
Disjunctive Partitioning and Partial Iterative Squaring:
an e�ective approach for symbolic traversal of large circuits

Gianpiero Cabodi y Paolo Camurati # Luciano Lavagno z Stefano Quer y

y Politecnico di Torino

Dip. di Automatica e Informatica

Turin, ITALY

Universit�a di Udine

Dip. di Matematica e Informatica

Udine, ITALY

z Politecnico di Torino

Dip. di Elettronica

Turin, ITALY

Abstract

Extending the applicability of reachability analysis to large and

real circuits is a key issue. In fact they are still limited for

the following reasons: peak BDD size during image computa-

tion, BDD explosion for representing state sets and very high

sequential depth.

Following the promising trend of partitioning and problem de-

composition, we present a new approach based on a disjunc-

tive partitioned transition relation and on an improved itera-

tive squaring. In this approach a Finite State Machine is de-

composed and traversed one \functioning{mode" at a time by

means of the \disjunctive" partitioned approach.

The overall algorithm aims at lowering the intermediate peak

BDD size pushing further reachability analysis. Experiments

on a few industrial circuits containing counters and on some

large benchmarks show the feasibility of the approach.

1 Introduction

State-of-the-art approaches for state space exploration of

Finite State Machines (FSMs) exploit symbolic techniques

based on Binary Decision Diagrams (BDDs). But even

symbolic techniques reach their limits on large practical

examples. As a consequence extending the applicability of

the reachability analysis to new �elds is a key issue.

Ravi et. al. [1] show that, in general, intermediate steps

of traversal and intermediate representation are more ex-

pensive that �nal ones. This is due to the fact that even

breadth{�rst traversal reaches \relatively" few states at

each iteration; moreover these states are \sparse", in the

sense that their code di�er for too many bits, and have

also \sparse" BDD representation. This generally implies

the following limitations on symbolic traversals:

� Large peak BDD size during inner traversal steps.

� BDD explosion for representing state sets.

� High sequential depth, i.e., the state transition graph

requires too many traversal iterations.

\Permission to make digital/hard copy of all or part of this work

for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advan-
tage, the copy{right notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior speci�c permission and/or a fee."
DAC 97, Anaheim, California
(c) 1997 ACM 0{89791{920{3/97/06 ..$3.50

To solve the above problems we propose a method based

on the following contributions:

� An approach to extend the application of disjunctive

partitioned transition relations from asynchronous

circuits to synchronous ones modeled as FSMs.

� A partial and incremental iterative squaring to deal

with subsets of the state transition graph character-

ized by long (counter{like) chains of states.

� The application of the partitioning strategy presented

in [2] to solve complex operations required by itera-

tive squaring.

The disjunctive partitioned transition relation [3], allows

early smoothing and a mixed used of breadth{�rst and

depth{�rst traversal. This constitutes a good way to deal

with di�erent ordering requirements, by visiting a state

transition graph in an \incremental" way, giving prefer-

ence to those subgraphs whose states are \easy" to repre-

sent and traverse. We found experimentally that \modes

of operation" of several circuits are \easy" to traverse one

at a time. In the current implementation the state graph is

partitioned into \modes of operation" manually using in-

formation coming from the synthesis tool or the designer's

knowledge. The goal is to isolate high-level components

such as counters, registers, comparators, and so on. Such

subgraphs usually have a compact BDD representation and

include dense subgraphs or long sequences of states.

Another potential problem, that can be made even worse

by partitioning, is the existence of very long state sequences.

We use, whenever necessary for each partition, an im-

proved version of iterative squaring [3] to deal with it. The

improvement is in computing it incrementally (see Sec-

tion 4) and partially (i.e., inside one partition). It allows

to substitute a set of states with a kind of \macro{state"

representing them in a compact way. Like in [1] the dis-

tance of a state from the reset states can be overestimated.

