COSYN: Hardware-Software Co-Synthesis of Embedded Systems

Bharat P. Dave1, Ganesh Lakshminarayana, and Niraj K. Jha
Department of Electrical Engineering
Princeton University, Princeton, NJ 08544

Abstract: Hardware-software co-synthesis is the process of requires determination of the interconnection topology upfront, and
partitioning an embedded system specification into hardware and4) because of time complexity, it is suitable only for small task
software modules to meet performance, power and cost goals. Irgraphs. A configuration-level hardware-software partitioning
this paper, we present a co-synthesis algorithm which starts withalgorithm is presented in [5] based on an exhaustive enumeration
periodic task graphs with real-time constraints and produces a low-of all possible solutions, which is also impractical for large task
cost heterogeneous distributed embedded system architecturgraphs. There are two distinct approaches in the heuristic domain:
meeting the constraints. The algorithm has the following features:iterative and constructive. In [6,7], an iterative procedure is given.
1) it allows the use of multiple types of processing elements (PEs)It considers only one type of communication link and does not
and inter-PE communication links, where the links can take variousallow mapping of each successive instance of a periodic task to
forms (point-to-point, bus, local area network (LAN), etc.), 2) it different PEs. A constructive co-synthesis procedure for fault-
supports both concurrent and sequential modes of communicatiortolerant distributed embedded systems is proposed in [8]. However,
and computation, 3) it allows both preemptive and non-preemptiveit does not support communication topologies such as bus, LAN
scheduling, 4) it employs the concept of an association array toetc, and it uses a pessimistic performance estimation technique. It
tackle the problem of multi-rate systems (which are commonly is also not suitable for multi-rate embedded systengs,multi-
found in multimedia applications), 5) it uses a scheduler based onmedia systems. Also, power consumption has not been optimized
dynamic deadline-based priority levels for accurate performancein any of these co-synthesis techniques.
estimation of a co-synthesis solution, 6) it uses a new task We have developed a heuristic-based co-synthesis technique,
clustering technique which takes the dynamic nature of the critical called COSYN, which includes the allocation, scheduling and
path, and the existence of multiple critical paths in the task graphperformance estimation steps as well as power optimization
into account, and 7) if desired, it also optimizes the architecture forfeatures. Our technique is suited for both small- and large-scale
power consumption (we are not aware of any other co-synthesisreal-time embedded systems. Application of this technique to
algorithm that optimizes power). Application of the proposed several examples from the literature and real-life telecom transport
algorithm to examples from the literature and real-life telecom systems shows that it compares very favorably with known co-
transport systems shows its efficacy. synthesis algorithms in terms of CPU time, quality of solution and
1 Introduction number of features. In fact, for the task graphs from the literature
The architecture of embedded systems is generally definedfc’br "‘.’h'%h rl\]/IILP-based _optllmal r?sul_ts are knova/n, C(?SYN a@lscc)j
based on the experience of system architects, and at times, it i& talllne CEP?J same o|3t|ma results In marlwy ofr ers o mg\g_nltu e
either over-designed or fails to meet the requirements. Finding anrs]ma_er_ time. However, in genera | of course, being a
optimal hardware-software architecture entails selection of Neuristic, COSYN cannot guarantee optimality.
processors, application-specific integrated circuits (ASICs) and 2 Definitions and Basic Concepts
communication links such that the cost of the architecture is Embedded systemt®nsist of off-the-shelf general-purpose
minimum and all real-time constraints are met. Hardware-software Processors, ASICs and FPGAs and perform application-specific
co-synthesis involves various steps such as allocation, schedulin%“npt'ons- Thehardware architectureof an embedded system
and performance estimation. Both allocation and scheduling aredefines the type and interconnection of various hardware modules.
known to be NP-complete [1]. Therefore, optimal co-synthesis is Its software architecturedefines the allocation of sequence of
computationally a very hard problem. In addition, since many codes to specific general-purpose processors. The embedded
embedded systems are used in mobile applications, both peak angyStem functionality is usually described through a set of acyclic
average power consumption have become important concerns. ThéSk graphswhose nodes represent tasks. Tasks communicate data
peak power consumption determines the packaging cost and thd® €ach other, indicated by a directed edge between two
average power consumption determines the battery life. Thus, it isCommunicating tasks. We focus on periodic task graphs. Each such
also important to optimize power consumption during co-synthesis. 9raph has an earliest start tines{, period, and deadline, as shown
Previous researchers have mostly focused their interest onfOr @n example in Figure 1(a). Each task of a periodic task graph
hardware-software co-synthesis of one-CPU-one-ASIC inherits the graph’s period and can have a different deadline. The
architectures [2,3]. However, distributed embedded system deadline of the task graph is the maximum of all such deadlines.
architectures can employ multiple CPUs, ASICs, and field- We define execution_vectok)(= {djs, Gjp,.., Qjn} t0 be an
programmable gate arrays (FPGAs). Two distinct approaches havéxecution vectoof taSktiv.Where“_lu indicates the execution time of
been used for distributed system co-synthesis: optimal andl On PEj from the PE library. The preference_vectp) £ {yj,
heuristic. In the optimal domain, the two approaches are mixedYiz::;» Vin} IS @ preference vectoof taskt;, wherey; indicates
integer linear programming (MILP) and exhaustive. The MILP Preferential mapping fag. If v is O, it indicates thaf cannot be
solution [4] has the following limitations: 1) it is restricted to one €xecuted on PE and 1 if there are no constraints. This vector is

