
Abstract: Hardware-software co-synthesis is the process of
partitioning an embedded system specification into hardware and
software modules to meet performance, power and cost goals. In
this paper, we present a co-synthesis algorithm which starts with
periodic task graphs with real-time constraints and produces a low-
cost heterogeneous distributed embedded system architecture
meeting the constraints. The algorithm has the following features:
1) it allows the use of multiple types of processing elements (PEs)
and inter-PE communication links, where the links can take various
forms (point-to-point, bus, local area network (LAN), etc.), 2) it
supports both concurrent and sequential modes of communication
and computation, 3) it allows both preemptive and non-preemptive
scheduling, 4) it employs the concept of an association array to
tackle the problem of multi-rate systems (which are commonly
found in multimedia applications), 5) it uses a scheduler based on
dynamic deadline-based priority levels for accurate performance
estimation of a co-synthesis solution, 6) it uses a new task
clustering technique which takes the dynamic nature of the critical
path, and the existence of multiple critical paths in the task graph
into account, and 7) if desired, it also optimizes the architecture for
power consumption (we are not aware of any other co-synthesis
algorithm that optimizes power). Application of the proposed
algorithm to examples from the literature and real-life telecom
transport systems shows its efficacy.

1 Introduction
The architecture of embedded systems is generally defined

based on the experience of system architects, and at times, it is
either over-designed or fails to meet the requirements. Finding an
optimal hardware-software architecture entails selection of
processors, application-specific integrated circuits (ASICs) and
communication links such that the cost of the architecture is
minimum and all real-time constraints are met. Hardware-software
co-synthesis involves various steps such as allocation, scheduling
and performance estimation. Both allocation and scheduling are
known to be NP-complete [1]. Therefore, optimal co-synthesis is
computationally a very hard problem. In addition, since many
embedded systems are used in mobile applications, both peak and
average power consumption have become important concerns. The
peak power consumption determines the packaging cost and the
average power consumption determines the battery life. Thus, it is
also important to optimize power consumption during co-synthesis.

Previous researchers have mostly focused their interest on
hardware-software co-synthesis of one-CPU-one-ASIC
architectures [2,3]. However, distributed embedded system
architectures can employ multiple CPUs, ASICs, and field-
programmable gate arrays (FPGAs). Two distinct approaches have
been used for distributed system co-synthesis: optimal and
heuristic. In the optimal domain, the two approaches are mixed
integer linear programming (MILP) and exhaustive. The MILP
solution [4] has the following limitations: 1) it is restricted to one
task graph, 2) it does not handle preemptive scheduling, 3) it

requires determination of the interconnection topology upfront, and
4) because of time complexity, it is suitable only for small task
graphs. A configuration-level hardware-software partitioning
algorithm is presented in [5] based on an exhaustive enumeration
of all possible solutions, which is also impractical for large task
graphs. There are two distinct approaches in the heuristic domain:
iterative and constructive. In [6,7], an iterative procedure is given.
It considers only one type of communication link and does not
allow mapping of each successive instance of a periodic task to
different PEs. A constructive co-synthesis procedure for fault-
tolerant distributed embedded systems is proposed in [8]. However,
it does not support communication topologies such as bus, LAN
etc., and it uses a pessimistic performance estimation technique. It
is also not suitable for multi-rate embedded systems,e.g. multi-
media systems. Also, power consumption has not been optimized
in any of these co-synthesis techniques.

We have developed a heuristic-based co-synthesis technique,
called COSYN, which includes the allocation, scheduling and
performance estimation steps as well as power optimization
features. Our technique is suited for both small- and large-scale
real-time embedded systems. Application of this technique to
several examples from the literature and real-life telecom transport
systems shows that it compares very favorably with known co-
synthesis algorithms in terms of CPU time, quality of solution and
number of features. In fact, for the task graphs from the literature
for which MILP-based optimal results are known, COSYN also
obtained the same optimal results in many orders of magnitude
smaller CPU time. However, in general, of course, being a
heuristic, COSYN cannot guarantee optimality.
2 Definitions and Basic Concepts

Embedded systems consist of off-the-shelf general-purpose
processors, ASICs and FPGAs and perform application-specific
functions. Thehardware architectureof an embedded system
defines the type and interconnection of various hardware modules.
Its software architecturedefines the allocation of sequence of
codes to specific general-purpose processors. The embedded
system functionality is usually described through a set of acyclic
task graphs, whose nodes represent tasks. Tasks communicate data
to each other, indicated by a directed edge between two
communicating tasks. We focus on periodic task graphs. Each such
graph has an earliest start time (est), period, and deadline, as shown
for an example in Figure 1(a). Each task of a periodic task graph
inherits the graph’s period and can have a different deadline. The
deadline of the task graph is the maximum of all such deadlines.