For example, let us consider an n{bit up{counter with

a proper order of the variables to create BDDs (as the

one with the MSB at the top of the BDD and the LSB

at the bottom). If we analyze the BDD representing the

set of reached states during the counting phase the newly

reached states are incrementally represented in neighbor-

ing branches of the BDD (as they are the states represented

as 00 : : : 00, 00 : : : 01, 00 : : : 10, etc.). The BDD then �lls{

in \progressively" and its maximum dimension is linear in

the number of bits of the counter. On the other hand, if

we change the variable order or we visit states in a di�er-

ent order, the BDD dimension can grow much more also

if the �nal dimension will be the same. Finding the ideal

variable ordering can become impossible, if we consider

complex or di�erent requirements (such as representing at

the same time di�erent sub-circuits, or sets of states and

the transition relation) and anyway it cannot solve the

problem completely. In fact, the overall strategy decreases

complexity beyond the limit achievable just using di�erent

ordering.

This idea is related to the work of Ravi et. al. [1]. They

introduced the concept of dense BDD representing a large

number of states with a small number of nodes. They tra-

versed a circuit with a mixed breadth{�rst and depth{�rst

traversal aimed at increasing density extracting dense sub-

set of the obtained BDDs. Our purpose is to obtain dense

BDD by partitioning the graph and \directly" working on

its representation with the transition relation representa-

tion. The subject is also related with the work of Cabodi

et. al. [2] where the authors partitioned BDDs represent-

ing set of states. The goal there was to achieve a split

BDD representation as balanced as possible and with a

minimum overhead in term of nodes. The heuristic was

based on choosing single splitting variables and using a

cofactoring strategy. In this case, we partition the state

transition using a strategy based on the topology of the

state transition graph of the FSM, and not on the BDD

representation of the reachable state set.

Experiments on complex industrials circuits containing coun-

ters and on large ISCAS'89 and ISCAS'89{addendum show

the feasibility of the approach.

The remainder of the paper is organized as follows. Sec-

tion 2 summarizes some useful concepts. Section 3 de-

scribes the application of the disjunctive partitioned ap-

proach. Section 4 describes our ad-hoc enhanced iterative

squaring. Section 5 shows experimental results. Section 6

closes the paper with a brief summary and reports on fu-

ture work.

2 Preliminaries

2.1 The Model

A Finite State Machine is an abstract model describing the

behavior of a sequential circuit. A completely speci�ed

FSM M is a 6{tuple M = (I;O; S; �; �; S0) where I is

the input alphabet, O is the output alphabet, S is the

state space, � : S � I ! S is the next state function,

� : S � I ! O is the output function and S0 � S is the

initial state set.

In the sequel we will use s = (s1; s2; : : : ; sn), x = (x1; x2;

: : : ; xm) and y = (y1; y2; : : : ; yn) to indicate respectively

the vector of present state, primary input and next state

variables.

BDDs will be used to represent functions, relations and

sets.

2.2 The Transition Relation and Symbolic Traver-

sals

The transition relation TR associated to a FSM M is:

TR(s; x; y) =

nY

i=1

(yi � �i(s; x)) =

nY

i=1

tri(s; x; yi)

Very often the existence of an input leading from a state to

the next is important, rather than its value. Then primary

inputs may be abstracted from TR, de�ning a new relation

T
T(s; y) = 9xTR(s; x;y)

usually called non{deterministic transition relation.

The image of a set of states described by its characteristic

function C(s) according to the transition relation is de�ned

as:

Img(�(s; x);C(s)) = 9s;x (TR(s; x; y) �C(s)) (1)

The set of forward reachable state set R can be computed

with the following �xed point computation:

Ri(y) = Ri�1(y) + Img(�;Ri�1)(y)

= Ri�1(y) + 9s;x (TR(s; x; y) �Ri�1(s))

R0 is set to the initial set of states and Ri is the reachable

state set at step i. In the sequel we will call R� the values

of Ri at the �xed point.

The number of iterations of the recurrence equation gives

the sequential depth of the machine, i.e., the longest of the

shortest paths that connect each state to any of the initial

states.

2.3 Iterative Squaring

Although standard symbolic traversals are usually quite

e�cient, they become impractical for very high sequential

depth. In these cases a systematic method, called iterative

squaring transformation [3], can result in an exponential

reduction in the number of iterations necessary to reach

�xed points.

