
Interface Timing Verification with Delay Correlation Using
Constraint Logic Programming

Pierre Girodias, Eduard Cerny
LASSO, Département d’Informatique et de Recherche Opérationnelle, Université de Montréal

Abstract
Using constraint logic programming and relational inter-
val arithmetic, as implemented in CLP (BNR) Prolog, we
develop a simple yet complete method for interface timing
verification. We show how the problems raised by timing
verification (consistency, causality and compatibility) can
be formulated as constraint satisfaction problems and
solved using relational interval arithmetic when the timing
constraints are of the linear, earliest or latest type; we
examine the effect of correlation between timing delays
(within their specified intervals) and show how an interval
delay narrowing method can be applied in this context. The
original contribution of this paper is to provide a unifying
framework for interface timing verification and to present
a method that allows delay correlation to be considered.

1 Introduction

Interface timing verification has the ultimate objective of
ascertaining that, given the interface specification of vari-
ous hardware components, their interconnection will sat-
isfy each others protocol and timing requirements. Each
interface is specified as a collection of events and con-
straints relating the occurrence times of these events.

In practice, several aspects of this problem can be
reduced to computing the maximum time separations
between pairs of events, usually anNP-complete problem
[15]. On the basis of this observation, efficient algorithms
have been reported for restricted versions of the problem
[15, 18, 20]. Unfortunately, these algorithms are very spe-
cific and are difficult to extend, for example, to include new
kinds of timing constraints.

Girodias et al. [8] showed that the constraint resolution
techniques based on relational interval arithmetic (RIA) as
used for instance in CLP (BNR) Prolog [1] are computa-
tionally equivalent to several of these algorithms [7, 21,
15]. In effect, these interval consistency techniques are
complete for special cases of linear constraints, min con-
straints and max constraints. Furthermore, when linear
constraints are combined with either min or max con-

straints, the completeness results still remain valid. In
brief, CLP (BNR) Prolog can solve several instances of the
verification problem exactly and when other kinds of con-
straints are added the solution method can be gracefully
extended, at worst, producing false negative results.

We show in this paper that CLP provides a unifying basis
for the interface verification problem. In particular, we
develop a verification methodology that solves the prob-
lems of consistency, causality and compatibility by formu-
lating them as constraint satisfaction problems and solving
them efficiently using CLP (BNR) Prolog. Moreover, the
expressiveness of constraint languages allows us to incor-
porate delay correlation into our method in an intuitive
way.

It is interesting to note that Bieker and Marwedel [3]
have reported similar advantages gained from the use of
CLP for the generation of test programs for RTL-level
descriptions of hardware.

The paper is organized as follows: In Section 2, we
describe interface timing verification. In particular, in Sec-
tion 2.1, we define a formalism for timing specification, in
Section 2.2, we present a methodology for interface timing
verification, and, in Section 2.3, we show how to model
delay correlation. In Section 3, constraint logic program-
ming is introduced. In Section 4, we describe how interface
verification can be formulated in CLP. In Section 5, we
show experimental results and then draw some conclusions
in Section 6.

2 Interface timing verification

Consider the interface specifications in Fig. 1 and 2, and
Table 1. We adopt in this paper the formalism of timing
diagrams defined by Khordoc et al. [12]

2.1 Timing diagram specifications

A timing diagram (TD) captures the behavior of the
interface of a device in terms of ports, waveforms and
events.

The TD of Fig. 1specifies the behavior of a memory

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

out validin

out

tWC

assume

commit (latest)

commit (earliest)

requirement

commit (conjunctive)

WE

OE

ADDR valid validvalid

DATA validvalid

(inout)

(in)

(in)

(in)

tWP2

[0, 0]

tAW

tA
S

tD
S

tOH

tH
ZW

E

tH
ZW

E

tHZOE

tLZW
E

tLZO
EtAA

Figure 1 Timing diagram specification of a memory device (end of read cycle - write cycle - beginning of
read cycle). Unlabelled arcs denote an unbounded but strict progress in time (> 0).

tHZOE

tA
O

E

tD
H

CLK
(out) tCLK tCLK tCLK

WE
(out)

OE
(out)

ADDR validvalid valid

(out)

in

out inDATA valid valid valid

(inout)

assume

commit (latest)

commit (earliest)

requirement

commit (conjunctive)

