
System-Level Synthesis of Low-Power Hard Real-Time Systems

Darko Kirovski and Miodrag Potkonjak
Computer Science Department, University of California, Los Angeles, CA 90095-1596

Abstract

We present a system-level approach for power optimization under
a set of user specified costs and timing constraints of hard real-time
designs. The approach optimizes all three degrees of freedom for
power minimization, namely switching activity, effective capacity
and voltage supply.

We first define two key associated optimization problems, pro-
cessor allocation and task assignment, and establish their compu-
tational complexity. Efficient algorithms are developed for both
system design problems. The statistical analysis of comprehensive
experimental results and their comparison with the developed con-
servative and optimistic sharp lower bounds, clearly indicates the
quality of the proposed optimization techniques.

1 Introduction

The application and technological factors behind the imminent con-
vergence of computer, communications, and consumer electronic
products and market impose a new set of design goals and con-
straints for the synthesis process of application specific systems.
The short time-to-market and cost sensitivity of consumer markets
imply a need for optimization intensive system-level synthesis. In
addition, multiplicity of standards and a need for flexibility and
customization favor programmable implementation platforms. The
popularity of the portable nature of future personal digital assistants
and communication devices is the principal motive for low-power
design technique development [1].

The research presented in this paper answers the outlined de-
sign requirements by introducing a system of optimization inten-
sive synthesis techniques and tools for design of hard real-time ap-
plication specific systems implemented on a set of programmable
units. The synthesis approach encompasses two fully modular tasks:
hardware allocation and task assignment. All three degrees of free-
dom for power minimization, namely switching activity, effective
capacity and voltage supply are considered. While the first two
degrees are described by processors’ power efficiency for a given
task, the last one depends on both the run time of a task on a partic-
ular unit and balanced loads on all processors. In order to minimize
the communication cost, tasks are assigned atomically to individual
units.

Resource allocation and task assignment for power efficient
hard real-time systems are difficult problems with several layers

Design Automation ConferenceR

Copyright c
 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

of conceptual and computational complexity. For example, if we
analyze the assignment problem, where a set of tasks is assigned
to a set of units, the power can be minimized either by execut-
ing tasks on power efficient units or scaling the operational volt-
age. However, voltage scaling is closely related to the time ef-
ficiency of particular task-to-processor assignments and balanced
minimized processor workloads. From the optimization point of
view the key novelty is the use of statistical meta-algorithmic tech-
niques for optimization of parameters that dictate the assignment
algorithm. From statistical and result evaluation points of view, the
key novelties are related to several new techniques for establishing
the quality of heuristic algorithms.

The key trade-offs and ideas used to develop the synthesis algo-
rithms can be introduced using the following motivational example.
For the sake of brevity we restrict our attention to the assignment
phase of the synthesis approach.

A set of tasksfTi, i=1..6g has to be assigned to a given hard-
ware configuration so that the power consumption is minimized.
Each taskTi requires a certain number of cyclesTi;j to execute
on a particular processing elementfPEj , j=1..3g. TheCi;j data
are shown on the left side of Table 1. Each unitPEj consumes
a specific amount of energyEj per operation. Thus, the energy
PEi;j required for one execution of each taskTi can be computed
asPi;j=PEj � Ci;j . The right side of the Table 1 provides the data
on the task execution energiesPi;j . The tasks are independent and
have to be executed exactly once per each iteration (21�s). A volt-
age supply of 3.3V is assumed. All units, when driven by 3.3V
power supply, can support a clock cycle delay of 5ns, implying
200MHz operational frequency.

Clock Cycle Energy [�J]
PE1 PE2 PE3 PE1 PE2 PE3

Energy per cycle of operation 200 20 5
T1 100 250 900 20 5 4.5
T2 120 250 800 24 5 4
T3 140 300 800 28 6 4
T4 140 200 400 28 4 2
T5 140 400 500 28 8 2.5
T6 130 800 800 26 16 4

Table 1: Task cycle and energy efficiencies on the allocated hard-
ware.

Power can be optimized by assigning tasks to processors which
consume the least amount of power for their execution and by scal-
ing the voltage of the power supply. The voltage is scaled with
respect to the maximal cycle time required by the hardware con-
figuration and its workload. Maximally scaled voltage corresponds
to the cycle time allowed by the delay vs. voltage digital CMOS
dependency.