TR(s; x;y) describes triples of the form (ŝ; x̂; ŷ), where

state ŷ is reached from state ŝ by applying input x̂, whereas

T describes pairs of adjacent states, i.e., states that are

connected by at least one edge in the transition graph of

M . The transitive closure T� of T describes the pairs of

states that are connected by at least one path in the state

graph of M . T� is found by computing the least �xed point

of the following recurrence equationsy :

T
2
i+1

(s; y) = T(s; y) + 9z (T
2
i

(s; z) �T
2
i

(z;y)) (2)

setting T1(s; y) to T(s; y). The number of iterations re-

quired to compute T� is logarithmic in the maximum dis-

tance between two states in the state transition graph (i.e.,

the diameter of the graph).

Finding the set of states reachable from S0 then amounts

to computing:

R
�(y) = S0(y) + 9s (T

�(s; y) � S0(s))

y
The notation is not standard, but we introduced it to allow the

composition of terms not power of two.

2.4 Partitioning

It has been shown experimentally that partitioning BDDs

representing set of states can be of great bene�ts in reach-

ability analysis. In [2] the authors show that calling v the

split variable and partitioning the state set in the following

way:

Img(�; C(s)) = Img(�; (v � Cv(s) + v �Cv(s)))

= Img(�v; v �Cv(s)) + Img(�v; v �Cv(s))

reduces the complexity of the original image computation

and results in the e�cient use of the secondary memory

to store unused BDDs. The pseudo{code is represented in

�gure 1 and it is derived from the standard traversal.

Rp, Fromp and Nextp represent sets in monolithic or parti-

tioned form. They are initially set to S0. At each step, for

each subset from of Fromp the image computation proce-

dure is called. Images are collected in Top. This allows the

image computation procedure to work on just a subset at

a time, decreasing peak BDD size.

Partitioned Traversal (�, S0, th)
f

Rp = Fromp = Nextp = S0;
while (Nextp 6= ;)

f

Top = ;;

foreach from 2 Fromp

Top = (Top, Img (�, from));

Nextp = Fromp = Set Di� (Top, Rp);
Rp = Set Union (Nextp, Rp);

Fromp = Re Partition (Fromp, th);
Rp = Re Partition (Rp, th);

g

return (Rp);

g

Figure 1: Partitioned Forward Traversal.

After image computation, functions Set Di�, Set Union,

and Re Partition are called. These functions are rela-

tively simple and perform the computation of sets Nextp,

Fromp, and Rp for the next iteration. In particular, func-

tion Re Partition carries out set union and set splitting,

according to the size of their BDD representation and to

parameter th. The th parameter controls the complex-

ity of the image computation procedure and the size and

number of the state set partitions. If necessary sets can

be decomposed also inside the function Img, also if the

pseudo{code does not exemplify this feature.

3 Partitioning the Transition Relation

As the monolithic representation for TR can di�cult or

even impossible to obtain, TR is usually represented as a

product of terms. In this case the image computation is

generally expensive because existential quanti�cation and

logical conjunction cannot distribute.

Analyzing the sets of support of the functions involved in

the conjunction, Burch et. al. [4] determine whether ex-

istential quanti�cation can be moved inside the conjunc-

tion (early quanti�cation). This results in a simpli�cation

as the number of variables in the conjuncted terms is re-

duced. Several heuristics have been presented to sort the

functions. Further improvements are obtained through

clustering and tree{like processing [5], that may be used

to decrease the complexity of the problem by performing

some products just once before image computations.

This implies to partition the transition relation in a set of

terms that are conjuncted together.

Burch et. al. [3] also propose a di�erent approach in

which the transition relation is partitioned in a set of terms

that are left disjoint. They called this approach disjunc-

tive partitioned transition relation. They propose the con-

junctive transition relation to model synchronous circuits,

while they adopt the disjunctive transition relation to deal

with asynchronous circuits, because their behavior can be

described as a conjunction of sums which is transformed

(through the distributive law) in sum of conjunctions. Call-

ing TRi the disjunctive partitions of TR, and following

Equation (1), we can write:

To(y) = 9s;x((
Pm

i=1
TRi(s;x; y)) � From(s))

In this case the existential quanti�er can be pulled inside

disjunction and applied to the di�erent terms.