We define execution_vector (ti) = {αi1, αi2,.., αin} to be an
execution vector of taskti, whereαij indicates the execution time of
ti on PE j from the PE library. The preference_vector (ti) = {γi1,
γi2,.., γin} is a preference vector of task ti, where γij indicates
preferential mapping forti. If γij is 0, it indicates thatti cannot be
executed on PEj, and 1 if there are no constraints. This vector is
useful in cases where preferred allocation is determined based on
prior experience or task characteristics. Similarly, theexclusion
vector of taskti, exclusion_vector (ti) = {δi1, δi2,..., δiq}, specifies
whether certain tasks can co-exist on the same PE,i.e. δij = 1
indicates that tasksti and tj have to be allocated to different
processors andδij = 0 indicates otherwise. A cluster of tasks is a
group of tasks all of which are allocated to the same PE. We define
preference_vector(Ci) of clusterCi to be the bit-wise logical AND
of the preference vectors of all the tasks in the cluster. The
preference vector of a cluster indicates which PEs the cluster
cannot be allocated to. Similarly, we define exclusion_vector(Ci)
of clusterCi as the bit-wise logical OR of the exclusion vectors of

* Acknowledgments: This work was supported in part by Bell Laboratories of Lucent
Technologies and in part by NSF under Grant No. MIP-9423574.
1 also at Bell Laboratories, Lucent Technologies, 101 Crawfords Corner Road,
Holmdel, NJ 07733.
Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to distribute to lists, requires
prior specific permission and /or a fee.
DAC 97, Anaheim, California.
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

COSYN: Hardware-Software Co-Synthesis of Embedded Systems*

Bharat P. Dave1, Ganesh Lakshminarayana, and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544

all the tasks in the cluster. A taskti is said to be preference-
compatible with clusterCi if the bit-wise logical AND of the
preference vector of clusterCi and taskti does not result in the 0-
vector, i.e. a vector with all elements 0. If all elements of a
preference vector of clusterCi are 0, it makes the cluster
unallocatable to any PE. Tasktj is said to be exclusion-compatible
with clusterCi if the jth entry of the exclusion vector ofCi is 0. This
indicates that tasks in clusterCi can be co-allocated with tasktj.

We define communication_vector(ek) = (βk1, βk2,...,βkm} to
be the communication vector of task graph edgeek, whereβkl
indicates the time it takes to communicate data onek on
communication link l from the link library. The communication
vector for each edge is computeda priori for various types of links
as follows. Let ρk be the number of bytes that need to be
communicated on edgeek, andλl be the number of bytes per packet
that link l can support, excluding the packet overhead. The
access_time_vector(l) = [Ωl1, Ωl2,,Ωlm] is an access time vector
for link l, whereΩlr represents the access time per packet with r
number of ports on l. Supposel has s ports. Let τl be the
communication time of a packet onl. Thenβkl is given by

At the beginning of co-synthesis, since the actual number of ports
on the links is not known we initially use an average number of
ports (specifieda priori) to determine the communication vector.

This vector is recomputed after each allocation, considering the
actual number of ports on the link. The average_power_vector (ti)
= {ξi1, ξi2,.., ξin} is an average power vector ofti, where ξij
indicates the average power consumption of taskti on PEj. The
average power is determined considering normal operating
conditions,e.g. nominal voltage levels, average data stream etc.
Similarly, peak_power_vector (ti) = {κi1, κi2,.., κin} is a peak
power vector of taskti, where κij indicates the peak power
consumption of ti on PE j. The peak power dissipation is
determined considering worst-case operating conditions,e.g.
worst-case operating voltage, worst-case data streametc. The
preference vector, exclusion vector, average and peak power

vectors can be similarly defined for communication edges and
links. We also take into account the quiescent power of a PE, link,
ASIC and FPGA, which indicates its power consumption at times
when no task (or communication) is being executed on it.

 The memory architecture of embedded systems plays an
important role from both performance and cost point of view.
Previous algorithms have generally ignored this aspect. The
storage requirements are of different types: program storage, data
storage and stack storage. For each task mapped to software,
memory needs are specified by amemory vector. The memory
vector of task ti is defined as: memory_vector(ti) =
[program_storage(ti), data_storage(ti), stack_storage(ti)]. For each
allocation, we check whether the available memory capacity has
been exceeded.

For each available processor, its cost, average/peak quiescent
power consumption, and associated peripheral attributes such as
memory architecture, processor-link communication
characteristics, and cache characteristics are assumed to be
specified. For each ASIC, its cost, package attributes such as
available pins, available gates, and average and peak power
dissipation per gate are assumed to be specified. Similarly, for each
FPGA, its cost, average/peak quiescent power, package attributes
such as available pins, and the maximum number of flip-flops or
combinational logic blocks (CLBs) or programmable functional
units (PFUs) are assumed to be specified. Another important
attribute of an FPGA is the boot memory requirement which needs
to be allocated for the FPGA. Generally, all flip-flops/CLBs/PFUs
are not usable due to routing restrictions. We take this into account
through a term called theeffective usage factor (EUF). We allow
the user to specify an EUF based on his/her own experience. The
user can also specify theeffective pin usage factor (EPUF) to
indicate what percentage of package pins can be used for
allocation.