Figure 2 Timing diagram specification of a memory controller. (End of read cycle - write cycle -
beginning of read cycle). Unlabelled arcs denote an unbounded but strict progress in time (> 0).

tCWEl

tCOEl

tC
O

E
h

tCA1

tC
A2

tOH

tC
A

1

tCWEh

tC
A2

tC
A

1 tC
A

2
tA

H

Name Min Max Name Min Max

Memory device

tAA > 0 10 tHZOE > 0 ∞

tAH > 0 ∞ tHZWE > 0 7

tAOE > 0 7 tLZOE > 0 7

tAS > 0 ∞ tLZWE 9 ∞

tAW 10 ∞ tOH 9 ∞

tDH > 0 ∞ tWC 15 ∞

tDS 8 ∞ tWP2 12 ∞

Memory
controller

tCA1 18 19.8 tCOEh 31.8 33

tCA2 18 20 tCWEl 22 28

tCLK 25.73 25.73 tCWEh 38.8 45

tCOEl 16 18 tOH 3 ∞

Delays are in ns.

Table 1: Timing constraints for the memory device and memory controller (Fig. 1 and 2)

interface in which the end of a read cycle is followed by a
full write cycle and the beginning of another read cycle.
Fig. 2 specifies the corresponding behavior of a memory
controller to be connected to this memory device.

The signal values on a port are shown aswaveforms, a
sequence of stable values and transitions. The latter are
referred to asevents. Details about signal transitions and
their graphical representation can be found in [17]. Events
have directionsin or out, either specified explicitly (inout
ports) or inherited from the port (in or out ports).

Dependencies between events are expressed through
timing relations that constrain the occurrence times of
events. Atiming relation specifies an occurrence time win-
dow between one or moresource events and asink event.
The occurrence time of the sink event is determined, in
accordance with the type of the timing relation, by the
occurrence times of the source events. There are three
types of timing relations. Letpreds(i) be the set of source
events for a sink eventi, andtj be the occurrence time of an
eventj.

• A conjunctive timing relation constrains the occur-
rence time of the sink event to fall within the intersec-
tion of the timing separations specified relative to
each source event:

∀ j ∈ preds(i), -sij ≤ ti - tj ≤ sji , (1)
i.e., ti - tj ∈ [-sij , sji], the separation interval.

• An earliest timing relation determines that the occur-
rence time of the sink event be set according to the
source event that elicits the earliest response:

ti = minj ∈ preds(i)(tj + δji), (2)
whereδji ≥ 0 is a delay from eventj to eventi.

• A latest timing relation determines that the occur-
rence time of the sink event be set according to the
last source event that elicits the latest response:

ti = maxj ∈ preds(i)(tj + δji), (3)
whereδji ≥ 0 is a delay from eventj to eventi1.

Each timing relation has a specificintent. Commit rela-
tions dictate the behavior of the specified device.Assume
relations describe behaviors that the device expects from
the environment. In other words, commit relations affect
out events produced by the device, and assume relations
describein events produced by the environment. Finally,
requirements are relations that must be met once devices
are connected.
Definition 1 Timing diagram. A timing diagram is a
4-tupleTD = (E, C, A, R) where

• E = {e0, e1, …, en-1} is the set of events characteriz-
ing the behavior of the device;

• C is the set of conjunctive, earliest and latest commit
timing relationsci;

1. A delay δji can be defined in terms of a lower bound lij and an
upper bound uij rather than by a single-point value:

0 ≤ lij ≤ uij

• A is the set of assume timing relationsai;
• R is the set of timing requirementsri. ❏
The semantics of timing diagram specifications [5, 12]

lead us to the verification procedure outlined in the follow-
ing section.

2.2 A verification methodology

A unique question sums up the interface timing verifica-
tion problem: Do the specifications describe a feasible
space in time once the devices are interconnected? How-
ever, circumscribing what is the feasible space is not a triv-
ial task in the presence of conjunctive constraints.