task graph, 2) it does not handle preemptive scheduling, 3) itUSeful in cases where preferred allocation is determined based on
- prior experience or task characteristics. Similarly, e¢xelusion
Acknowledgments: This work was supported in part by Bell Laboratories of Lucent yectorof taskti, exclusion Vectonio = {éil’ 6i21---: 6iq}: specifies
Technologies and in part by NSF under Grant No. MIP-9423574. H o _Aavi i =
1 also at Bell Laboratories, Lucent Technologies, 101 Crawfords Corner Road, mgleggteersCtel,:’;?lqatsell;ksaﬁgr: Choa\?é(lsti)Ogetgellos(‘;%rpeedl.ét)(;mldif?e}ent
Holmdel, NJ 07733. i Sy ; f
Permission to make digital/hard copy of all or part of this work for personal or Processors ang; = 0 |n.dlcates otherwise. A cluster of tasks is a
classroom use is granted without fee provided that copies are not made or distributedgroup of tasks aJII of which are allocated to the same PE. We define

for profit or commercial advantage, the copyright notice, the title of the publication preference vecto@() of clusterC: to be the bit-wise Iogical AND
and its date appear, and notice is given that copying is by permission of ACM, Inc. = !

To copy otherwise, to republish, to post on servers or to distribute to lists, requires of the preference vectors of all the tasks in the cluster. The

prior specific permission and /or a fee. preference vector of a cluster indicates which PEs the cluster
(06?59%77' AAgﬁAhgl_gé%al“_fg%%mw()G $3.50 cannot be allocated to. Similarly, we define exclusion_ve€fpr(

of clusterC; as the bit-wise logical OR of the exclusion vectors of

all the tasks in the cluster. A taskis said to be preference- vectors can be similarly defined for communication edges and
compatible with clustelC; if the bit-wise logical AND of the links. We also take into account the quiescent power of a PE, link,
preference vector of clust&; and task; does not result in the 0- ASIC and FPGA, which indicates its power consumption at times
vector, i.e. a vector with all elements 0. If all elements of a when no task (or communication) is being executed on it.

preference vector of cluste€; are 0O, it makes the cluster The memory architecture of embedded systems plays an
unallocatable to any PE. Tagks said to be exclusion-compatible important role from both performance and cost point of view.
with clusterC; if the jth entry of the exclusion vector Gfis 0. This Previous algorithms have generally ignored this aspect. The
indicates that tasks in clust@y can be co-allocated with tagk storage requirements are of different types: program storage, data
We define communication_vecteg] = (Bx1, Bio:--- Bkmt 1O storage and stack storage. For each task mapped to software,
be the communication vector of task graph edgewhere B memory needs are specified bymemory vectorThe memory
indicates the time it takes to communicate data egnon vector of task t; is defined as: memory_vectgy(=

communication linkl from the link library. The communication [program_storagg], data_storaggj, stack_storaggj]. For each
vector for each edge is computegriori for various types of links allocation, we check whether the available memory capacity has
as follows. Letp, be the number of bytes that need to be been exceeded.

communicated on edgg, and\; be the number of bytes per packet For each available processor, its cost, average/peak quiescent
that link | can support excluding the packet overhead. The power consumption, and associated peripheral attributes such as
access_time_vectoy(= [Q; Q. Qyl is an access time vector memory architecture, processor-link communication
for link I, whereQ,, represents the access time per packet with characteristics, and cache characteristics are assumed to be
number of ports orl. Supposel hass ports. Lett, be the specified. For each ASIC, its cost, package attributes such as
communication time of a packet arirhenf3 is given by available pins, available gates, and average and peak power
Bil = {T(p) = (AD] *T,} +Q dissipation per gate are assumed to be specified. Similarly, for each
Kl k | | Is FPGA, its cost, average/peak quiescent power, package attributes

At the beginning of co-synthesis, since the actual number of portssuch as available pins, and the maximum number of flip-flops or
on the links is not known we initially use an average number of combinational logic blocks (CLBs) or programmable functional
ports (specifieda priori) to determine the communication vector. units (PFUs) are assumed to be specified. Another important
(a, b): Execution/communication vecior attribute of an FPGA is the boot memory requirement which needs
{c, d}: Finish time estimate to be allocated for the FPGA. Generally, all flip-flops/CLBs/PFUs
are not usable due to routing restrictions. We take this into account
through a term called theffective usage factdEUF). We allow
the user to specify an EUF based on his/her own experience. The
user can also specify theffective pin usage factqiEPUF) to
indicate what percentage of package pins can be used for
allocation.