 Each communication link is characterized by: 1) the number
of information bytes per packet, 2) link access time vector, 3)
communication time per packet, and 4) average/peak quiescent
power. The PE and link libraries together form the resource library.
3 The COSYN Algorithm

 In this section, we first provide an overview of COSYN and
then follow up with details on each step. Figure 2 presents one
possible co-synthesis process flow which we follow in our work. In
the parsing step, the task graphs, system/task constraints, and
resource library are parsed and appropriate data structures are
created. The hyperperiod of the system is computed as the least
common multiple (LCM) of the periods of various task graphs. In
traditional real-time computing theory, ifperiodi is the period of
task graphi then [hyperperiod ÷ periodi] copies are obtained for it
[9]. However, this is impractical from both co-synthesis CPU time
and memory requirements point of view, specially for multi-rate
task graphs where this ratio may be very large. We tackle this
problem using the concept of anassociation array introduced later.
Theclustering step involves grouping of tasks to reduce the search
space for the allocation step [8, 10]. This significantly reduces the
overall complexity of the co-synthesis algorithm since allocation is
part of the inner loop of this algorithm. Clusters are ordered based
on their importance/priority. The allocation step determines
mapping of tasks (edges) to PEs (communication links). There are
two loops in this co-synthesis process flow: 1) anouter loop for
allocating each cluster, and 2) aninner loop for evaluating various
allocations for each cluster. For each cluster, anallocation array
consisting of all possible allocations is created. While allocating a
cluster to a hardware module such as an ASIC or FPGA, it is made
sure that the module capacity related to pinout, gate count, and
package power dissipation is not exceeded. Similarly, while
allocating a cluster to a general-purpose processor, it is made sure
that the memory capacity of the PE is not exceeded. Inter-cluster
edges are allocated to resources from the link library.

Generally, several tasks are reused across multiple functions
and an efficient co-synthesis algorithm should exploit this fact.
This can be done through architectural hints. Such a hint for each
task indicates whether the task’s architecture may be reused. Our
algorithm uses these hints forarchitectural reusebased on a
previously stored allocation solution for the task to provide a very

βkl ρk() λl()÷ τ
l

•{ } Ωls+=

PE Library:
Cost of PE[PE1, PE2] = [120, 70]
Execution_vector of each task = [10, 20]
Link Library:
Cost of link [L1, L2] = [35, 20]
Comm._vector of each edge = [30, 50]
est = 0, Period = 150
Deadline = 100

t1

t2

t3

t4

t5

t6

e1

e2

e3

t7

t8

t11

t9

t10

e4

e11

e6
e7

e8

e9

e10

e5
-80

-10

-80

-10

60

130

60

130

200

270

340

t1

t2

t3

t4

t5

t6

e1

e2

e3

t7

t8

t11

t9

t10

e4

e11

e6
e7

e8

e9

e10

e5

{20,20}

{40,40}
{70,90}

{10,20}

{80,110}

{110,160}

{130,180}

{150,200}

{60,60}

{80,80}

{100,100}

{90,110}

{100,130}

{110,150}

(10,20)

(10,20)

(30,50)

(10,20)

(10,20)

(30,50)

(30,50)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(a, b): Execution/communication vector
{c, d}: Finish time estimate

 (b) FTE graph(a) Task graph

C2

C3

Figure 1. Task and FTE graphs

C1

efficient co-synthesis platform for large embedded systems.
Architectural hints are also used to indicate whether the given task
is suitable for preemption or not.

The next step isscheduling which determines the relative
ordering of task/communication execution and the start and finish
times for each task and edge. We support both preemptive and non-
preemptive static scheduling. We also take into consideration the
operating system overheads such as interrupt overhead, context-
switch, remote procedure call (RPC)etc. through a parameter
called preemption overhead. Incorporating scheduling into the
inner loop facilitates accurateperformance evaluation. An
important part of performance evaluation isfinish-time estimation
(FTE). This process uses the start and finish times of each task and
estimates whether the tasks with specified deadlines meet those
deadlines or not. The allocation evaluation step compares the
current allocation against previous ones based on total dollar cost.
If there are more than one allocation with equal dollar cost, we pick
the allocation with the lowest average power consumption
(assuming power optimization is a secondary objective). Other
attributes such as memory requirements and peak power
dissipation can also be used to further evaluate the allocations.
3.1 The Association Array
It was shown in [9] that there exists a feasible schedule for a job if
and only if there exists a feasible schedule for the hyperperiod. This
requires each task graph to be replicated the requisite number of
times in the hyperperiod. The advantage of this approach is that it
allows different instances of a task to be allocated to different PEs.
However, this flexibility comes at a severe price in terms of co-
synthesis CPU time and memory requirement when the
hyperperiod is large compared to the periods. This could happen,
for example, if the periods are comparable, but co-prime, or when
one period is much larger than the others. One way to tackle this
problem is through the use of an analytical technique such as fixed-
point iteration [6,7], which does not require any task graph
replication. However, this comes at the price of not allowing
different instances of the task to be allocated to different PEs, thus,
potentially, increasing system cost. In order to address the
limitations of both methods, we propose to employ two
approaches: 1) task graph period adjustment to reduce the
hyperperiod, and 2) forming an association array. In the first

approach, we shorten some of the periods by a small user-
adjustable amount (up to 3%) to reduce the hyperperiod. This is
frequently useful even if the periods are not co-prime, but the
hyperperiod is large. Doing this usually does not affect the
feasibility of the co-synthesis solution or the cost of the distributed
architecture.