One attractive option for task assignment is to assign each task
to a processor which consumes the least amount of power for its
completion (PE3). This task assignment requires 4200 cycles. The

minimal frequency at which the circuit has to be clocked is4200
21�s

=

200MHz. The power consumption totals21mJ.
The operational voltage of the system can be reduced further

by balancing the workloads on all units. Notice that the previous
optimization approach can be executed in linear time, while the
problem of balancing the workloads on all processors is proven to
be NP-hard. Exhaustive search has shown that the following task
assignment achieves the minimal number of cycles when:T1, T2,
T5, T6 onP1; T3 onP2; andT4 onP3. Maximally balanced work-
load requires 490 cycles. Now, the clock cycle can be increased
200MHz

490

21�s

= 8:57 times, resulting in voltage decrease from 3.3V to

1.29V. The power consumption is (P1;1 +P2;1 +P3;2 +P4;3 +P5;1

+ P6;1)
V 2

1

V 2

0

= 106mJ1:29
2V 2

3:32V 2
= 16mJ.

Although maximally lowered operational voltage appears to be
the most important criteria considered for power optimization, proper
analysis shows that the best solution can be obtained when the ad-
vantages of the cycle-, power- and balance-greedy optimization cri-
teria are combined. For example, consider the following assign-
ment: T1, T2, T3, T4 on P2; T5, T6 on P3; which requires 1300
cycles. The cycle time can be increased200MHz

1300

21�s

= 3:23 times,

yielding 1.70V operational voltage. The total power consumption

is (P1;2+P2;2+P3;2+P4;2+P5;3+P6;3)
V 2

1

V 2

0

=26.5mJ1:70
2V 2

3:32V 2
=7mJ.

Greedy Optimal
Technique Power Balance Power

MaxFrequency 200MHz 23.4MHz 62MHz
Voltage 3.3V 1.29V 1.70V
Cycles 4200 490 1300

Energy (3.3V) 21mJ 106mJ 26.5mJ
Scaled Energy 21mJ 16.3mJ 7mJ

Table 2: Comparison of greedy optimization techniques to the op-
timal solution.

This is an improvement of 130% and 200% in comparison to
the balanced, and power-greedy solution respectively. The motiva-
tional example shows that high energy savings can be obtained even
on small examples when optimization is treated as a combination
rather than selection of the stated power optimization concepts.

The rest of this paper is organized in the following way. In
Section 2 we present related research. Section 3 outlines the com-
putational, task and power consumption models. Analysis of de-
sign trade-offs and overall design flow are presented in Section 4.
Synthesis optimization problems are defined and their complexity
is established in Section 5. The algorithms are described in detail
in Section 6 and 7. Sections 8 and 9 contain a report on conducted
experiments and conclusion respectively.

2 Related Work

System level synthesis, including hardware-software codesign and
partitioning, is premier design and CAD research topic [12], [2].
The most relevant system research subdomain is hardware-software
partitioning, where a great variety of techniques are proposed [3],
[4], [5].

A number of synthesis and compilation techniques for power
optimization at all levels of abstractions during the design process
have been proposed [9]. Although power optimization is often most
effective when applied early in the design process at the algorith-
mic and architectural level, majority of power minimization tech-
niques have been proposed for logic synthesis and physical design

[9]. Potkonjak and Rabaey presented a CAD system-level synthesis
approach which targets low-power [8].

Hard-real time scheduling efforts have been an important topic
for research since early computing days. A survey of the key results
in hard real-time scheduling and assignment is given in [10].

3 Preliminaries

We assume that all tasks are periodic and defined as one-way in-
finite streams of data. Each task has its own period of appear-
ance. This computational model is the standard abstraction for
many video, digital signal processing, communication, and mul-
timedia applications.

In the period equal to the Least Common Multiple (LCM) of
all periods of all tasks, all instances of a single task have to be exe-
cuted. Their execution has to satisfy the deadline that is set by the
LCM of all task periods. Tasks are independent which means there
is no cost for intertask communication. The assumption of task in-
dependence is done with no loss of generality whatsoever, because
atomic independent tasks can be treated as a single composite task.

The targeted architecture template is shown in Figure 1. The
system contains N programmable processors (CPUs). Each CPU
has a reserved segment of data memory. Programs that execute the
tasks are stored in EPROMs. All units are subject to the common
voltage supply source.