Each communication link is characterized by: 1) the number
of information bytes per packet, 2) link access time vector, 3)
communication time per packet, and 4) average/peak quiescent
power. The PE and link libraries together formr@ource library
3 The COSYN Algorithm

In this section, we first provide an overview of COSYN and
then follow up with details on each step. Figure 2 presents one
(30,50) possible co-synthesis process flow which we follow in our work. In
f {110,160} the parsing step, the task graphs, system/task constraints, and
o8 resource library are parsed and appropriate data structures are
created. The hyperperiod of the system is computed as the least
common multiple (LCM) of the periods of various task graphs. In
traditional real-time computing theory, period is the period of
task graph then [hyperperioa period] copies are obtained for it
[9]. However, this is impractical from both co-synthesis CPU time
and memory requirements point of view, specially for multi-rate
task graphs where this ratio may be very large. We tackle this
problem using the concept of association arrayntroduced later.
Theclusteringstep involves grouping of tasks to reduce the search
space for the allocation step [8, 10]. This significantly reduces the
overall complexity of the co-synthesis algorithm since allocation is
part of the inner loop of this algorithm. Clusters are ordered based

PE Library:
Cost of PE[PEL, PE2] = [120, 70]
Execution_vector of each task =[10, 20]
Link Library:

Cost of link [L1, L2] = [35, 20]
Comm._vector of each edge = [30, 50
est = 0, Period = 150
Deadline = 100

cl on their importance/priority. The allocation step determines
(a) Task graph (b) FTE graph mapping of tasks (edges) to PEs (communication links). There are
. two loops in this co-synthesis process flow: 1)oater loopfor
Figure 1. Task and FTE graphs allocating each cluster, and 2) ianer loopfor evaluating various

This vector is recomputed after each allocation, considering theallocations for each cluster. For each clusteraléocation array
actual number of ports on the link. The average_power_vegtor (consisting of all possible allocations is created. While allocating a
= {&1, &, &n} is an average power vector gf where; cluster to a hardware module such as an ASIC or FPGA, it is made
Lo e : - sure that the module capacity related to pinout, gate count, and
indicates the average power consumpyon_of task PEj. The . package power dissipation is not exceeded. Similarly, while
average power is determined considering normal operatinggjiocating a cluster to a general-purpose processor, it is made sure

conditions,e.g. nominal voltage levels, average data stresm that the memory capacity of the PE is not exceeded. Inter-cluster
Similarly, peak_power_vectorjX = {Ki, Kiz,.., Kin} is a peak edges are allocated to resources from the link library.

power vector of taskj, wherek; indicates the peak power Generally, several tasks are reused across multiple functions
consumption oft; on PEj. The peak power dissipation is and an efficient co-synthesis algorithm should exploit this fact.
determined considering worst-case operating conditieng, This can be done through archlltectura_l hints. Such a hint for each
worst-case operating voltage, worst-case data stre@mThe task indicates whether the task’s architecture may be reused. Our

preference vector, exclusion vector, average and peak poweglgorithm uses these hints farchitectural reusebased on a
previously stored allocation solution for the task to provide a very

efficient co-synthesis platform for large embedded systems.approach, we shorten some of the periods by a small user-
Architectural hints are also used to indicate whether the given taskadjustable amount (up to 3%) to reduce the hyperperiod. This is
is suitable for preemption or not. frequently useful even if the periods are not co-prime, but the
hyperperiod is large. Doing this usually does not affect the
Task graphs, Constraints, Resource library | feasibility of the co-synthesis solution or the cost of the distributed
v architecture.
~ We use the concept of an association array to avoid the actual
* replication of task graphs. An association array has an entry for
(Association array creation) each task of each copy of the task graph and contains information

such as: 1) the PE to which it is allocated, 2) its priority level, 3) its
deadline, 4) its best-case finish time, and 5) its worst-case finish
time. The deadline of theth instance of a task graph is offset by
— (n—1) multiplied by its period from the deadline in the original task
graph. The association array not only eliminates the need to
replicate the task graphs, but it also allows allocation of different
task graph instances to different PEs, if desirable, to derive an
efficient architecture. If a task graph has a deadline less than or
equal to its period, it implies that there will be only one instance of
the task graph in execution at any instant. Such a task graph needs
only one dimension in the association array, called the horizontal
dimension. If a task graph has a period less than its deadline, it
implies that there can be more than one instance of this task graph
in execution at some instant. For such tasks, we create a two-
dimensional association array, where the vertical dimension
corresponds to concurrent execution of different instances of the
No task graph.

All cluster 3.2 Task Clustering
explored? Clustering involves grouping of tasks to reduce the

Yes complexity of allocation. Our clustering technique addresses the
Best allocation fact that there may be multiple longest paths through the task graph
selection v — and the length of the longest path changes after partial clustering.
Yes SUCCESS In order to cluster tasks, we first assign deadline-based priority
Failure message i) levels to tasks and edges using the following procedure. A non-sink
Final solutio taskt; may either have a deadline or not. We dedii) to be equal
Figure 2. The co-synthesis process flow to the deadline df if the deadline is specified, andotherwise.

. a. Priority level of sink task = execution timet() — deadline).
The next step ischedulingwhich determines the relative 1, prjority level of non-sir?tlfta = max (priori?y level of itsm

ordering of task/communication execution and the start and finish " t3nout task: + communication time of ed —o(t)) +
times for each task and edge. We support both preemptive and non- gyecution timeto. 98,0, — (t))

preemptive static scheduling. We also take into consideration theg_ Priority level of edgey = priority level of destination nodey
operating system overheads such as interrupt overhead, context- 4 communication timee().