We use the concept of an association array to avoid the actual
replication of task graphs. An association array has an entry for
each task of each copy of the task graph and contains information
such as: 1) the PE to which it is allocated, 2) its priority level, 3) its
deadline, 4) its best-case finish time, and 5) its worst-case finish
time. The deadline of thenth instance of a task graph is offset by
(n−1) multiplied by its period from the deadline in the original task
graph. The association array not only eliminates the need to
replicate the task graphs, but it also allows allocation of different
task graph instances to different PEs, if desirable, to derive an
efficient architecture. If a task graph has a deadline less than or
equal to its period, it implies that there will be only one instance of
the task graph in execution at any instant. Such a task graph needs
only one dimension in the association array, called the horizontal
dimension. If a task graph has a period less than its deadline, it
implies that there can be more than one instance of this task graph
in execution at some instant. For such tasks, we create a two-
dimensional association array, where the vertical dimension
corresponds to concurrent execution of different instances of the
task graph.
3.2 Task Clustering

Clustering involves grouping of tasks to reduce the
complexity of allocation. Our clustering technique addresses the
fact that there may be multiple longest paths through the task graph
and the length of the longest path changes after partial clustering.
In order to cluster tasks, we first assign deadline-based priority
levels to tasks and edges using the following procedure. A non-sink
tasktj may either have a deadline or not. We defineω(tj) to be equal
to the deadline oftj if the deadline is specified, and∞ otherwise.
a. Priority level of sink taskti = execution time (ti) − deadline (ti).
b. Priority level of non-sink tasktj = max (priority level of its

fanout tasktf + communication time of edge (tj, tf), − ω(tj)) +
execution time (tj).

c. Priority level of edgeek = priority level of destination node (ek)
+ communication time (ek).

As an example, the numbers adjacent to nodes in Figure 1(a)
indicate their associated priority levels. The priority level of a task
is an indication of the longest path from the task to a task with a
specified deadline in terms of computation and communication
costs as well as the deadline. In order to reduce the schedule length,
we need to decrease the length of the longest path which is done by
forming a cluster of the tasks along the longest path. This makes the
communication costs along the path zero (this is based on the
traditional assumption made in distributed computing that intra-PE
communication takes zero time). Then the process can be repeated
for the longest path formed by the yet unclustered tasks, and so on.

At the beginning, we sort all tasks in the order of decreasing
priority levels. We pick unclustered taskti with the highest priority
level and mark it clustered. Then we find the fan-in set ofti, which
is a set of fan-in tasks that meet the following constraints: 1) the
fan-in task is not clustered already with another fanout task, 2) the
fan-in task’s cluster Ck is preference- and exclusion-compatible
with ti, and 3) the cumulative size of tasks in Ck does not exceed
the cluster size threshold. If the fan-in set ofti is not empty, we
identify an eligible cluster which is grown (i.e. expanded) using a
cluster growth procedure. If the fan-in set ofti is empty, we allocate
a new clusterCj and use the cluster growth procedure to expand it.
In order to ensure load balancing among various PEs of the
architecture, the cluster size should be limited. If the cluster size is
too big, it may be prevented from being allocated to any PE. If it is
too small, it would increase the total number of clusters and
increase the computational complexity. We use a parameter called
cluster size threshold,Cth, to limit the size of the cluster.Cth is set
equal to the hyperperiod. At any point in the clustering procedure,
for any clusterCk containing m tasks, its size, denoted asθk, is
estimated by the following equation. Letpi denote the period of

Cluster selection
Allocation array creation

Next allocation selection

Scheduling

Performance evaluation

Allocation
evaluation
 Deadlines
 met?

No

All clusters
 explored?

Outer
loop

P
re-processing

All
allocations
explored?

No
No

All

explored?

Yes

Failure message

Inner
loop

clusters

No Yes

SUCCESS

Final solution

Yes
Best allocation

selection

Yes

Figure 2. The co-synthesis process flow

Task graphs, Constraints, Resource library

Association array creation

Cluster formation

Parsing

taskti of clusterCk and letΓ be the hyperperiod. Then

The cluster growth procedure adds taskti to the feasible
cluster identified from the fan-in-set or to a new cluster and grows
the cluster further, if possible, by adding one of the fan-out tasks of
ti along which the priority level ofti is the highest. We recompute
the priority levels of the tasks in the task graph ofti after clustering
ti either with any existing cluster or after clustering it with one of
its fan-out tasks. This allows us to identify the critical path
dynamically and to facilitate compression of multiple critical paths.

The application of the clustering procedure to the task graph
of Figure 1(a) results in three clusters, C1, C2, and C3. Once the
clusters are formed, some tasks are replicated in two or more
clusters to address inter-cluster communication bottlenecks [10].
3.3 Cluster Allocation

We define the priority level of a cluster to be the maximum
of the priority levels of the constituent tasks. Clusters are ordered
based on decreasing priority levels. We use a dynamic priority
level, i.e. after the allocation of each cluster, we recalculate the
priority level of each task and cluster. We pick the cluster with the
highest priority level and create an allocation array. We order the
allocations in the allocation array in the order of increasing value
of the cost function. Once the allocation array is formed, we use the
inner loop of co-synthesis to evaluate the allocations.
3.3.1 The Outer Loop of Co-Synthesis

The allocation array considers the following: 1) architectural
hints, 2) preference vector, 3) allocation of the cluster to existing
resources in the partial architecture, 4) upgrade of links, 5) upgrade
of PEs, 6) addition of PEs, and 7) addition of links. Architectural
hints are used to pre-store allocation templates (these templates
correspond to the mapping of sub-task-graphs to part of the
architecture being built). We exclude those solutions for which the
pin count, gate count, and memory limits (and power dissipation if
power is being optimized) are exceeded. Once an allocation array
is formed, the allocations in it are ordered based on dollar cost. If
power is being optimized, the ordering is done based on average
power dissipation while making sure the peak power dissipation is
within limits.
3.3.2 The Inner Loop of Co-Synthesis