Memory System

CPU1 CPU1 CPU2 CPU3 CPU2

input data
stream

output data
stream

EPROM EPROM EPROM EPROM EPROM

Tasks are
stored as

procedures
in EPROMs

atomic
processor

hot
spare

Figure 1: High-level architectural template.

In CMOS digital circuits the dynamic power consumption is
given by the following formula

Energy � SwitchingActivity � Ceff � V
2
dd.

Since the power consumption is proportional to the square of
the voltage supply, its lowering is often the main concern in ev-
ery power optimization technique. However, lowering the supply
voltage causes increased delay of CMOS circuits according to the
following formula [1]:

Delay = K � Vdd
(Vdd�Vt)

2

where K andVt are constants entirely dependent upon the im-
plementation technology.

When assigning tasks to the allocated hardware we minimize
and balance the workloads on all processors. The deadline, set by
the periodic nature of the incoming datastream, imposes a bound-
ary on the delay of a single clock cycle of the allocated resources:
Deadline > Cycles � Delay, and therefore, limits system de-
signer’s ability to lower the supply voltage.

The other two parameters that impact power consumption, the
effective capacity and switching activity, are optimized implicitly
in two phases of our synthesis approach. First, for a given set of
tasks we select hardware that has the least effective capacity and

switching activity for the execution of the entire set of tasks. Then,
during the task assignment phase, the processor of a minimal effec-
tive capacity and switching activity is given a certain preference.

4 The New Synthesis Approach

The synthesis procedure starts with the resource allocation step.
The allocation algorithm searches for the processor configuration
which consumes the least power for a given set of tasks under a
given cost constraint of the system. The allocation algorithm is
based on a multistart gradient search. For the evaluation of the
proposed solution, the allocation algorithm invokes the task assign-
ment procedure. Once the allocation is completed, the final assign-
ment starts. The assignment heuristic algorithm is developed by a
new statistical meta-algorithm methodology explained in Section
7. The assignment procedure iteratively assigns one task at a time.
The decision of selecting tasks and target processors is made glob-
ally; each time a task is considered for assignment, its impact on
further assignment of remaining tasks is encountered. The task is
selected upon its relative size, and the most efficient power and cy-
cle requirements for execution. Processor selection depends upon
the processors’ current workloads, and power and cycle efficiencies
for the execution of the selected task. Once all tasks are assigned,
the voltage of the power supply is scaled as dictated by the overall
timing deadline and maximum cycle workload. Detailed explana-
tions of the developed algorithms for each synthesis step are given
in Sections 6. and 7.

5 Optimization Problems

We now formulate the optimization problems associated with system-
level synthesis of low power hard real-time multitask designs and
establish their computational complexity. Our synthesis approach
has two optimization intensive phases: allocation and assignment.

Problem: Allocation for synthesis of low power hard real-time
application specific systems.

Instance: A set of K processors and a set of N independent
periodic hard real-time tasks are given. Each processor has an as-
sociated cost and power consumption per cycle. Each task has its
period and execution time for assignment to any of the processors.
Two positive numbers C and P.

Question: Select a multisubset of processors (subset where
some processors can be included more than once) such that each
task is assigned to exactly one processor, the sum of costs of se-
lected processors is at most C, and the power consumed by all tasks
is at most P.

Problem: System-level Assignment of Hard Real-Tasks.
Instance: A set of K processors and a set of N independent

periodic hard real-time tasks are given. Each task has its period
and execution time (number of cycles) for each of the available
processors.

Question: Assign each task to one of the processors in such a
way that all tasks can be scheduled within their timing constraints
and that the power consumed by all tasks is at most P.

We proved that system-level synthesis optimization problems
for low power hard real-time multitask systems are NP-complete in
[6].

6 Resource Allocation

The first synthesis step is resource allocation. The goal is to select
a multiset from the set of available processors, so that the power
consumption of the hard real-time system is minimized under the
maximum cost constraint. The inputs to the resource allocation

program are costs and power consumptions per cycle of all avail-
able processing units, denoted byCi andPEi respectively, and the
total user specified system cost C. Also, the information about the
execution time of each task on each type of processor is available.
This information can be obtained either by executing tasks on a
given processor or by using simulation and estimation techniques.
Since the resource allocation is computationally intractable prob-
lem, we opted to use heuristic search which provides a favorable
run-time vs. quality trade-off. The synthesis algorithm starts with
a preprocessing step, which eliminates all types of processors dom-
inated by other types of processors. ProcessorPEx is inferior to
processor typePEy, if PEx is more expensive, performs all tasks
in more clock cycles and requires more energy for the execution of
each task. The minimum set of non-inferior processors is selected
using the standard 3-D dominance algorithm [11].