To(y) =
Pm

i=1
(9s;x(TRi(s; x; y) � From(s)))

Starting from this last idea, we extended its application to

synchronous circuits, modeled as FSMs. Conjunctive par-

titioned transition relations are (either partially or fully)

transformed to disjunctive partitioned ones by means of

proper decompositions, based on automatic splitting vari-

able selection [2] or, more generally, on a constraining func-

tion possibly related to knowledge of the circuit's behavior:

TR(s; x; y) = TR(s; x;y) � p(s; x;y)+

TR(s; x;y) � p(s; x;y)

Splitting can be recursive, leading to the following form:

TR(s; x; y) =
Pm

k=1
TR(s; x; y) � pk(s; x; y)

=
Pm

k=1
(
Qn

i=1
tri(s; x; y) � pk(s; x; y))

=
Pm

k=1
TRpk(s; x; y)

with
Pm

k=1
pk = 1 and where we call TRpk the logical

product TR�pk.

The inner conjunctions can be kept in the partitioned form,

or (better) can be performed just once, leading to a dis-

junctive partitioned transition relation. Primary input

variables can be existentially quanti�ed in this phase, re-

sulting in the following expression:

T(s; y) = 9xTR(s; x; y)

= 9x(
Pm

k=1
TRpk(s; x;y))

=
Pm

k=1
Tpk(s; y)

From a behavioral point of view, each term in a conjunc-

tive partitioned transition relation corresponds to a par-

ticular sub-circuit, while terms of a disjunctive partitioned

transition relation represent subsets of the state transition

graph. In the former case, dealing with only a sub-circuit

at a time causes approximated (overestimated) analysis

of the state space [6]. In the latter case, each subgraph

can be used to represent the exact behavior of the whole

FSM under particular constraining conditions. Of course

a good choice for constraining functions is a key issue, to

discriminate among di�erent behaviors of the FSM (and

of its state graph). A heuristic technique, in the case

of circuits including counters, is discriminating between

counter idle and active, or counter active only on a sub-

set of its bits. In this way partitioning the graph possibly

isolates subgraphs with very high sequential depth. Stan-

dard breadth{�rst traversal techniques are usually ine�-

cient with such graphs, and we can resort in this case to

partial iterative squaring as a complementary technique to

compress a portion of the state graph.

As an example, let us suppose to have a circuit including a

counter and other devices, such that for each state of the

counter the other devices have a very complex state graph.

The overall circuit can be di�cult to traverse with stan-

dard techniques, but we can partition it in the following

way: one mode in which the counter is active and every

other device is idle and a second mode in which the counter

is idle and the other devices are active. The �rst mode can

be easily traversed with iterative squaring and knowing the

corresponding subset of the reachable state space can be of

great help in computing the complete reachable states. In

fact, this knowledge allows us to analyze simultaneously

all the sub-sets of states that can be reached in parallel

with the counter states. This again mixes breadth{�rst

and depth{�rst search, according to the structure of the

state transition graph. Moreover, the behavior of the cir-

cuit somewhat resembles that of asynchronous circuits (for

which the disjunction method was developed), in that the

various parts are relatively independent.

4 Improving Iterative Squaring

A few drawbacks drastically limit the application of \stan-

dard" iterative squaring:

� Computing TR and T is very often quite expensive

or even impossible.

� The computation of T� possibly blows up in few it-

erations due to the growing size of the BDDs.

� TR, T and T� also consider paths originating at

states that cannot be reached from the initial states.

Hence squaring may be ine�cient if a large fraction

of the state graph is unreachable or if the sequential

depth of the FSM is low.