We pick the unvisited allocation with least dollar cost, mark
it visited and go through scheduling and solution evaluation steps
described next. We use a priority-level based scheduler for
scheduling tasks and edges on all PEs and links in the allocation.
We generally schedule only the first copy of the task. The start and
finish times of the remaining copies are updated in the association
array, as discussed earlier. Usually, this is sufficient to derive an
efficient architecture. However, we do sometimes need to schedule
the remaining copies [11]. This is followed by the performance
estimation step.
3.4 Scheduling

We first order tasks and edges based on the decreasing order
of their priority levels. If two tasks (edges) have equal priority
levels, we schedule the task (edge) with the shorter execution
(communication) time first. While scheduling communication
edges, the scheduler considers the mode of communication
(sequential or concurrent) supported by the link and processor.
Though preemptive scheduling is sometimes not desirable due to
the overhead associated with it, it may be necessary to obtain an
efficient architecture. In order to decide whether to preempt a task
or not, we use the following criteria. Letφi andφj be the priority
levels of tasks ti and tj, respectively, and letαir andαjr be their
execution times on PEr. Letηr be the preemption overhead (PO)
on PEr to which tasksti andtj are allocated. Letπb(ti) be the best-
case finish time (this takesαir into account) andµ(ti) be the
deadline of taskti. We allow preemption of taskti by tj under the
following scenarios: 1) Ifφj > φi, else 2) Ifti is a sink task, and
πb(ti) + ηr + αjr ≤ µ(ti) . ηr is specifieda priori. It includes context
switching and any other processor-specific overheads. Preemption
of a higher priority task by a lower priority task is allowed only in
the case when the higher priority task is a sink task which will not

miss its deadline, in order to minimize the scheduling complexity.
This is important since scheduling is in the inner loop of co-
synthesis.

We support task graphs which do not start execution at time
t=0. This, in conjunction with a task graph whose period is less than
its deadline, may require that some tasks finish after the
hyperperiod. We allow the schedule of some tasks to spill over the
hyperperiod and ensure that resources are not overused, using the
concept of spill vector and deadline re-assignment [11].
3.4.1 Performance Estimation

The scheduler provides an accurate information on the start
and finish times of the tasks in the allocated clusters. This, in turn,
makes our FTE method more accurate and minimizes the false
rejection of an allocation. Each node (communication edge) in the
task graph has best- and worst-case execution (communication)
times corresponding to the minimum and maximum entries in the
corresponding execution (communication) vector. When a task
(edge) gets allocated, its best- and worst-case execution
(communication) times become equal and corresponds to the
execution (communication) time on the PE (link) to which it is
allocated. The FTE step, after each scheduling step, updates the
best- and worst-case finish times of all tasks. Scheduling after each
allocation step greatly improves the FTE accuracy compared to
other approaches where FTE assumes worst-case allocation [8],
which often results in pessimistic estimates. The best- and worst-
case finish times,πb andπw respectively, of each task and edge are
estimated as follows. Letαi

b andαi
w (βj

b andβj
w) represent the

best- and worst-case execution (communication) times of taskti
(edgeej), respectively. The best- and worst-case finish times for a
task and edge are estimated using the following equations.
1. πb (ti) = max {πb (e) + αi

b} andπw(ti) = max {πw (e) + αi
w}

wheree ∈ {Ε}, the set of input edges ofti.
2. πb (ej) = πb (tk) + βj

b andπw(ej) = πw (tk) + βj
w wheretk is the

source node of edgeej.
Let us next apply the above FTE method to the task graph in

Figure 1(a). Suppose cluster C1 is allocated to PE2, and the other
two clusters are unallocated. We would then obtain the FTE graph
shown in a Figure 1(b) which indicates that the best- and worst-case
finish times of sink task t11 are 150 and 200, respectively.
3.4.2 Allocation Evaluation

Each allocation is evaluated based on the total dollar cost.
We pick the allocation which at least meets the deadline in the best
case. If no such allocation exists, we pick an allocation for which
the summation of the best-case finish time of all tasks with
specified deadlines in all task graphs is maximum. This may seem
counter-intuitive. However, this generally leads to a less expensive
architecture since larger finish times generally correspond to less
expensive processor/link. If there are more than one allocation
which meet this criterion then we choose the allocation for which
the summation of the worst-case finish times of all tasks with
deadlines is maximum. The reason behind using the "maximum"
instead of "minimum" in the above cases is that at intermediate
steps we would like to be as frugal as possible with respect to the
total dollar cost of the architecture. Since we allow addition as well
as upgrade of PEs/links during co-synthesis, the real-time
constraints will ultimately be met.
3.5 Application of the Co-Synthesis Algorithm

We next apply the above co-synthesis algorithm to the task
graph in Figure 1(a). Clusters are ordered based on the decreasing
value of their priority levels. Figure 3 illustrates the allocation of
various clusters during the outer and inner loops of co-synthesis.
Since cluster C1 has the highest priority level, it is allocated first to
the cheaper processor PE2, as shown in Figure 3(a). The scheduler
is run and the projected finish time (PFT) is {150, 200}, as shown
in Figure 1(b). Since the best-case estimated finish time does not
meet the deadline, the partial architecture needs to be upgraded.
Therefore, C1 is allocated to processor PE1, as shown in Figure
3(b). Since deadlines are still not met and all possible allocations
are explored, C1 is marked as allocated and cluster C2 is considered
for allocation. First, an attempt is made to allocate C2 to the current
PE, as shown in Figure 3(c). After scheduling, FTE indicates that