Remove all inferior processors from the hardware menu
While (number of attempts ¡ K)

Repeat
Generate initial random feasible solution
For all types of processors add or delete a processor from
the current configurationHCi, and calculate the OPC as
well as the objective functionOFi = OPTi + � �MCi,
whereMCi is the marginal cost ofHCi.
If Ci > C thenMCi = 0 elseMCi = Ci � C.
Depending on the values of the objective function for all
types of processors, delete or add a processor of the
winning type and action.
Increase�.

Until there is improvement and the cost of the configuration
satisfies the system requirements.

Exclusion of inferior
types of processors

Randomize the
initial solution

Iterative improvement
algorithm

xCOST1+yCOST2<COST

x,y | integer x

y

x*COST1+y*COST2<COST

Figure 2: Resource allocation algorithm (example for two types of
processors).

Once all inferior processing types are excluded from the hard-
ware menu, the heuristic that searches for the most power-efficient
configuration starts. The heuristic defines a random hardware con-
figurationHC0 which is used as a starting point for an iterative
improvement heuristic. This configuration is constructed in such
a way that it is not possible to add a single processor of any type
to HC0 so that it stays within the range of the system cost C. The
initial configuration is established by randomly adding processing
units, as long as the cost of the system is lower than C.

The iterative heuristic at each step tries all the options for ad-
dition or removal of any of the considered types of resources. The
heuristic is gradient-driven, i.e. the configuration is upgraded by
following the most beneficial action. The objective function is a
weighted sum of the optimized power consumed (OPC) by the cur-
rent configuration and the marginal cost of the system. The power
is calculated by invoking a simplified task assignment procedure.
If the difference is positive, the marginal cost of the system is de-
fined as the excess of the cost of the current configuration over the
user specified system cost C. If the configuration cost satisfies the

cost requirement, the marginal cost is equal to zero. The weighted
sum of the two components is time dependent. As the optimiza-
tion process progresses, the importance of the marginal cost over
power increases, since it is more important to produce feasible so-
lutions. Thus, at the beginning of the heuristic search, we impose
relatively non-strict cost enforcement, while at the end, we strongly
favor solutions that satisfy the cost constraint.

Finally, when no further improvements cannot be obtained by
adding or deleting a processor of any type, we are likely to be
stuck in one of the local minima of the space of all possible solu-
tions. Therefore, we terminate our search and memorize the power-
optimal hardware configuration. The core of the allocation proce-
dure is repeated as long as no improvement is retrieved from the
lastk iterations of the allocation procedure.

The resource allocation procedure can be summarized using the
pseudo-code on Figure 2.

7 Task Assignment

Whenever the allocation algorithm generates a hardware configura-
tion it invokes a simplified task assignment heuristic in order to es-
timate the power consumption of the hardware configuration. The
task assignment algorithm iteratively selects a task for assignment
and then assigns the selected task to the allocated hardware. The
post-processing step aims at additional load balancing. The three
key steps of the algorithm are described in the remainder of this
section.

7.1 Task Selection

The first step during each iteration of the assignment procedure is
to select a task which will be assigned to one of the processors. The
selection is conducted using the following objective function:

Selecttaski = �1(T2;i � T1;i) + �2(P2;i � P1;i) +

�3
T
2;i+T1;iP

tasks

j=1
(T
2;j+T1;j)

+ �4 + �5 + �6

whereT1;i denotes the minimal number of cycles required to
execute the taskTi, T2;i denotes the second minimal number of
cycles required to execute the taskTi, P1;i is the most power-
efficient processor for executingTi, andP2;i is the second most
power-efficient processor for executingTi.