Brzozowski et al. [4] proposed an approach to interface
timing verification based on the notions ofconsistency and
satisfiability. However, Cerny and Khordoc [5] showed that
in the presence of conjunctive timing relations these
notions are insufficient for verifying that two or more
devices can correctly inter-operate based on their interface
specifications. It is also necessary to verify that each speci-
fication iscausal.
Definition 2 Consistency. Let ti be the occurrence time of
an event ei ∈ E. A timing diagram specification
TD = (E, C, A, R), |E|= n, is consistent if there exists a
vectorT = (t1, t2, …, tn) such that all the timing relations in
C ∪ A are satisfied. In other words, given any reference
eventek ∈ E, it is possible to compute time separations to
all eventsei ∈ E. ❏
Definition 3 Composition of timing diagrams. The compo-
sition TD = (E, C, A, R) of two timing diagrams
TD1 = (E1, C1, A1, R1) andTD2 = (E2, C2, A2, R2), which
specifies the behavior of the system resulting from the
interconnection of the respective devices, is the union of
TD1 andTD2 defined as follows:

• C = C1 ∪ C2,
• E = E1 ∪ E2

2,
• A = A1 ∪ A2,
• R = R1 ∪ R2.

We writeTD1 ||TD2 = TD3 ❏
Definition 4 Satisfiability. Given two specifications
TD1 = (E1, C1, A1, R1) and TD2 = (E2, C2, A2, R2), and
their compositionTD = (E, C, A, R), let {TC} and {TA ∪
R} be the sets of event occurrence times satisfying respec-
tively C andA ∪ R. The assumptions (i.e., the assume tim-
ing relations) and the requirements made in the
specifications of the two composed devices are said to be

2. For some events e ∈ E, we have e ≈ e1 ∈ E1 and e ≈ e2 ∈ E2,
where e1 is an in event and e2 is an out event (or vice-versa).

3. There exists a number of ways in which devices specified as
timing diagrams can be composed together. In the context of
interface timing verification, we restrict the discussion to
parallel composition [5, 2] with communication through com-
mon events of which only one can be of the out direction.

satisfied by the composition if {TC} ⊆ {TA ∪ R}. ❏
Intuitively, a timing specification iscausal if future event

occurrence times in one device do not restrict the past
event occurrence times in another device. In other words, it
is sufficient that each device know the occurrence times of
past events (specified by any device) and the local commit
constraints, to choose the occurrence times of its out
events. One way to verify that the preceding holds is to par-
tition events into disjoint subsets, each such subset contain-
ing events of one direction only, that can be partially
ordered in time, and to verify that the time frame of any
subset is independent of later subsets of events.

More formally, Cerny and Khordoc [5] proposed an
algorithm to identify causal specifications that is based on
the notions of block machines and triggers. Ablock is a set
of events of the same direction. Atrigger is the source
event of a timing relation that spans two or more distinct
blocks. Ablock machine is the partition of the events and
constraints a TD into blocks. (See [5] for a formal descrip-
tion of the semantics of block machines.)
Definition 5 Causality. A timing specification is causal if
there exists a block machine such that
(1) Triggers always precede in time the events of the

block(s) they trigger (well-defined triggers [5]).
(2) Timing separations imposed by the local constraints

within a block between its triggers must be less tight
than the separations produced by earlier blocks (past-
dominated machines [5]). ❏

For the verification of the second condition, assume that
two eventsa andb are the triggers of a blockBk. Then the
timing separation imposed betweena and b by the con-
straints of the set of blocks {Bi} where Bi is a block that
precedesBk in topological order, is tighter than the separa-
tion implied by the local constraints ofBk.
Definition 6 Compatibility. Two timing diagrams
TD1 = (E1, C1, A1, R1) and TD2 = (E2, C2, A2, R2) are
compatible if
(1) TD1 is consistent and causal,
(2) TD2 is consistent and causal,
(3) The compositionTD1 || TD2 = TD = (E, C, A, R) is

consistent,
(4) {TC} ⊆ {TA ∪ R} (satisfiability in TD). ❏

The previous definitions can easily be generalized for
any number of interconnected devices. Note that the steps
in the definition of compatibility implicitly define a verifi-
cation methodology.

A possible way to address the issues of consistency, sat-
isfiability and causality is to compute the maximum
achievable separation [15]

dij = max(tj - ti) (4)
between pairs of eventsi andj, occurring at timesti and

tj, respectively. This is equivalent to solving the underlying
constraint system [8].