θk π
w

ti() Γ pi()÷()⋅()
i 1=

m

∑=

the deadlines can be met in the best case. Hence, next, C3 is
considered for allocation. Again, an attempt is first made to allocate
C3 to PE1, as shown in Figure 3(d). Since the deadline is not met
in the best case, the architecture needs to be upgraded, as shown in
Figure 3(e). Since the deadline is still not met, the architecture is
upgraded again, as shown in Figure 3(f). Now that the deadline is
met and all clusters are allocated, the architecture given in Figure
3(f) is the final solution.
4 Co-Synthesis of Low Power Embedded Systems

For some embedded systems, along with cost and real-time
constraints, another important constraint is power dissipation.
Hence, an efficient co-synthesis technique targeted towards
synthesis of low power embedded systems is of utmost importance.

The basic co-synthesis process flow of Figure 2 is also used
in the co-synthesis system for low power, termed COSYN-LP. The
parsing, association array formation and scheduling steps remain
the same as before. We describe next how the other steps are
modified.
4.1 Clustering

We use deadline-based priority levels to identify the order for
clustering tasks, however, we use energy levels instead of priority
levels to form clusters, since our objective is to minimize overall
power consumption. Clustering along the higher energy-level path
makes the communication time as well as communication energy
for inter-task edges zero. The concept of energy levels also lets us
take into account the quiescent energy dissipation in PEs and links
in a straightforward manner. This is the reason we target energy
levels even though our ultimate goal is to reduce average power
dissipation subject to the given real-time and peak power
constraints. Energy levels are assigned as follows:
1. For each task and edge, determine the average energy dissipa-

tion, as the worst-case execution or communication time
(derived from the execution/communication vector) multiplied
by the corresponding average power dissipation (the worst-case
execution/communication time is chosen because meeting real-
time constraints is most important). Mark all tasks as unvisited.

2. For each unvisited taskti in the task graph do the following: ifti
is a sink task, energy level (ti) = [average energy of taskti]. If ti
is not a sink task, for each edgee = (ti, tf) in the set of fanout
edges of taskti, wheretf is a fanout task, energy level (ti) = max
(energy level (tf) + average energy (ti, tf) + average energy (ti)).
Mark ti visited.

The cluster formation procedure is the same as the one
discussed in Section 3.2 except that we use energy levels instead of
priority levels. The energy levels are recomputed after the
clustering of each node. The objective of clustering in this context
is to try to decrease the system energy consumption while still
meeting real-time constraints. To appreciate the difference between
the energy-level based clustering and the one given in Section 3.2,
consider the task graph shown in Figure 4(a). The numbers in
brackets in this figure indicate energy levels and the numbers in
bold indicate priority levels. They have been derived from the
vectors given in Figure 4(f). Application of COSYN results in two
clusters C1 and C2, as shown in Figure 4(b), and the architecture
shown in Figure 4(c). Here, for simplicity, only one PE and link are
assumed to be present in the PE and link libraries, whose costs are

shown in Figure 4(c). COSYN-LP results in a different clustering,
as shown in Figure 4(d). The resulting architecture from COSYN-
LP is shown in Figure 4(e). COSYN-LP results in a reduction in
overall energy consumption from 60 to 55.25 with a minor increase
in the finish time while still meeting the deadline. Here, for
simplicity, we have assumed that the quiescent power dissipation in
the PEs/links is zero. However, in general, we take this into
account, as explained later.

The energy-level based clustering technique generally does
not result in a significant increase in the schedule length. This is
due to the fact that energy and schedule length optimization are not
necessarily divergent goals [12].
4.2 Cluster Allocation

We next discuss cluster allocation and finish-time/power
estimation in the outer and inner loops of co-synthesis. In the outer
loop of co-synthesis, the allocation array is created, as before, for
each cluster. Each allocation is checked to see if the peak power
dissipation as well as memory capacity (in case of general-purpose
processor) of the associated PE/link is exceeded. Entries in the
allocation array are ordered based on increasing average power
dissipation. If there are more than one allocation with equal average
power dissipation, then the one with the least dollar cost is chosen.

In the inner loop, during performance estimation, in addition
to FTE, architecture power/energy estimation is also performed.
The peak power dissipation, average energy dissipation, and
average power dissipation for each processor, FPGA, ASIC, and
communication link in the architecture are estimated as follows.
Processor/link: The average and peak power are estimated based
on the tasks (edges) allocated to the processor (link). The quiescent
power dissipation of a processor (link) indicates the power
dissipation during the idle time when no task (edge) is assigned to
it. The power dissipation of a task (edge) is obviously higher than
the quiescent power dissipation of a processor (link). Letti ∈{ T} be
the set of tasks assigned to the pth processorP. Similarly, let ej
∈{ E} be the set of communication edges assigned to the lth link L.
The peak power forP is max{peak power (ti ∈{ T})}. Similarly, the
peak power forL is max{peak power (ej ∈{ E})}. Let ℜξ represent
the average energy, and letθξ represent the quiescent average
power dissipation, respectively. Letψ represent the idle time in the
hyperperiod. Letni (nj) be the number of times that taskti (edgeej)
is executed in the hyperperiod. The average energy forP andL are
estimated as follows (the average power dissipation ofP andL are
estimated by dividing the total average energy dissipation by the
hyperperiod).