For the above reasons iterative squaring is e�ective on

\pure" counters, while this is not the case with other cir-

cuits. On the other hand, counters represent a di�cult

application �eld for standard traversal techniques, due to

their high sequential depth. Moreover our partition strat-

egy applied to the state transition graph identi�es sub-

graphs with very high depth. Taking into account these

considerations, we resort to iterative squaring to solve reach-

ability analysis problems whenever necessary and we mod-

ify it in the following ways.

We apply iterative squaring inside some partitions substi-

tuting Tpk to T and T�pk to T� in Equation (2).

This kind of computation, that we call incremental squar-

ing, decreases complexity as it proceed incrementally. Gen-

erally the squaring can be computed incrementally and se-

quentially on di�erent partitions.

As each step of the squaring can be really complex we ap-

ply to each complex step the partitioning strategy analyzed

in [2]. This approach is well suited in the squaring compu-

tation as at each step two T
2
i

relations are composed (see

Equation (2)); this is done by conjunction{quanti�cation

operations, that can fruitfully exploit partitioning, as de-

scribed in [2]. Moreover as the two terms to compose are

equal the same partitioning strategy can be used. We call

this kind of computation partitioned squaring.

Finally, experimental results show that (like usual breadth{

�rst traversal) also iterative squaring is prone to higher

complexity during intermediate steps. Then we often avoid

reaching the transitive closure T�pk and we stop squaring at

an intermediate iteration, returning a proper subset Tk
pk

of

T�pk . This has the advantage of reducing the complexity of

squaring while lowering traversal iterations to an accept-

able amount. We call partial computation this approach.

Traversing a partition of a FSM is thus equivalent to com-

puting the least �xed point of the following recurrence

equation:

Ri(y) = Ri�k(y) + 9s;x (Tk
pk
(s; x; y) �Ri�k(y))

where Ri is de�ned (as in Section 2.2) as the states reach-

able from the initial state set in i steps on the original

state graph. When transitive closure is used (Tk
pk

= T
�

pk
)

a single traversal step is enough to compute all reachable

states.

5 Experimental Results

Our main novelty is to propose a technique based on a

disjunctive partitioned transition relation and on iterative

squaring. This can deal with some large circuits on which

other tools and techniques fail.

We implemented a traversal program built on top of the

Colorado University Decision Diagram (CUDD) package.

Our experiments ran on a 200 MHz DEC Alpha with a

256 Mbyte main memory, by imposing a working memory

limit of 228 Mbyte. We experimented on a set of industrial

circuits and a couple of large ISCAS'89 and ISCAS'89{

addendum benchmarks. These benchmarks will be ana-

lyzed in the next subsection.

5.1 Benchmarks

The industrial counters we have used for the experiments

reported below originate from the output compare func-

tions of the timing unit of the Motorola 68HC11 micro-

controller [7]. A full description of these timer can be

found in [8]. Brie
y, we have chosen to model and traverse

the following functions:

1. oc1 self a self-triggered �xed period counter.

2. oc1 �x a �xed period counter.

3. oc1 prog abs a programmable absolute counter.

4. oc1 prog rel a programmable relative counter.

Circuit jTj jT�j # Reached States # P jTijpeak # Iterations Memory Time

oc1 self 5240 12962 1.3750�1010 1 33355 21 8.3 13474

1 31336 21+2 7.8 11266

oc1 �x 3817 17552 2.190�1011 1 ovf ovf ovf ovf

8 71695 21 13.5 27.5
h

2 35085 21+8+4 7.8 16291

oc1 prog abs 1999 1691 2.190�1011 1 10587 22 5.4 337

2 7940 22+4 4.5 68

oc1 prog rel 2030 1611 2.190�1011 1 9871 22 4.8 258

1 8370 22+4 4.6 62

Table 1: Improved Iterative Squaring results on industrial circuits. ovf means over
ow on time (> 36h).

These counters are representative of the functions available

also in other similar devices, such as the Intel 8254.

Finally we will experiment on circuit s1423 of the ISCAS'89

suite and on s1512 on the ISCAS'89{addendum. The �rst

one despite its relatively small size, 74 memory elements, is

very di�cult to handle during reachability analysis, whereas

the second one has 57 memory elements and a sequential

depth equal to 1024 [2].