Buissasoid-aid

Cluster formation

Cluster selection

Allocation array creation

Inner
loop
Outer
loop

No
No

All
allocations

evaluation

clusters
Deadlines

explored?

switch, remote procedure call (RP@jc. through a parameter As an example, the numbers adjacent to nodes in Figure 1(a)
called preemption overheadhcorporating scheduling into the jndicate their associated priority levels. The priority level of a task
inner loop facilitates accurat@erformance evaluation An is an indication of the longest path from the task to a task with a

important part of performance evaluatiorfirish-time estimation specified deadline in terms of computation and communication

(FTE). This process uses the start and finish times of each task angpsts as well as the deadline. In order to reduce the schedule length,
estimates whether the tasks with specified deadlines meet thosgye need to decrease the length of the longest path which is done by
deadlines or not. Thallocation evaluationstep compares the forming a cluster of the tasks along the longest path. This makes the
current allocation against previous ones based on total dollar costeommunication costs along the path zero (this is based on the
If there are more than one allocation with equal dollar cost, we pick traditional assumption made in distributed computing that intra-PE

the allocation with the lowest average power consumption communication takes zero time). Then the process can be repeated
(assuming power optimization is a secondary objective). Other for the Jongest path formed by the yet unclustered tasks, and so on.

attributes such as memory requirements and peak power At the beginning, we sort all tasks in the order of decreasing
dissipation can also be used to further evaluate the allocations. priority levels. We pick unclustered taskvith the highest priority
3.1 The Association Array level and mark it clustered. Then we find the fan-in sgt wfhich

It was shown in [9] that there exists a feasible schedule for a job ifis a set of fan-in tasks that meet the following constraints: 1) the
and only if there exists a feasible schedule for the hyperperiod. Thistan-in task is not clustered already with another fanout task, 2) the
requires each task graph to be replicated the requisite number ofan-in task’s clusteiC, is preference- and exclusion-compatible
times in the hyperperiod. The advantage of this approach is that itwith t;, and 3) the cumulative size of tasks@ does not exceed
allows different instances of a task to be allocated to different PEs.the cluster size threshold. If the fan-in set;a§ not empty, we
However, this flexibility comes at a severe price in terms of co- jdentify an eligible cluster which is grownd, expanded) using a
synthesis CPU time and memory requirement when the cluster growth procedure. If the fan-in set;& empty, we allocate
hyperperiod is large compared to the periods. This could happena new cluste€; and use the cluster growth procedure to expand it.
for example, if the periods are comparable, but co-prime, or whenin order to ensure load balancing among various PEs of the
one period is much larger than the others. One way to tackle thisarchitecture, the cluster size should be limited. If the cluster size is
problem is through the use of an analytical technique such as fixed+oo big, it may be prevented from being allocated to any PE. If it is
point iteration [6,7], which does not require any task graph too small, it would increase the total number of clusters and
replication. However, this comes at the price of not allowing increase the computational complexity. We use a parameter called
different instances of the task to be allocated to different PEs, thuscluster size threshol@,, to limit the size of the cluste€y, is set
potentially, increasing system cost. In order to address theequal to the hyperperiod. At any point in the clustering procedure,
limitations of both methods, we propose to employ two for any clusterCy containingm tasks, its size, denoted g is

approaches: 1) task graph period adjustment to reduce theestimated by the following equation. Lgtdenote the period of
hyperperiod, and 2) forming an association array. In the first

taskt; of clusterC, and letl” be the hyperperiod. Then miss its deadline, in order to minimize the scheduling complexity.
m This is important since scheduling is in the inner loop of co-
= . - synthesis.

O Z (nvzt') o= () We support task graphs which do not start execution at time
t=0. This, in conjunction with a task graph whose period is less than
its deadline, may require that some tasks finish after the
hyperperiod. We allow the schedule of some tasks to spill over the
hyperperiod and ensure that resources are not overused, using the
concept of spill vector and deadline re-assignment [11].
¢ 3.4.1 Performance Estimation

The scheduler provides an accurate information on the start
and finish times of the tasks in the allocated clusters. This, in turn,
makes our FTE method more accurate and minimizes the false

of Figure 1(a) results in three clusters, C1, C2, and C3. Once th ejection of an allocation. Each node (communication edge) in the
clusters are formed, some tasks are replicated in two or morel@Sk graph has best- and worst-case execution (communication)

clusters to address inter-cluster communication bottlenecks [10]. Umes corresponding to the minimum and maximum entries in the
3.3 Cluster Allocation corresponding execution (communication) vector. When a task

We define the priority level of a cluster to be the maximum (edge) gets allocated, its best- and worst-case execution

of the priority levels of the constituent tasks. Clusters are Ordered(communlcatlon) times become equal and cafresponds to the

; o ; .~ - -execution (communication) time on the PE (link) to which it is
based on decreasing priority levels. We use a dynamic priority 3
level, i.e. after the allocation of each cluster, we recalculate the allocated. The FTE step, after each scheduling step, updates the

priority level of each task and cluster. We pick the cluster with the gﬁgct:a%gﬂ V;?erf)t gcgsaeﬂgni';%ﬁmgz ?Lgllé?ll'sékseic?:ﬁr;ee(éj; l::%gm%(gergga&)h
highest priority level and create an allocation array. We order the y, "0 o oo ches where FTE assumes worst-case allocation [8]
allocations in the allocation array in the order of increasing value which often results in pessimistic estimates. The best- and worst-.
of the cost function. Once the allocation array is formed, we use thecase finish time andg["" respectivelv. of each task and edge are
inner loop of co-synthesis to evaluate the allocations. estimated as follbws Lat.D a%da-"" (yB’.b andB™ re resent%he
3.3.1_The Outer Loop of Co-Synthesis best- and worst-case execution (communication) Ft)imes ofttask
; ; N ; i