PE2(C1)
Cost = 70

PFT = {150, 200}

PE1(C1)
Cost = 120

PFT = {110, 160}

PE1(C1, C2)
Cost = 120

PFT = {90, 120}

PE1(C1, C2) PE2(C3)

L2

Cost = 210
PFT = {120, 120}

PE1(C1, C2, C3)
Cost = 120

PFT = {110, 110}

Need to upgrade processor Need to bring in new cluster

Need to bring in new cluster Deadline exceeded! Upgrade

Deadline exceeded! Upgrade

PE1(C1, C2) PE2(C3)L1
Cost = 225

PFT ={100,100}
Success! Deadline met

 (a) (b)

 (c) (d)

 (e) (f)

Figure 3. Stepping through COSYN

t1

t2

t3

t4

e1

e2

t6

t5

t7

e3

e6
e5

e4

-45

-45

-15

-25

-5

15

26

(5)

(12.5)

(20)

(27.5)
(15)

(40)

(50)

(d) COSYN-LP clustering

PE2 PE1

[t2-t5] [t1, t6, t7]

 [e1]

(e) COSYN-LP architecture

Finish time of task t5 = 51
Finish time of task t7 = 30
Total energy = 55.25

(b) COSYN clustering

t1

t2

t3

t4

e1

e2

t6

t5

t7

e3

e6

e5

e4

-45

-45

-15

-25

-5

15

26

(5)

(12.5)

(20)

(27.5)
(15)

(40)

(50)

C1

C2

C2

C1

Link 1

t1

t2

t3

t4

e1

e2

t6

t5

t7

e3

e6

e5

e4

-45

-45

-15

-25

-5

15

26

(5)

(12.5)

(20)

(27.5)

(15)

(40)

(50)

(a) Task graph

est = 0
 Deadline = 55

Period = 55

PE1 PE2

[t1-t5] [t6, t7]

[e5]

(c) COSYN architecture

Finish time of task t5 = 50
Finish time of task t7 = 40
Total energy = 60
Cost [PE, Link] = [100, 20]

Link 1

Figure 4. Clustering for low power
(f) Parts of power, execution and communication vectors

Ave._power_dissip.[t1, t2, t3, t4, t5, t6, t7] = [0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5]
Worst-case_exec_time[t1, t2, t3, t4, t5, t6, t7] = [10, 10, 10, 10, 10, 10, 10]
Ave._power_dissip.[e1, e2, e3, e4, e5, e6] = [.25, .25, .25, .25, .50, .50]
Worst-case_comm_time[e1, e2, e3, e4, e5, e6] = [1, 10, 10, 10, 10, 20]

C2

FPGA/ASIC: Tasks assigned to FPGAs and ASICs can run
simultaneously. Therefore, the peak power of an FPGA/ASIC is
the summation of the peak power required by all tasks assigned to
them and the quiescent power of the unused portion of the FPGA/
ASIC. The average energy/power estimation procedure is similar
to the one given above.
System power dissipation: The average power dissipation of the
partial architecture is estimated by dividing the total estimated
energy dissipated in PEs/links in it by the hyperperiod.

During the allocation evaluation step, we pick the allocation
which at least meets the deadline in the best case. If no such
allocation exists, we pick an allocation for which the summation of
the best-case finish times of the nodes with specified deadlines in
all task graphs is maximum, similar to COSYN.
5 Experimental Results

Our co-synthesis algorithms, COSYN and COSYN-LP, are
implemented in C++. Table 1 provides an overview of the examples
on which we have run COSYN. Prakash & Parker(0-4) are from
[4]. Prakash & Parker(0) is the same as task 1 in [4]. Prakash &
Parker(1-3) are the same as task 2 in [4] with different constraints.
Prakash & Parker(4) is a combination of task 1 and task 2 from [4].
Yen & Wolf Ex is from [6]. Hou & Wolf Ex(1,2) are from [7]. DSP
is from [10] and its deadline and period were assumed to be 6500
ms. The PE and link libraries used in these results are the same as
those used in the corresponding references. We also ran COSYN
and COSYN-LP on various Bell Laboratories telecom transport
system task graphs. These are large task graphs representing real-
life field applications. The execution times and power dissipation
for the tasks in the transport system task graphs were either
experimentally measured or estimated based on existing designs.
For results on these graphs, the PE library was assumed to contain
Motorola microprocessors 68360, 68040, 68060 (each processor
with and without a second-level cache), two ASICs, one XILINX
3195A FPGA, and one ORCA 2T15 FPGA. The link library was
assumed to contain a 680X0 bus, a 10 Mb/s LAN, and a 31 Mb/s
serial link. As shown in Table 1, COSYN consistently outperforms
both MILP [4] and iterative improvement techniques [6,7]. For
Prakash & Parker(4), the MILP technique required approximately
107 hours of CPU time on Solbourne5/e/900, and Yen and Wolf’s

algorithm was unable to find a solution, whereas COSYN was able
to find the same optimal solution as MILP in less than a second on
Sparcstation 20 with 256MB RAM. Results in Table 2 show that
COSYN was able to handle the large telecom transport system task
graphs equally efficiently. COSYN-LP was able to reduce power
dissipation by an average of 25% (this is the average of the
individual cost reductions; the average is similarly determined for
other parameters) over the basic COSYN algorithm at an average
increase of 19% in cost. Also, as shown in the last column in Table
2, the actual system power measurements made on the COSYN-LP
architectures indicate that the error of the COSYN-LP power
estimator is within 9%.
6 Conclusions