2.3 Delay correlation

Assuming that there exists no correlation between the
delays of the various interacting components may produce
wider time intervals than possible in some practical appli-
cations, because delays on a single chip are usually corre-
lated to within 10% and delay constraints related to the
same wire should be nearly 100% correlated. Without this
correlation taken into account, the verification could be
needlessly pessimistic.

The method (originally introduced by W. Older for sim-
ple delay networks and with a different correlation func-
tion) to be described can deal with correlation within any
subsets of delays in the overall specification, however, for
simplicity we shall assume here that all delays on commit
timing relations are mutually correlated, i.e., all belong to
the same subset. To illustrate delay correlation, suppose
that we have two timing delays:δ1 ∈ [l1, u1] andδ2 ∈ [l2,
u2].

Alternatively, each delay can be written in a normalized
form [11] asδ1 = l1 + ∆1 ⋅ z1 andδ2 = l2 + ∆2 ⋅ z2, with ∆i
= ui - li, zi ∈ [0, 1] (i = 1, 2), wherezi are random variables.

If δ1 andδ2 are correlated, it may be approximated [11]
asz1 - z2 ≤ ε = 1 - γ whereγ is the degree of correlation.
That is, ifγ = 1 then they are 100% correlated meaning that
z1 = z2, while γ = 0 means that the delays are not correlated
andz1 andz2 can be chosen freely from the interval [0,1].
Typically, γ = 0.9 for correlation of delays on a single chip,
leaving 10% for local variation.

The introduction of correlation between delays makes
certain combinations of delays impossible and thus
assume/requirement timing constraint violations that could
occur under uncorrelated delays may not happen when cor-
relation exists.

Most existing timing verification methods have great dif-
ficulty with handling correlation. In general, it degenerates
to a form of enumeration of possible delays. In our
approach, we first replace the constraint betweenz1 andz2
by an equivalent one that refers to a common random vari-
able reference, with a local random choice to withinε of
that reference. This allows easy generalization ton timing
delays.

Let p be a random variable,p ∈ [0, γ], andxk, k = 1, …,
n, be random variables such thatxk ∈ [0, ε], and letzk = p +
xk. Clearly for anyp, xi andxj, i, j = 1, …,n, zi - zj = (p
+ xi) - (p + xj) = xi - xj ≤ ε, and the combined effect is
such that the effective values ofzk, k = 1, …,n, range over
[0,1]. Assuming uniform distributions forp andxk, we can
describe the intervals defining thekth timing delay using
the possible intervals ofp andxk. Since for any given chip
p can be any value from [0,γ], this is its interval value. For
each zk the interval becomeszk ∈ [0, γ + ε] = [0, 1] and
thus the individual delays are as specified, namelyδk ∈ [lk,

uk].
By substitutingxk andp into the equations forzk and ulti-

mately δk, the constraints characterizing equation forδk
can be written as

δk = lk + ∆k ⋅ (p + xk), 0 ≤ p ≤ γ, 0 ≤ xk ≤ ε (5)
where 1≤ k ≤ n.

These constraints are added to the timing relations
obtained from the TDs. It would now seem that due to the
initial interval of [0,γ] on p and [0,ε] on xk we have not
introduced any correlation effect. This is true only if in the
original system of timing constraints (i.e., without delay
correlation) all specified delays are possible. However,
using CLP based on RIA, when the interval of uncertainty
associated with a timing delayδk is reduced due to interval
propagation through the original system of timing con-
straints, this reduction may back propagate to the common
variablep, reducing its interval. In turn, this reduction inp
propagates to all the other correlated timing delays which
reduces the uncertainty intervals on the occurrence time of
events, etc., thus possibly eliminating a false timing viola-
tion (false under correlated delays).

CLP (BNR) Prolog includes the relational interval arith-
metic framework necessary to solve these complex systems
of constraints. The next section introduces the underlying
constraint logic programming paradigm.

3 Constraint logic programming

Constraint logic programming (CLP) [6, 10, 19] pro-
vides a unified framework for the modeling, the analysis
and, ultimately, solving constraint satisfaction problems
(CSP).

3.1 Constraint satisfaction problems4

The following definitions are based on [19].
Definition 7 Constraint Satisfaction Problem. A CSP is a
3-tupleP = (I, D, C) where

• I= {x0, x1, …, xn-1} is a finite set of variables,
• D = {D0, D1, …, Dn-1} is a finite set of domains,
• C is a set of constraints.