The selection function components represent the key trade-offs
among the considered mechanisms for power minimization while
the weight parameters dictate their relative importance. The first
component of the objective function favors assigning a task to a
processor where the task has minimal execution time. Since short
execution times enable voltage scaling, the differenceT2;i � T1;i
encountered in the objective function includes the lower bound for
not following the most run-time efficient option. The second com-
ponent favors assigning a task to a processor which consumes the
minimal amount of energy at the nominal voltage. The difference
P2;i�P1;i captures the minimal penalty for not following the most
power-efficient choice. Long tasks often cause workload balance
problems if not scheduled early. A taskTi is termed long compared
with the length of all other tasks if�3 �(T2;i+T1;i)/

Ptasks

j=1
(T2;j+

T1;j) is much greater than the same expression calculated for all
other tasks. Parameters�4; �5; �6 are values added to the selection
function if the most power-efficient and the most cycle-efficient
processor are the same (�4), if the most power-efficient proces-
sor is the same as the second most cycle-efficient processor or if
the most cycle-efficient processor is the same as the second most
power-efficient processor (�5), or if the second most power- and
cycle-efficient processors are the same (�6). Those three parame-
ters capture the relative difficulty of making an optimal assignment

choice for the task. The task that has the highest value of its selec-
tion function is the one selected for assignment.

7.2 Processor Selection

Processor selection is based on the execution characteristics for the
selected task on each processor. The selection function used in our
approach is

Selectprocessorj ;taski = �1T1;processorj ;taski +

�2P1;processorj ;taski + �3workloadoffset(processorj)

whereworkloadoffset(processorj) is equal to zero if the work-
load of processorj does not exceed the current maximum work-
load in the system. Otherwise it is equal to the difference of the
current maximum workload and the workload after the task is as-
signed to this processor.

As in the task selection function, here we also deal with several
trade-offs. The selected processor is the one with the smallest value
of the selection objective function. The first and the second compo-
nent favor the processor that performs the selected task in the most
time- and power-efficient way respectively. The third component
facilitates voltage scaling by load balancing. The quality of the fi-
nal solution is a function of parameter sets� and�. In the next
Section we describe how parameters for this function are obtained
by using meta-algorithmics and statistical techniques.

Application of the described synthesis algorithms to the moti-
vational example is presented in [6].

7.3 Meta-Algorithms

In the previous subsection, we discussed the key trade-offs and op-
timization mechanisms which impact the decision process and the
quality of the final design produced by the iterative task selection
and assignment process. Common engineering strategy is to start
with ad-hoc values for the parameters using insights obtained on
small manually done examples. In the second phase, a majority
of traditional approaches usually use the feedback from executed
benchmarks to tune the values of the parameters and therefore to
determine their relative importance. However, the traditional ap-
proaches most often do not provide any formal, statistical, or even
intuitive guarantees of the optimality of the achieved result.

In this subsection we outline a new meta-algorithmic approach
for statistical parameter determination and validation and demon-
strate its application on our assignment procedure for synthesis of
hard real-time systems. The key steps of the new methodology
for CAD algorithm development are described using the following
pseudo-code:

Meta-Algorithmic Procedure()f
generatelearning examples();

generateoptimizationmechanism();
parameterevaluation();g

As a first step to this strategy, we generated sets of statistically
identical benchmark examples using the set of available real-life
examples [6]. We prepared a set of K statistically random sets of M
tasks and N different hardware options. For the results presented in
this and next section, we used the following set of values: K = 150,
M = 20 - 320, and N = 5.

The second step, the generation of optimization mechanisms is
explained in Section 7. The core of the meta-algorithmics approach
is the parameter evaluation procedure given in Figure 3.

The core procedure performs multistart gradient search. One
iteration of the program for parameter evaluation first sets the pa-
rameters to random values. Then it checks the total power con-
sumptions (TPC) when each parameter is positively and negatively

offset by k% of its value. In our experimentations we used k =
2. Other parameters in rangef0.01-10g produced very similar re-
sults. The parameter that has the smallest TPC is then offset to the
value that caused this improvement, following the deepest descent
paradigm. Then the procedure continues exponentially increasing
or decreasing the selected parameter using the golden ratio search
approach. The one iteration of the golden ratio search is terminated
once the improvement is smaller than a user specified value� (we
used value 0.1%).

Once the golden ratio search is completed, the list of the param-
eters is updated to this new value and the procedure is iteratively
repeated as long as local minimum is not reached using our stop-
ping criteria. Then we start a search for the minimum value of TPC
by adjusting the parameterPk. The one iteration of the search is
terminated once when no improvement along directions indicated
by any of the parameters is not detected.