5.2 Experimental evidence

Table 1 reports experiments on industrial benchmarks. We

compare in this table the standard iterative squaring with

the partitioned one and the incremental{partitioned one.

For each circuit various squaring experiments are reported.

Circuit indicates the name of the circuit. Columns jTj, jT�j

and jTijpeak indicate the number of nodes of the BDDs

representing T, T� and the largest BDD representing Ti.

Reached States is the number of states of the reachable

state set. #P indicates the maximum number of partitions

used to deal with the experiment, following [2]. # Iterations

indicates the number of iterations performed in each of the

iterative squaring phases (to compute the transitive clo-

sure T� or one of its subsets). This column indicates just

a single value if the standard approach or the partitioned{

standard one is applied and indicates more than one value

if the incremental or incremental{partitioned approach is

applied. Each number indicates the subsequent number of

steps of one iterative squaring phase. Memory is the max-

imum working memory size used (in Mbytes). Time indi-

cates the CPU time (in seconds, unless otherwise stated).

Tuning the package is important. For example, in the case

of circuit oc1 �x the transitive closure T� is not directly

computable (�rst row). Anyway we succeeded in squaring

it, using the partitioned approach (second row), by taking

8 partitions of the squaring but this still required more

than 27h. Using the incremental approach, with three

steps of iterative squaring with depth 21, 8 and 4, together

with the partitioned one with 2 partitions, reduced the

peak of the BDDs and the CPU time to 16291 seconds.

The partial approach (stopping squaring before the tran-

sitive closure) reduces the CPU time even more in some

experiments; for example circuit oc1 �x can be traversed

in 3291 seconds if we do just 13 steps of squaring and re-

sort to 256 steps of traversal. Analogously, the time for

circuit oc1 self can be reduced to 7890 seconds.

Table 2 and 3 report experiment on a couple of large bench-

mark from ISCAS'89 and ISCAS'89{addendum suites.

Circuit s1512 is sequentially very deep (1024 levels) but

single image computations are not particularly expensive.

In [2] Cabodi et al. traversed the circuit for the �rst

time using approximately 41 Mbyte of main memory in

42 hours.

Table 2 reports experiments on iterative squaring, using

the monolithic and the partitioned relation, on this bench-

mark. N indicates that TN is computed and the number

of nodes of its BDD is reported in column jTN j. The par-

titioned approach is quite e�ective both in term of com-

plexity and of CPU time.

In Table 3, on the other hand, we compare the Standard

Approach and the Improved Approach, see [2], with the

approach we have just proposed, the Present Approach.

Level reports the depth of the graphs traversed and Disk

indicates the amount of secondary memory used.

On circuit s1512 with the present approach we could par-

tition the state transition graph by isolating a signi�cant

part that could be traversed in 262 levels but in only 86 sec-

onds. The reachable state set of this part has 4:1980 � 107

reachable states. Using this set as a new initial set for

traversal, we could traverse completely the circuit (up to

1:6574 � 1012 states) in less than 4 hours and with only

14:3 Mbytes of memory.

Again the �rst traversal allows us to compute a quite dense

subset of the reachable state set, represented with only 107

BDD nodes, by obtaining an improvement of one order of

magnitude on the CPU time.

N jTN j Standard Partitioned Approach

Approach

Time # P Memory Time

1 5060 12 1 2.1 12

2 12993 40 1 4.9 40

4 34701 ovf 3 5.7 48

8 137060 � 8 12.1 7048

16 383607 � 26 44.6 32
h

Table 2: Building the squaring on the ISCAS'89{

addendum s1512. ovf means over
ow on time (> 36h).

The complete traversal is then carried out in two steps:

Circuit Statistics Standard Approach Improved Approach Present Approach

s1512 # Level 1024 262+766

Reached States 1:6574 � 1012

Reached Nodes 1100 592

Memory (+Disk) 96 (+0) 41 (+2.8) 14.3 (+0)

Time 64h 42h 3.8h

s1423 # Level 12 14 � 4096

Reached States 2.3035�1010 1:7945 � 1011 3.0011�1014

Reached Nodes 1361263 13738871 4615383

Memory (+Disk) 116 (+0) 106 (+125.9) 89 (+0)

Time 5410 8.4h 3.6h

Table 3: Results on reachability analysis on ISCAS'89 s1423 and ISCAS'89{addendum s1512.

the �rst one equivalent to 262 steps of traversal and the

second one equivalent to 766 steps (see column # Level).