Variablexi takes values from domainDi. We denote this by
xi ∈ Di. ❏
Definition 8 Constraint. A constraintc(x0, x1, …, xn-1) ∈ C
between the variables ofI is a subset of the Cartesian prod-
uct D0 × D1 × … × Dn-1 which specifies which values of
the variables are compatible with each other. ❏

In practice, this subset does not need to be given explic-
itly, but can be defined by equations, inequalities, or pro-
grams.
Definition 9 Solution of a CSP. A solutions to a CSPP is

4. Constraint networks.

an assignment of values to all variables, such that it satis-
fies all the constraints. We writeP s. Let S be the set of
all possible solutions. By extension, we writeP S. ❏
Definition 10 Global consistency [16, 14]. A CSPP = (I,
D, C) is globally consistent if and only if∀ xj ∈ I, ∀ a ∈
Dj, xj = a belongs to a solution ofP. A constraint system is
inconsistent if it admits no solution. We then writeP
∅. ❏
Definition 11 Equivalence between CSPs. Two CSPsP
andP´ are equivalent if and only if they have the same set
of solution:

P S⇔ P´ S ❏
Solving a CSPP = (I, D, C) (solving the setC of con-

straints) can be viewed as the process of finding an equiva-
lent CSPP ́which is globally consistent.

The search for global consistency is anNP-hard prob-
lem. Criteria that are not as strict as global consistency are
therefore aimed for, e.g., partial consistency, where some
conditions are guaranteed over all the elements of a domain
or over the bounds of a domain [13].

3.2 CLP (BNR) Prolog and partial consistency

The algorithms and heuristics used to solve CSPs are
referred to asconsistency techniques. Many different ones
have been elaborated, sometimes to address issues specific
of a particular problem: local propagation of known states,
relaxation, propagating degrees of freedom, etc.

In timing verification, constraints (timing relations)
between events are usually specified as min-max intervals
of values, with one or more punctual exact solutions lying
somewhere in between. Therefore, to treat the interface
timing verification problem as a CSP, a solution method
based on relational interval arithmetic (RIA) seems natural.

RIA is implemented in CLP (BNR) Prolog [1] in such a
way that the natural unification mechanism of Prolog is
supplemented with a consistency technique based on the
propagation of the lower and the upper bounds of interval-
valued variables. For details on the symbolic aspect of
interval propagation, the reader is referred to [8].

The interval values of variables returned by CLP (BNR)
Prolog are sometimes larger than the true intervals [8]. The
space they define can be wider than the exact solution
space to the problem. A solution may be returned when, in
fact, the exact solution may be the empty set and the sys-
tem is inconsistent. Only failure to return a satisfying solu-
tion set (i.e., one or more interval-valued variables are
equal to the empty interval) can be accepted as a definite
exact answer: the constraint system is inconsistent.

Fortunately, this does not constitute an insurmountable
difficulty. Certain classes of problems can be shown to pro-
duce only exact solutions. Other classes of problems can
still be analyzed by reasoning on the complement of the

solution space and through case analysis. For instance, the
larger intervals that might result from mixing linear, min
and max binary constraints can be avoided by decompos-
ing the set of non-linear constraints into sub-cases that
have exact solutions (e.g., a min constraint can be split by
imposing for each possible sub-case a specific minimal
value). Furthermore, the introduction of delay correlation
in timing specifications yields ternary constraints that can
be solved by enumerating sub-intervals of variables.

In particular, Girodias et al [8] showed that the systems
of linear, max and min constraints that are typical of timing
verification, could be solved exactly with CLP (BNR) Pro-
log.

4 Interface timing verification with CLP
(BNR) Prolog

Analyzing a problem in CLP (BNR) Prolog is done by
constructing a program, a program being a sequence of
logic propositions (see [6] about the construction of Prolog
programs.) If the problem admits one or more solutions,
submitting the program to the resolution engine will pro-
duce them; if not, the program will be rejected.

