

weighted more heavily inside the partial cones of the PO's or

ip-ops with more powerful distinguishing sequences; events

inside the partial cones of the hard-to-observe ip-ops are

weighted more lightly. P6 is used to expand the search space.

It was suggested in [18] and [19] that visiting as many di�er-

ent states as possible helps to detect more faults. The �tness

functions thus favor visiting more states when the fault de-

tection count drops very low. Hence, P6 is considered in the

�nal stage only. Di�erent weights are given to each parameter

in the �tness computation during the two phases:

Fault activation phase:

Multiple-time-frame:

1. fitness = 0:2P1 + 0:8P4

Single-time-frame:

2. fitness = 0:1P1 + 0:5P2 + 0:2P4 + 0:2(P5 + P6y)

State justi�cation:

3. fitness = 0:1P1 + 0:2((k � P2) + 0:5P3 +

0:2(P5 + P6y), where k is a constant

Fault propagation phase:

4. fitness = 0:8P1 + 0:2(P4 + P5 + P6y)
y: included in the �nal GA stage only

In the fault activation phase, the aim is to excite the fault

and propagate the fault e�ects to as many good ip-ops as

possible, where good ip-ops are those with more powerful

distinguishing sequences; thus, the �tness function places a

heavier weight on the quality of ip-ops reached by the fault

e�ects. Any positive value on parameter P4 implies that the

target fault is excited and the fault-e�ects are propagated to

at least one ip-op. If no sequence is obtained to activate

the current target fault, single-time-frame fault activation and

state justi�cation are used in a second attempt to activate the

fault. In this case, the �tness function favors states that can

be easily justi�ed during single-time-frame fault activation,

while hard-to-reach states are favored during state justi�ca-

tion, because hard-to-reach states may be necessary in order

to reach the desired unvisited target state. In the fault propa-

gation phase, the goal is to �nd a sequence that will propagate

the fault e�ects to a PO, so the emphasis is placed on fault

detection.

B Selection of the target fault

A fault is selected when its fault e�ects have propagated to

a ip-op having a distinguishing sequence of maximal dis-

tinguishing power. Thus, the fault activation phase can be

omitted, because the e�ects of the target fault have already

reached at least one ip-op, and the fault propagation phase

can be entered immediately. The target fault selected in this

manner has a higher probability of detection. If no fault-e�ect

has reached any ip-op having a distinguishing sequence, se-

lection of the target fault is biased toward the fault whose

e�ects have reached the greatest number of ip-ops. How-

ever, the fault activation phase is not omitted in this case.

C Other implementation details

Because one fault is targeted at a time and the majority of

time spent by the GA is in the �tness evaluation, parallelism

among the individuals can be exploited. Therefore, parallel-

pattern simulation [20] is used to speed up the process. During

�tness evaluation, 32 candidate sequences from the population

are simulated simultaneously, with values bit-packed into 32-

bit words during simulation. Fault-free simulation is �rst per-

formed, followed by faulty circuit evaluation, in which events

start exclusively from the faulty gate.

Targeting untestable faults is a waste of time because

untestable faults cannot be identi�ed using our approach.

Thus, the HITEC deterministic test generator [16] is used af-

ter the �rst GA stage to identify and remove many of the

untestable faults. A small time limit of 0.4 seconds per fault

is used in an initial HITEC pass through the fault list to mini-

mize the execution time. If a large number of untestable faults

are identi�ed or if only a small number of faults remain in the

fault list, a second HITEC pass with a time limit of 2 seconds

per fault is used. Any test sequences generated by HITEC are

discarded.

VI Experimental Results

The new test generator, STRATEGATE, was implemented in

C++; both ISCAS89 sequential benchmark circuits and sev-

eral synthesized circuits were used to evaluate its performance

on an HP 9000 J200 with 256 MB RAM. The characteristics

of the synthesized circuits are discussed in [5, 14]. STRATE-

GATE is compared to various other test generators in Table 1.

For each circuit, the total number of collapsed faults is given,

followed by the number of faults detected and the test set

length for each test generator. The number of states visited



Table 1: STRATEGATE Results

Circuit Total HITEC[16] GATEST[9] CRIS[6] DIGATE[5] STRATEGATE

Faults Det Vec Det Vec Det Vec Det Vec Det Vec States

s298 308 265 306 264 161 253 476 264 239 265 306 154

s344 342 328 142 329 95 328 115 329 109 329 86 272

s382 399 363 4931 347 281 273 246 363 581 364 1486 1159

s400 426 383 4309 365 280 357 758 382 3369 384 2424 1954

s444 474 414 2240 405 275 397 519 420 1393 424 1945 1085

s526 555 365 2232 417 281 428 692 446 2867 454 2642 1764

s641 467 404 216 404 139 398 628 404 180 404 166 115

s713 581 476 194 476 128 475 1124 476 147 476 176 109

s820 850 813 984 517 146 451 1381 621 465 814 590 25

s832 870 817 981 539 150 370 1328 606 703 818 701 25

s1196 1242 1239 453 1232 347 1180 2744 1236 549 1239 574 386

s1238 1355 1283 478 1274 383 1229 4313 1281 504 1282 624 406

s1423 1515 776 177 1222 663 1167 2696 1393 4044 1414 3943 3605

s1488 1486 1444 1294 1392 243 1355 1960 1378 542 1444 593 48

s1494 1506 1453 1407 1416 245 1357 1928 1354 581 1453 540 48

s5378 4603 3238 941 3175 511 3029 1255 3447 10500 3639 11571 9550

s35932 39094 34902 240 35009 197 34481 1525 35100 386 35100 257 195

am2910 2391 2164 874 2163 745 - - 2195 2206 2198 2509 2233

mult16 1708 1640 273 1653 204 - - 1664 915 1665 1530 943

div16 2147 1665 189 1739 634 - - 1802 4481 1814 3476 2425

pcont2 11300 3354 7 6826 272 - - 6837 3452 6837 194 152

piir8o 19920 14221 347 15013 531 - - 15072 506 15071 354 305

piir8 29689 11131 31 - - - - 18140 603 18206 443 326

Det: number of faults detected Vec: test set length States: number of states visited