__The allocation array considers the following: 1) architectural (edges,), respectively. The best- and worst-case finish times for a
hints, 2) preference vector, 3) allocation of the cluster to existing taqj and edge are estimated using the following equations
resources in the partial architecture, 4) upgrade of links, 5) upgrade; T (t) = max {® (¢) + a;’} and rﬁ’%](t-) = max {V (e) + o} '
of PEs, 6) addition of PEs, and 7) addition of links. Architectural ™"\ hetee [E}, the set of input edaes of :
hints are used to pre-store allocation templates (these templateg ™ (e) = (tkj + B_Sb andn"‘;z)= (1) + B"wheret,is the
correspond to the mapping of sub-task-graphs to part of the™ g4 /ke node of edt G ! K
architecture being built). We exclude those solutions for which the Let us next apply the above FTE method to the task graph in
pin count, gate count, and memory limits (and power dissipation if Figyre 1(a). Suppose cluster C1 is allocated to PE2, and the other
power is being optimized) are exceeded. Once an allocation array\yq clusters are unallocated. We would then obtain the FTE graph
is formed, the allocations in it are ordered based on dollar cost. Ifghown in a Figure 1(b) which indicates that the best- and worst-case

power is being optimized, the ordering is done based on averagginjsh times of sink task t11 are 150 and 200, respectively.
power dissipation while making sure the peak power dissipationis3 4 5 aAjlocation Evaluation

within limits. : Each allocation is evaluated based on the total dollar cost.
3.3.2 The Inner Loop of Co-Synthesis We pick the allocation which at least meets the deadline in the best
. We pick the unvisited allocation with least dollar cost, mark ¢ase. |f no such allocation exists, we pick an allocation for which
it visited and go through scheduling and solution evaluation stepsihe symmation of the best-case finish time of all tasks with
described next. We use a priority-level based scheduler forgpecified deadlines in all task graphs is maximum. This may seem
scheduling tasks and edges on all PEs and links in the allocationconter-intuitive. However, this generally leads to a less expensive
We generally schedule only the first copy of the task. The start andychjtecture since larger finish times generally correspond to less
finish times of the remaining copies are updated in the associationeypensive processor/iink. If there are more than one allocation
array, as discussed earlier. Usually, this is sufficient to derive anyynich meet this criterion then we choose the allocation for which
efficient architecture. However, we do sometimes need to schedulghe symmation of the worst-case finish times of all tasks with
the remaining copies [11]. This is followed by the performance geadiines is maximum. The reason behind using the “maximum”
estimation step. instead of "minimum"” in the above cases is that at intermediate
3.4 Scheduling) steps we would like to be as frugal as possible with respect to the
We first order tasks and edges based on the decreasing ordeptal dollar cost of the architecture. Since we allow addition as well
of their priority levels. If two tasks (edges) have equal priority as upgrade of PEs/links during co-synthesis, the real-time
levels, we schedule the task (edge) with the shorter executionconstraints will ultimately be met.
(communication) time first. While scheduling communication 3.5 Application of the Co-Synthesis Algorithm
edges, the scheduler considers the mode of communication i : -
(sequential or concurrent) supported by the link and processor. raphv}/nelzr}s)étreag?g)/.t(r]:?ugttzs?\s/eafg ;%irgpezsﬁazgg %tgrt?]éod?;éggrng

Though preemptive scheduling is sometimes not desirable due t(§ P ; ; :
; P T : alue of their priority levels. Figure 3 illustrates the allocation of
the overhead associated with it, it may be necessary to obtain an, o s clusters during the outer and inner loops of co-synthesis.

efficient architecture. In order to decide whether to preempt a taskgjnce ciyster C1 has the highest priority level, it is allocated first to

Ic:ervglc?st’c;va?agsk?t-tgﬁdf?”?\évéggecctir\l/tglgl/a'ah%t ixqqqar?gothebgrlt?wréti)r/ the cheaper processor PE2, as shown in Figure 3(a). The scheduler
tion time's on FJE Letn. be the reem'rtion ov{arhead (PO) is run and the projected finish time (PFT) is {150, 200}, as shown
exeFt):E o s ard Nr I P g meb be tho b in Figure 1(b). Since the best-case estimated finish time does not
on fr to ‘r’]" tI'C taifh:"‘i za%nktj are_at ocated. ; (t) ftbe S]St' meet the deadline, the partial architecture needs to be upgraded.
8233”[']2'50 ? ta'lrsnkie \(NelsallgweSiFeler:no t%%cglfj?a)s}(agq:-(li,l)n dgr thee Therefore, C1 is allocated to processor PE1, as shown in Figure
followi ios 1) If g F? o Ift: i Y. K task and 3(b). Since deadlines are still not met and all possible allocations
Qllowing scenarios: 1) Ifgy > @, else 2) Ift; is a sink task, and 5 ’ayhiored, C1 is marked as allocated and cluster C2 is considered

(t) +n, +aj <u(t) . n, is specifieca priori. It includes context o ajigcation. First, an attempt is made to allocate C2 to the current
switching anc]i. any other processor-specific overheads. Preemptiorpe “55"shown in Figure 3(c)pAfter scheduling, FTE indicates that
of a higher priority task by a lower priority task is allowed only in ' ' '

the case when the higher priority task is a sink task which will not

The cluster grovlvth 1procedure adds tasto the feasible
cluster identified from the fan-in-set or to a new cluster and grows
the cluster further, if possible, by adding one of the fan-out tasks of
tj along which the priority level df is the highest. We recompute
the priority levels of the tasks in the task graph after clustering
t; either with any existing cluster or after clustering it with one o
its fan-out tasks. This allows us to identify the critical path
dynamically and to facilitate compression of multiple critical paths.