4.1 From timing diagrams to CSPs

The program to be constructed in CLP (BNR) Prolog is
the expression of a CSP. It is interesting to note that the
notions of consistency are similar in the contexts of inter-
face timing verification and CLP. In fact, formulating tim-
ing diagram specifications to analyze the issues of
consistency, satisfiability, causality and compatibility as
CSPs is a simple process. Given a specificationTD = (E,
CTD, A, R), we produce a CSPP = (I, D, CP) where

• ei ∈ E ⇔ ti ∈ I, ti is the occurrence time of an event
i,

• CP ⊆ FC(CTD) ∪ FA(A) ∪ FR(R), where Fx are func-
tions that transform the original sets of timing rela-
tions to produce new sets.

Depending on the problem to be solved and how the set
of constraintsCP is constructed from the set of timing rela-
tions, we then verify thatP ∅ or P ∅. For example,
a specificationTD = (E, CTD, A, R) is consistent ifP = (I,
D, CP) ∅, whereCP = CTD ∪ A ∪ R.

Given¬q, the complement of a constraintq5, then satis-
fiability in a compositionTD = (E, CTD, A, R) can be
checked by constructing distinct CSPsPi = (I, D, CP)
whereCP = CTD ∪ {¬qi}, qi ∈ A ∪ R, such that∀ Pi,
Pi ∅.

Causality of a specification can also be ascertained by

5. To be correct, two constraints usually result from the con-
struction of the complement.

constructing a series of CSPs that should prove inconsis-
tent. For instance, to verify the second condition of causal-
ity (Def. 5), the specification is partitioned in blocksBi
ordered according to a topological order. If the eventsa
and b are triggers of a blockBi such that the local con-
straints ofBi (constraints defined over the events assigned
to the block) implya - b < x, andPj is the CSP that models
the set of blocks {Bj}, 0 < j < i, and includes the constraint
a - b ≥ x, then Pj ∅. In other words, the separation
betweena andb in Bi is tighter than the separation imposed
by earlier blocks. The first condition can be verified in a
similar manner.

The reader is referred to [9] for a formal expression of
the notions of satisfiability, causality and compatibility in
terms of CSPs.

Extending CSP formulations to include delay correlation
is simple. The set of variables and the associated domains
are expanded to include the extra variables required to
specify delay correlation. The constraints relating these
new variables are added to the set of constraints.

Note, however, that the above results address satisfiabil-
ity (in the general sense), a decision problem, while one
may also be interested in finding optimal solutions: the
maximal separation between pairs of events under
restricted classes of constraints. Using an appropriate for-
mulation in CLP (BNR) Prolog will implicitly produce this
information.

Specifically, since the event occurrence times are con-
strained only relative to each other and no absolute time
reference is given, it is necessary to designate one event as
the reference for all other events, and set its occurrence
time to the value 0. All other event occurrence times are
originally considered to lie in the interval [-∞, ∞]. It fol-
lows that the event occurrence time intervals computed by
the CLP (BNR) Prolog resolution mechanism are in fact
the timing separations between the reference event and the
other events. If there aren events and eventk is the refer-
ence point, we haveTi = [-dki, dik], whereTi is a variable
representing the domain of the occurrence timeti of event
i, 1 ≤ i ≤ n. By solving the constraint system forn different
reference points, all timing separations can be found.

The next section illustrates our approach on a simple
example.

4.2 Example

Consider the tim-
ing diagram specifi-
cation of Fig. 3. This
latest timing relation
could be expressed in
CLP (BNR) Prolog syntax by the following program

p(Ta, Tb, Tc):-

a

b

c

[1, 10]

[1, 20]

Figure 3 Specification with a
latest timing relation.

Dac: real(1, 10),
Dbc: real(1, 20),
{ Tc == max(Ta + Dac, Tb + Dbc) }.

whereTa, Tb andTc are interval-valued variables repre-
senting the domains of the occurrence times of eventsa, b
andc, andDac andDbc are variables constrained by the
intervals [1, 10] and [1, 20], respectively. Calling the pro-
gram p() with either of the three parameters (i.e., the
event occurrence times) set to the value 0 constitutes a test
for consistency and will report a subset of all the maximum
achievable separations from the reference event [8].