We presented an efficient distributed system co-synthesis
algorithm in this paper. Even though it is a heuristic algorithm,
experimental results show that it produces optimal results for the
examples from the literature. It provides several orders of
magnitude advantage in CPU time over existing algorithms. This
enables its application to large examples for which experimental
results are very encouraging. Large real-life examples have not
been tackled previously in the literature. We have also presented
the first co-synthesis algorithm for power optimization.
References
1. M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., 1979.
2. R. K. Gupta,Hardware-Software Co-synthesis of Digital Systems, Ph.D. thesis,

Dept. of EE, Stanford University, 1994.
3. A. Kalavade and E. A. Lee, "A global criticality/local phase driven algorithm for

constrained hardware/software partitioning problem," inProc. Int. Wkshp.
Hardware-Software Co-Design, pp. 42-48, Sept. 1994.

4. S. Prakash and A. Parker, "SOS: Synthesis of application-specific heterogeneous
multiprocessor systems,"J. Par. & Dist. Comput., pp. 338-351, Dec. 1992.

5. J. G. D’Ambrosio and X. Hu, "Configuration-level hardware/software
partitioning for real-time systems," inProc. Int. Wkshp. Hardware-Software
Co-Design, pp. 34-41, 1994.

6. T.-Y. Yen and W. Wolf, "Communication synthesis for distributed embedded
systems," inProc. Int. Conf. Computer-Aided Design,Nov. 1995.

7. J. Hou and W. Wolf, "Process partitioning for distributed embedded systems,"
in Proc. Int. Wkshp. Hardware-Software Codesign,pp. 70-76, 1996.

8. S. Srinivasan and N. K. Jha, "Hardware-software co-synthesis of fault-tolerant
real-time distributed embedded systems," inProc. European Design Automation
Conf., pp. 334-339, Sept. 1995.

9. E. Lawler and C. Martel, "Scheduling periodically occurring tasks on multiple
processors,"Inform. Process. Letters, vol. 12, Feb. 1981.

10. S. Yajnik, S. Srinivasan and N. K. Jha, "TBFT: A task based fault tolerance
scheme for distributed systems," inProc. ISCA Int. Conf. Parallel & Distr.
Comput. Syst., pp. 483-489, Oct. 1994.

11. B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software
co-synthesis of embedded systems,” Tech. Rep., CE-J96-003, Dept. of EE,
Princeton University, Oct.1996.

12. V. Tiwari, S. Malik and A. Wolfe, "Compilation techniques for low energy: An
overview," inProc. Symp. Low-Power Electronics, Oct. 1994.

ℜ
ξ

P() ξip α
ip

ni⋅ ⋅
t i T∈
∑ θκ

P() Ψ P()⋅[]+=

ℜ
ξ

L() ξ
jl

βjl nj⋅ ⋅
ej E∈
∑ θκ

L() Ψ L()⋅[]+=

Table 1: Experimental results for examples from the literature

Example/Number of tasks

Number of PEs/Cost ($) Number of links CPU time (sec)

Prakash
& Parker

Yen/Hou
& Wolf

COSYN
Prakash &

Parker
Yen/Hou
& Wolf

COSYN
Prakash & Parker

on Solbourne 5/e/900
Yen/Hou & Wolf

on Sparc 20
COSYN on

Sparc 20

Prakash & Parker (0)/4 1/5 N/A 1/5 0 N/A 0 37.00 NA 0.20

Prakash & Parker (1)/9 1/5 1/5 1/5 0 0 0 3691.20 59.15 0.40

Prakash & Parker (2)/9 2/10 3/10 2/10 1 1 1 7.42 hrs 56.79 0.54

Prakash & Parker (3)/9 N/A 3/12 2/10 N/A 1 1 N/A 193.30 0.58

Prakash & Parker (4)/13 1/5 N/A 1/5 N/A 1 1 106.95 hrs N/A 0.84

Yen & Wolf Ex/6 N/A 3/1765 3/1765 N/A 2 2 N/A 10.63 0.74

Hou & Wolf Ex1/20 N/A 2/170 2/170 N/A 1 1 N/A 14.96 5.10

Hou & Wolf Ex2/20 N/A 2/170 2/170 N/A 1 1 N/A 4.96 2.64

DSP/119 N/A N/A 2/100 N/A N/A 1 N/A N/A 127.30

Table 2: Experimental results for transport systems

Example/
of tasks

COSYN COSYN-LP
Actual Transport

System Power Dissipation

No. of
PEs/Cost($)

No. of
links

CPU time
(sec)

Average power
dissipation(Watts)

No. of
PEs/Cost($)

No. of
links

CPU time
(sec)

Average power
dissipation (Watts)

Average Power
dissipation (watts)

Transport System(1)/15 2/305 1 0.54 4.43 2/368 1 1.20 2.66 2.45

Transport System(2)/45 4/455 3 1.42 7.72 4/554 3 2.20 5.73 5.29

Transport System(3)/156 13/1725 11 118.40 26.40 13/1993 11 142.60 23.57 22.18

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