by STRATEGATE is also reported for each circuit. The �rst

test generator is HITEC [16], a deterministic test generator,

followed by the GA-based test generators GATEST [9], CRIS

[6], DIGATE [5], and �nally STRATEGATE.

Fault coverage is de�ned as the percentage of total faults

detected. The best fault coverages are highlighted in bold. As

shown in the table, the fault coverages achieved by STRATE-

GATE match or surpass those obtained by all other test gen-

erators for all circuits except two, s1238 and piir8o, where only

one less fault was detected. In many cases the fault coverages

obtained by STRATEGATE are signi�cantly higher. For the

hard-to-test circuits, such as s444, s526, s1423, s5378, s35932,

and the synthesized circuits, where long execution times are

required by HITEC, the fault coverages achieved by STRATE-

GATE are much higher, and execution times are much shorter.

Even in the circuits where previous GA-based test generators

did not perform well, such as s820, s832, s1488, and s1494,

STRATEGATE is able to detect all of the detectable faults.

These four circuits contain faults that require speci�c and

often long sequences for fault activation. None of the pre-

vious GA-based test generators could match the results of

HITEC for these circuits; STRATEGATE, however, is able

to reach all the required states via dynamic state traversal.

STRATEGATE is able to visit more states than HITEC in

the larger circuits where higher fault coverages are obtained.

The test sets obtained by STRATEGATE are more compact

than those obtained by HITEC, even when higher fault cover-

ages are achieved by STRATEGATE. The test sets are more

compact than those obtained by CRIS or DIGATE for most

of the circuits.

STRATEGATE achieves very high fault coverages very

quickly using a small number of vectors. This phenomenon

is illustrated in Table 2 for twelve circuits at di�erent check-

points placed at the end of each GA stage. Recall that se-

quence lengths for the individuals in the population are dou-

bled from one stage to the next, with longer sequences used

to target the harder faults. The checkpoint, number of faults

detected, test set size, and execution time are displayed in

Table 2 for each circuit. The fault coverages at the end of

the �rst or second GA stages are already higher than the �nal

fault coverages of the other test generators for many circuits.

For example, STRATEGATE detects 1410 faults in 13.2 min-

utes for circuit s1423; all other test generators spend hours

of execution time and still do not reach this fault coverage.

This phenomenon is consistent for many circuits shown in the

table. The user may wish to stop the test generation process

if the fault coverage has reached a satisfactory level at the end

of the �rst or second stage.

VII Conclusions

A test generation framework which utilizes dynamic state

traversal for targeting hard-to-test faults was presented. Test

generation for a targeted fault is carried out in two phases.

The �rst phase excites a fault and propagates its e�ects to the

ip-ops; single-time-frame fault activation and state justi�ca-

tion using dynamic state traversal are performed for hard-to-

test faults. The second phase drives the fault e�ects from the

ip-ops to the PO's with the aid of distinguishing sequences.

The dynamic state-transfer and distinguishing sequences are

seeded in a GA to evolve valid state justi�cation and fault

propagation sequences, respectively, for the target fault. The



Table 2: Results at Various Checkpoints for STRATEGATE

Circuit Ckpt Det Vec Time Circuit Ckpt Det Vec Time

s382 1 361 601 1.07 min s1423 1 1410 2065 13.2 min

2 362 1285 5.9 min 2 1410 2965 40.1 min

3 364 1486 8.1 min 3 1414 3943 1.27 hr

s444 1 408 354 38.5 sec s1494 1 1393 295 5.34 min

2 420 753 2.3 min 2 1453 540 7.50 min

3 424 1945 20.1 min 3 1453 540 7.60 min

s526 1 431 486 1.37 sec s5378 1 3562 2175 4.60 hr

2 442 1098 8.3 min 2 3607 4461 25.1 hr

3 454 2642 54.5 min 3 3639 11571 37.8 hr

s713 1 475 157 1.1 min s35932 1 35100 257 10.1 hr

2 476 176 1.30 min 2 35100 257 10.2 hr

3 476 176 1.31 min 3 35100 257 10.9 hr

s820 1 812 572 3.07 min am2910 1 2190 953 6.25 min

2 814 590 3.60 min 2 2197 1761 13.5 min

3 814 590 3.63 min 3 2198 2509 29.4 min

s1196 1 1235 521 1.12 min div16 1 1727 352 32.0 min

2 1237 536 1.21 min 2 1810 1168 2.62 hr

3 1239 574 1.49 min 3 1814 3476 8.1 hr

Check Point k: end of GA stage k

GA is able to combine the various sequences, which are par-

tial solutions to the problem, to engineer a complete solution.

Very high fault coverages obtained in short execution times re-

sult from the use of this approach. Signi�cant improvements

have been observed over previous GA-based approaches, es-

pecially for the larger circuits and for circuits having hard-to-

activate faults. More than 30% improvement in fault cover-

ages were obtained for some circuits.
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