The main drawback of the actual implementation is that

these choices have to be done in a manual fashion.

s1423 is very di�cult to handle during reachability analy-

sis, as shown by the extensive experiments described in [1],

[2], [6]. Ravi et. al. [1] could reach, with a very long run

(> 22000 seconds) 1:67 � 1014 states, by computing dense

subsets of the reachable state space. On the other hand

Cabodi et al. [2] reached exactly level 14, with a reachable

set size of 1.7945�1011 and with 13738871 nodes of the BDD

representing it. In our current approach we use informa-

tion presented in [6] on approximate traversal to partition

the state transition graph. We could obtain a variable or-

dering that allows us to represent the transition relation

in a monolithic way with 48000 BDD nodes. The best re-

sult has been found using di�erent steps of traversal and

iterative squaring (with a maximum depth of 4096 steps).

Both manual and automatic partitioning have been used.

If we compare the density of the BDDs obtained, with the

improved approach one BDD node could represent 1:3 �104

states whereas now it can represent 6:5 � 107 states.

6 Conclusions

Symbolic FSM state space exploration techniques repre-

sent one of the major recent results of formal veri�cation.

One of their limitations is the inability to deal with very

complex and deep circuits. Iterative squaring on the other

hand is well suited to deal with \pure" counters with a

very high depth, and partitioning can reduce the overall

complexity of the standard algorithm.

We present a new approach based on a disjunctive parti-

tioned transition relation and on iterative squaring. The

disjunctive partitioned representation for the transition re-

lation allows us to represent and visit subsets of the state

transition graph that have a compact BDD representation.

These subsets, unfortunately, can have very long sequential

depth, thus requiring the application of iterative squaring

techniques.

The methodology is proved to be e�ective in traversing

counters, circuits containing counters and large circuits in

general and can also be used for veri�cation and synthesis

purposes [8].

Our current implementation relies on manual choices to

partition the circuits. Hence we need to investigate how to

use for that purpose information coming from the synthesis

tools, or, when such information is not available, how to

derive heuristic techniques to partition graphs.

References

[1] K. Ravi, F. Somenzi, \High-Density Reachability

Analysis," in Proc. IEEE/ACM ICCAD'95, pp. 154{

158, November 1995

[2] G. Cabodi, P. Camurati, S. Quer, \Improved Reach-

ability Analysis of Large Finite State Machine," in

Proc. IEEE/ACM ICCAD'96, pp. 354{360, Novem-

ber 1996

[3] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMil-

lan, D.L. Dill: \Symbolic Model Checking for Se-

quential Circuit Veri�cation," IEEE{Transaction on

CAD, pp. 401{424, Volume 13, Number 4, April 1994

[4] J.R. Burch, E.M. Clarke, D.E. Long: \Representing

Circuits More E�ciently in Symbolic Model Check-

ing," in Proc. ACM/IEEE DAC'91, pp. 403{407,

June 1991

[5] R. Hojati, S.C. Krishnan, R.K. Brayton, \Early

Quanti�cation and Partitioned Transition Relation,"

in Proc. IEEE ICCD'96, pp. 12{19, October 1996

[6] H. Cho, G.D. Hachtel, E. Macii, M. Poncino, K.

Ravi, F. Somenzi, \Approximate Finite State Ma-

chine Traversal: Extensions and New Results," in

Proc. IWLS'95, May 1995

[7] M68HC11 Reference Manual, Motorola inc., 1991

[8] G. Cabodi, P. Camurati, L. Lavagno, S. Quer,

\Synthesis and veri�cation of counters based on

symbolic techniques," in Proc. EDAA/IEEE/ACM

ED&TC'97, pp. 176{181, March 1997

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