Let now the delaysDac, Dbc be correlated by a factorγ.
Based on (5) in Section 2.3, a simple modification of the
initial model is required:

p(Ta, Tb, Tc, Gamma, P):-
% original formulation
Dac: real(1, 10),
Dbc: real(1, 20),
{ Tc == max(Ta + Dac, Tb + Dbc) },
% new information
Epsilon is (1.0 - Gamma),
P: real(0.0, Gamma),
Xac: real(0.0, Epsilon),
Xbc: real(0.0, Epsilon),
{ Dac == 1 + (9 * (P + Xac)) },
{ Dbc == 1 + (19 * (P + Xbc)) }.

Two new parameters were added to the program. The
first, Gamma, allows to experiment with various degrees of
correlation. The second one,P, is used in queries to elimi-
nate possible false negatives. For example, the consistency
of the specification could be checked for a correlation fac-
tor of 75%:

?-p(Ta, Tb, Tc, 0.75, P),
{ Ta == 0 },
solve(P).

With the introduction of linear constraints with three
variables (instead of two) due to correlation and the max
constraint, the CSPs produced as solutions by CLP (BNR)
Prolog are no longer globally consistent. An enumeration
of sub-intervals is required (functionsolve()). However,
the impact on efficiency of this enumeration is minimal in
practice. Since the enumeration takes place only (if ever—
inconsistencies could be detected beforehand) after the net-
work of constraints has been loaded and evaluated, its
scope is limited both in the number of steps that must be
taken by the resolution engine, and in the length of these
steps: enumerating one domain may render the enumera-
tion of other domains unnecessary; and, contrary to a sys-
tematic initial enumeration requested by the original
definition of the min constraint, the network of constraints
is built only once in this case.

We stress again that while the model presented here only
allows for one set of delays to be correlated, extending it to

multiple sets and hierarchical correlation relations is triv-
ial.

5 Experimental results

We programmed a prototype in CLP (BNR) Prolog that
accepts two specifications as input and outputs results
regarding the issues of consistency, causality, satisfiability
and compatibility. Recall Figures 1 and 2. They illustrate
the timing diagram specifications of a memory device and
a memory controller to be interconnected. Assume that the
delays associated with the earliest and latest timing rela-
tions are correlated in each of the devices. Tables 2 and 3
summarize their verification with CLP (BNR) Prolog. Note
that different degrees of correlation allow certain violations
of timing relations to be ruled out. Table 4 reports execu-
tion statistics.

Other results (without delay correlation) regarding the

Mem. device Mem. controller

Consistency ✓ ✓

Causality ✓ ✓

Compatibility possible incompatibility (see Table 3)

✓ denotes that the test is successful.

Table 2: Results of the verification

Timing delay

Delay Correlation Factor

0% 50% 75%

tAH ✘✘✘ ✘✘✘ ✓

tDH ✘✘✘ ✘✘✘ ✓

tWP2 ✘✘✘ ✓ ✓

✘✘✘ denotes a timing violation;
✓ denotes that the timing constraint is satisfied.

Table 3: Some possible violations reported by the
satisfiability check.

CPU times †

dev 15 22 5.16 0.51 N/A N/A

ctrl 22 17 0.55 0.45 N/A N/A

dev/ctrl 22 39 N/A 1.03 1.12/
3,07‡

5.98/
16.56‡

†In seconds on a on a Sparcstation 10 with 128 MB.
‡Average/total for distinct correlation factors (0%, 50%, 75%).

Table 4: Performance measures

N
b.

 e
ve

nt
s

N
b.

 c
on

s.

C
au

s.

C
on

s.

S
at

is
.

C
om

p.

event separation calculation on the example from [15] can
be found in [8].

6 Conclusions

We have shown in this paper how CLP (BNR) Prolog,
and CLP in general, can be used for efficient interface tim-
ing verification. In terms of computational complexity,
measures can be reported for restricted cases of the prob-
lem [8]. However, in the general case, the exact complexity
is difficult to evaluate due to the event-driven nature of the
evaluation mechanism and because sub-interval enumera-
tions may be required. Performance measures are not
reported but our experience shows, however, that the exe-
cution times for practical interfacing problems are never an
issue. The examples we presented are typical: interface
timing specifications have rarely more than 50 events and
at most 100 constraints.

The lack of benchmarks is unfortunate. Yet, the fact that
there exists no other “complete” method to establish a
comparison is an interesting result in itself. In particular,
CLP (BNR) Prolog allows delay correlation to be consid-
ered, an issue that is ignored by most other verification
techniques.