The application of the clustering procedure to the task graph

shown in Figure 4(c). COSYN-LP results in a different clustering,

(%t)- 7§E2(C1) Q PE1(C1) as shown in Figure 4(d). The resulting architecture from COSYN-
PFT = {150, 200} T = 155 6620 LP is shown in Figure 4(e). COSYN-LP results in a reduction in
Need to upgradé processor ﬁeed télbrlﬁg in %ew cluster overall energy consumption from 60 to 55.25 with a minor increase
() (b) in the finish time while still meeting the deadline. Here, for
O PEL(CL,C2) (O PELCLC2CY) simplicity, we have assumed that the quiescent power dissipation in
Cost = 120 Cost = 120 the PEs/links is zero. However, in general, we take this into
RIFT = é90 ' 120% PFET = {110, 110} account, as explained later.
eed to bring In new cluster Deadline exceeded! Upgrade
(© (d) (50)
> L2~ PEICLC) |, PE2ACY) 25% e5
PE1(C1,C2) PE2(C3) O—é(;ost = 225 @ (10)
_ Cost =210 PFT ={100,100} 15(t2)(27.5) Ye6
BET 5 Iilzo, 12(2} e e2
eadline eXceeded! Upgrade Success! Deadline met
©) ® s@eo Ops)
Figure 3. Stepping through COSYN e3)
the deadlines can be met in the best case. Hence, next, C3 is25(19(12.5) -25(4)(12.5)
considered for allocation. Again, an attempt is first made to allocate| e4] pesfielsd &4

C3to PE1, as shown in Figure 3(d). Since the deadline is not met
in the best case, the architecture needs to be upgraded, as shown
Figure 3(e). Since the deadline is still not met, the architecture is

ine. -45 X (5)
Period = 55
-4 5
-45(5)(5) ®
(a) Task graph(b) COSYN clusteringd) COSYN-LP clustering

upgraded again, as shown in Figure 3(f). Now that the deadline is (s 16,1 [t2-45] [tL, 16, t7]
met and all clusters are allocated, the architecture given in Figure Link 1 Link 1
3(f) is the final solution. [e5]), [e1]

4 Co-Synthesis of Low Power Embedded Systems
For some embedded systems, along with cost and real-time|
constraints, another important constraint is power dissipation.
Hence, an efficient co-synthesis technique targeted towards
synthesis of low power embedded systems is of utmost importance
The basic co-synthesis process flow of Figure 2 is also used
in the co-synthesis system for low power, termed COSYN-LP. The
parsing, association array formation and scheduling steps remain
the same as before. We describe next how the other steps ar
modified.
4.1 Clustering
We use deadline-based priority levels to identify the order for
clustering tasks, however, we use energy levels instead of priority
levels to form clusters, since our objective is to minimize overall necessarily divergent goals [12]
power consumption. Clustering along the higher energy-level path4 2 Cluster Allocation ’
][nakets trt]e ckon&munlcatlor]rﬂme as W?” ?S commlunlclatloln eln?rgy " We next discuss cluster allocation and finish-time/power
e e anceby 1 10 vl 12 It WBstmaton n th outerand nner loops o co-sythesi. I e outer
in a straightforward manner. This is the reason we target energ 0op of co-Synthesis, the allocation array IS creatéd, as betore, Tor

levels even though our ultimate goal is to reduce average power=ach cluster. Each allocation is checked to see if the peak power
dissipation subject to the given real-time and peak power dissipation as well as memory capacity (in case of general-purpose
constraints. Energy levels are assigned as follows: processor) of the associated PE/link is exceeded. Entries in the

L. For each task and edge, determine the average energy dissipa- §O0000 BIIEY 516 OICRIEA D08l OF, METEaslg aans pover
tion, as the worst-case execution or communication time p : q 9

(derived from the execution/communication vector) multiplied power dissipation, then the one with the least dollar cost is chosen.

by the corresponding average power dissipation (the Worst-casqo FTIn the inner loop, during performance estimation, in addition

execution/communication time is chosen because meeting real-o, E, ?(rchltecturg_ pqwet_r/energy estimation Is g!so_ pet_rformed(.j
time constraints is most important). Mark all tasks as unvisited. '€ P€axk power dissipation, average energy dissipation, an

2. For each unvisited tagkin the task graph do the following:tjf average power dissipation for each processor, FPGA, ASIC, and
is a sink task, energy leve|)(= [average energy of tasf If t; communication link in the architecture are estimated as follows.

is not a sink task, for each edge (i, t) in the set of fanout Processor/link: The average and peak power are estimated based
edges of task, whéretf is a fanout tagk, energy leve) & max on the tasks (edges) allocated to the processor (link). The quiescent

' ' power dissipation of a processor (link) indicates the power
&eg:ekr%yv:gi\{gldt.() + average energy;(t) + average energy;). dissipation during the idle time when no task (edge) is assigned to

The cluster formation procedure is the same as the onell: The power dissipation of a task (edge) is obviously higher than
e quiescent power dissipation of a processor (link); L¥{T} be

Finish time of task t5 = 50
Finish time of task t7 = 40
Total energy = 60

Finish time of task t5 = 51
Finish time of task t7 = 30

) Total energy = 55.25

Cost [PE, Link] = [100, 20])

(c) COSYN architecture (e) COSYN-LP architecture
Ave._power_dissip.[t1, t2, t3, t4, t5, t6, t7] = [0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.6
Worst-case_exec_time|[tl, t2, t3, t4, t5, t6, t7] = [10, 10, 10, 10, 10, 10, 10
Ave._power_dissip.[el, e2, e3, e4, €5, e6] = [.25, .25, .25, .25, .50, .50]
Worst-case_comm_time[el, e2, e3, e4, e5, e6] = [1, 10, 10, 10, 10, 20]

(f) Parts of power, execution and communication vector
Figure 4. Clustering for low power
The energy-level based clustering technique generally does
not result in a significant increase in the schedule length. This is
due to the fact that energy and schedule length optimization are not

b

discussed in Section 3.2 except that we use energy levels instead d

priority levels. The energy levels are recomputed after the
clustering of each node. The objective of clustering in this context
is to try to decrease the system energy consumption while still
meeting real-time constraints. To appreciate the difference betwee
the energy-level based clustering and the one given in Section 3.2
consider the task graph shown in Figure 4(a). The numbers in
brackets in this figure indicate energy levels and the numbers in
bold indicate priority levels. They have been derived from the
vectors given in Figure 4(f). Application of COSYN results in two

clusters C1 and C2, as shown in Figure 4(b), and the architectur
shown in Figure 4(c). Here, for simplicity, only one PE and link are

i

§

tEe set of tasks assigned to thth processoP. Similarly, let

O{ E} be the set of communication edges assigned tthHmk L.
The peak power fdP is max{peak powert{{ T})}. Similarly, the
eak power fot is max{pealé{mwerq O{ E}}. Let ot represent
the average energy, and represent the quiescent average
power dissipation, respectively. Listrepresent the idle time in the
hyperperiod. Lety (n;) be the number of times that tasledges;)

is executed in the hyperperiod. The average enerdy dmdL are
estimated as follows (the average power dissipatidhasfdL are
stimated by dividing the total average energy dissipation by the
yperperiod).

assumed to be present in the PE and link libraries, whose costs are

Table 1: Experimental results for examples from the literature

Number of PEs/Cost ($) Number of links CPU time (sec)
Example/Number of tasks praash| YeniHou| ooy | Prakash & YeniHoul . [Prakash & Parker [Yen/Hou & wolf[COSYN on
& Parker| & Wolf Parker | & Wolf on Solbourne 5/€/900 on Sparc 20 | Sparc 20
Prakash & Parker (0)/4 1/5 N/A 15 0 N/A 0 37.00 NA 0.20
Prakash & Parker (1)/9 1/5 1/5 1/5 0 0 0 3691.20 59.15 0.4p
Prakash & Parker (2)/9 2/10 3/10 2/1 1 1 1 7.42 hrs 56.79 0.54
Prakash & Parker (3)/9 N/A 3/12 2/10 N/A 1 1 N/A 193.30 0.58]
Prakash & Parker (4)/13 1/5 N/A 1/5 N/A 1 1 106.95 hrs N/A 0.84
Yen & Wolf Ex/6 N/A 3/1765 | 3/1765 N/A 2 2 N/A 10.63 0.74
Hou & Wolf Ex1/20 N/A 2/170 2/170 N/A 1 1 N/A 14.96 5.10
Hou & Wolf Ex2/20 N/A 2/170 2/170 N/A 1 1 N/A 4.96 2.64
DSP/119 N/A N/A 2/100 N/A N/A 1 N/A N/A 127.30
Table 2: Experimental results for transport systems
Example/ COSYN COSYN-LP SystécmtuF?évT/reinI;ipsgﬁJation
of tasks No. of [No.of| CPU time| Average power No. of [No. of [CPUtime| Average power Average Power
PEs/Cost($) links (sec) | dissipation(Watts] PEs/Cost($) links (sec) [dissipation (Watts] dissipation (watts)
Transport System(1)/15 2/305 1 0.54 4.43 2/36 L 1.20 2.66 2.45
Transport System(2)/45 4/455 3 1.42] 7.72 4/554 B 2.20 5.73 5.29
Transport System(3)/156 13/172 11 118.40 26.40 13/1993 11 14p.60 23.57 22.18

0%(p)

L_gfip o, Ehi} +[0"(P) BW(P)]

950 = [3 & By]+ (00 oveL)
g E
FPGA/ASIC: Tasks assigned to FPGAs and ASICs can run
simultaneously. Therefore, the peak power of an FPGA/ASIC is
the summation of the peak power required by all tasks assignedAt%
them and the quiescent power of the unused portion of the FPGAL,
ASIC. The average energy/power estimation procedure is similarg
to the one given above.
System power dissipation:The average power dissipation of the
partial architecture is estimated by dividing the total estimated
energy dissipated in PEs/links in it by the hyperperiod.