Acknowledgments: the research was supported by
NSERC Canada grants and by Nortel Technologies Ltd.

7 References

[1] F. Benhamou and W. J. Older. Applying Interval
Arithmetic to Real, Integer and Boolean
Constraints. Journal of Logic Programming. To
appear in 1996.

[2] B. Berkane, S. Gandrabur, and E. Cerny. Timing
Diagrams: Semantics and Timing Analysis. In Proc.
of the Third Asia Pacific Conf. on Hardware
Description Languages, APCHDL’96. pp. 112-119,
Bangladore, India, January 1996.

[3] U. Bieker and P. Marwedel. Retargetable Self-Test
Program Generation Using Constraint Logic
Programming. In Proc. of the 32nd Design
Automation Conference, DAC’95. San Francisco,
CA., June 1995.

[4] J. A. Brzozowski, T. Gahlinger and F. Mavaddat.
Consistency and Satisfiability of Waveform Timing
Specifications. In Networks, 21:91-107. 1991.

[5] E. Cerny and K. Khordoc. Interface Specifications
with Conjunctive Timing Constraints: Realizability
and Compatibily. In Proc. of the 2nd AMAST
Workshop on Real-Time Systems. Bordeaux, June
1995. Full length paper accepted subject to
revision to ACM TODAES,

[6] A. Colmerauer. An Introduction to Prolog III. In
Communications of the ACM, 33(7):69-90. July
1990.

[7] R. W. Floyd. Algorithm 97: Shortest Path, CACM
5(6):345. June 1962.

[8] P. Girodias, E. Cerny and W.J. Older. Solving
Linear, Min and Max Constraint Systems Using
CLP based on Relational Interval Arithmetic. In
Theoritical Computer Science, CP’95 Special Issue,
Vol. 173. To appear in February 1997.

[9] P. Girodias, E. Cerny, Interface Timing Verification
with Delay Correlation Using Constraint Logic
Programing. Report, Université de Montréal,
September 1996.

[10] J. Jaffar and M. Maher. Constraint Logic
Programming: A Survey. Journal of Logic
Programming, 19/20:503-581. 1994.

[11] H. F. Jyu, S. Devadas, and K.W. Keutzer. Statistical
Timing Analysis of Combinational Logic Circuits,
IEEE Transactions On Very Large Scale Integration
(VLSI) Systems, 1(2):126-137. June 1993.

[12] K. Khordoc, M. Dufresne, E. Cerny, P.-A. Babkine
and A. Silburt, Integrating Behaviour and Timing
in Executable Specifications. Proc. of the IFIP Conf.
on HDL and their Applications, pp. 385-402. 1993.

[13] O. Lhomme. Consistency techniques for numeric
CSPs, In Proc. of the 13th Int. Joint Conf. on
Artificial Intelligence. 1993.

[14] A. Mackworth. Consistency in Networks of
Relations. Artificial Intelligence, 8(1):99-118. 1977.

[15] K. McMillan and D. Dill. Algorithms for Interface
Timing Verification. In Proc. of the IEEE Int. Conf.
on Computer Design, ICCD’92, pp. 48-51. 1992.

[16] U. Montanari. Networks of Constraints:
Fundamental Properties and Applications to
Picture Processing. Information Science, 7(2):95-
132. 1974.

[17] P. Rony. Interfacing Fundamentals: Timing
Diagram Conventions. Computer Design, pp. 152-
153. January 1980.

[18] P. Vanbekbergen, G. Goossens, and H. De Man.
Specification and Analysis of Timing Constraints in
Signa Transitions Graphs. In Proc. of the European
Conf. on Design Automation, EDAC’92, pp. 302-306,
Brussels, Belgium. 1992.

[19] P. Van Hentenryck. Constraint Satisfaction in
Logic Programming. Logic Programming Series.
MIT Press, Cambridge, MA, 1989.

[20] E. A. Walkup, and G. Borriello. Interface Timing
Verification with Applications to Synthesis, Proc. of
the Design Automation Conf.. 1994.

[21] S. Warshall. A Theorem on Boolean Matrices,
JACM 9:11-12. 1962.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