During the allocation evaluation step, we pick the allocation
which at least meets the deadline in the best case. If no suc

algorithm was unable to find a solution, whereas COSYN was able
to find the same optimal solution as MILP in less than a second on
Sparcstation 20 with 256MB RAM. Results in Table 2 show that
COSYN was able to handle the large telecom transport system task
graphs equally efficiently. COSYN-LP was able to reduce power
dissipation by an average of 25% (this is the average of the
individual cost reductions; the average is similarly determined for
other parameters) over the basic COSYN algorithm at an average
increase of 19% in cost. Also, as shown in the last column in Table
, the actual system power measurements made on the COSYN-LP
rchitectures indicate that the error of the COSYN-LP power
stimator is within 9%.

6 Conclusions

We presented an efficient distributed system co-synthesis

algorithm in this paper. Even though it is a heuristic algorithm,
experimental results show that it produces optimal results for the
fexamples from the literature. It provides several orders of

allocation exists, we pick an allocation for which the summation of magnitude advantage in CPU time over existing algorithms. This

the best-case finish times of the nodes with specified deadlines i
all task graphs is maximum, similar to COSYN.
5 Experimental Results

Our co-synthesis algorithms, COSYN and COSYN-LP, are
implemented in C++. Table 1 provides an overview of the examples
on which we have run COSYN. Prakash & Parker(0-4) are from
[4]. Prakash & Parker(0) is the same as task 1 in [4]. Prakash &>.
Parker(1-3) are the same as task 2 in [4] with different constraints.
Prakash & Parker(4) is a combination of task 1 and task 2 from [4].3:
Yen & Wolf Ex is from [6]. Hou & Wolf Ex(1,2) are from [7]. DSP
is from [10] and its deadline and period were assumed to be 6500:.
ms. The PE and link libraries used in these results are the same as
those used in the corresponding references. We also ran COSYN'
and COSYN-LP on various Bell Laboratories telecom transport
system task graphs. These are large task graphs representing re®-
life field applications. The execution times and power dissipation
for the tasks in the transport system task graphs were either”
experimentally measured or estimated based on existing designss.
For results on these graphs, the PE library was assumed to contain
Motorola microprocessors 68360, 68040, 68060 (each processoy,
with and without a second-level cache), two ASICs, one XILINX ™
3195A FPGA, and one ORCA 2T15 FPGA. The link library was 10.
assumed to contain a 680X0 bus, a 10 Mb/s LAN, and a 31 Mb/s
serial link. As shown in Table 1, COSYN consistently outperforms ;;
both MILP [4] and iterative improvement techniques [6,7]. For
Prakash & Parker(4), the MILP technique required approximately
107 hours of CPU time on Solbourne5/e/900, and Yen and Wolf's 12

renables its application to large examples for which experimental
results are very encouraging. Large real-life examples have not
been tackled previously in the literature. We have also presented
the first co-synthesis algorithm for power optimization.
References

M. R. Garey and D. S. Johns@pmputers and Intractability: A Guide to the
Theory of NP-Completened¥, H. Freeman & Co., 1979.

R. K. GuptaHardware-Software Co-synthesis of Digital Systems, Ph.D. thesis
Dept. of EE, Stanford University, 1994.

A. Kalavade and E. A. Lee, "A global criticality/local phase driven algorithm for
constrained hardware/software partitioning problem,"Piroc. Int. Wkshp.
Hardware-Software Co-Desigpp. 42-48, Sept. 1994.

S. Prakash and A. Parker, "SOS: Synthesis of application-specific heterogeneous
multiprocessor systems]! Par. & Dist. Comput.pp. 338-351, Dec. 1992.

J. G. D'Ambrosio and X. Hu, "Configuration-level hardware/software
partitioning for real-time systems," iAroc. Int. Wkshp. Hardware-Software
Co-Design pp. 34-41, 1994.

T.-Y. Yen and W. Wolf, "Communication synthesis for distributed embedded
systems," irProc. Int. Conf. Computer-Aided Desidwgv. 1995.

J. Hou and W. Wolf, "Process partitioning for distributed embedded systems,"
in Proc. Int. Wkshp. Hardware-Software Codesigm, 70-76, 1996.

S. Srinivasan and N. K. Jha, "Hardware-software co-synthesis of fault-tolerant
real-time distributed embedded systemsPiiac. European Design Automation
Conf, pp. 334-339, Sept. 1995.

E. Lawler and C. Martel, "Scheduling periodically occurring tasks on multiple
processors,Inform. Process. Lettersol. 12, Feb. 1981.

S. Yajnik, S. Srinivasan and N. K. Jha, "TBFT: A task based fault tolerance
scheme for distributed systems," Bmoc. ISCA Int. Conf. Parallel & Distr.
Comput. Systpp. 483-489, Oct. 1994.

B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software
co-synthesis of embedded systems,” Tech. Rep., CE-J96-003, Dept. of EE,
Princeton University, Oct.1996.

V. Tiwari, S. Malik and A. Wolfe, "Compilation techniques for low energy: An
overview," inProc. Symp. Low-Power Electronj&Sct. 1994,

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