Randomize initial parameter set

Find the parameter from the
current parameter set that
has the maximal gradient

of the cost function

Increase the parameter until
there is no further

decrease of the cost function

Golden ratio search for the
local minimum of
the cost function

Repeat until there is no
further decrease of the

cost function

Pk1

Pk2 Pkg

Pk3

(Pk2-Pk1):(Pk3-Pk2)=
{Pkg-Pk2):(Pk3-Pkg)=

1.6

If Pkg<Pk2 then Pk2=Pkg; Pk1=Pk2;

If Pkg>Pk2 then Pk3=Pkg;

Set all parametersPi to random values.
For each parameterPi

CalculateTPC+
i whenPi = Pi � (1 + w)

and theTPC�i whenPi = Pi � (1� w).
TPC@

k = min(TPCi), where @ = sign(variation(Pk)).
SetPk toPk � (1@w).
Repeat

SetPk toPk � (1@w).
until TPC of the current set of parameters is greater
than the TPC of the previous set of parameters.
Memorize lastPk; Pk1; Pk2, Pk3.
Repeat
Pk = Pkg = GoldenRatio(Pk1, Pk3).
If the TPC�kg is greater than theTPCk2 thenPk3 = Pkg
elsePk1 = Pk2 andPk2 = Pkg.

until TPC�kg � TPCk2 > �.

Figure 3: Meta-algorithmic evaluation of parameters.

The intuition behind the evaluated parameters is the following:
the most important is to early select a task for which there is a
cleanly preferable assignment as indicated by parameters�1; :::; �3.
During the assignment it is relatively important to follow balancing,
unless there are high timing and power advantages. The evaluated
parameters were used in the next section to conduct experiments
that proved our assumptions about the efficiency of our synthesis
paradigm.

8 Experimental Results

In this section we describe our benchmark examples, experimental
results evaluation strategy, and present and analyze the experimen-

tal results. Our goal is to evaluate the effectiveness of proposed
algorithms on task mixes that approximate the expected task mixes
of application specific space program computers, wireless portable
personal communicators, and module application specific servers.
Initially we assembled 40 typical DSP, video, and communication
tasks [6]. These sets of tasks provide a solid approximation of ex-
pected loads for emerging DSP, video, and broadband servers.

Bounds Results Ratio
Task(cpu) Lower Meta Random Heuristic %

20(5) 217 247 285 255 105.85
40(5) 480 533 635 565 112.39
40(10) 390 616 842 632 133.23
80(5) 901 997 1186 1030 115.15
80(10) 767 1130 1591 1155 137.75
80(20) 698 925 1779 943 188.65
160(5) 1816 2004 2384 2067 115.34
160(10) 1543 2255 3096 2296 134.84
160(20) 1449 1827 3270 1839 177.81
160(40) 1399 1684 4160 1736 239.63
320(5) 3629 3984 4833 4110 117.59
320(10) 3038 4389 6009 4414 136.14
320(20) 2998 3774 6297 3807 165.41
320(40) 2828 3311 7259 3388 214.26
320(80) 3156 3746 12838 3783 339.36

Table 3: Power consumptions for 15 classes of sets of tasks (as-
signment; resources allocated).

The execution times of tasks on a variety of processors are ei-
ther obtained through direct measurements on the available hard-
ware platforms (e.g. SUN Sparcstation) or by using estimation
formulas developed in [7] for a number of DSP processors. The
power consumption data is obtained by combining data from man-
ufacturers product descriptions and the well known fact that power
consumption of an arbitrary task on majority of modern processors
is linearly proportional to its execution time [7]. In order to test the
performances of the proposed algorithms on large instances of in-
put data, we used a statistical technique to generate synthetic mixes
of tasks with identical statistical properties as the original test set.

First, histograms of run-times for each processor and all avail-
able tasks are constructed. The run times of additional tasks are
generated using a random number generator that follows the distri-
bution dictated by the histogram. All statistically generated exam-
ples are divided into two groups: learning and testing benchmarks.
The learning examples are used to evaluate parameters of the as-
signment heuristics, the testing examples along with the original
set are used for the evaluation purposes.

In order to properly evaluate our synthesis approach we devel-
oped the following two-phase approach. In the first phase the as-
signment algorithm is evaluated. First, we defined a lower bound
solution. Then, we recorded the best results achieved for any pro-
posed set of parameters during the application of the meta-algorithmic
technique. We also generated a large set of random solutions and
recorded the best random results. Finally, we applied the new as-
signment algorithm on the test examples.

The provably conservative lower bound used for the evaluation
of our synthesis algorithms is developed in the following way. For
each task the minimal amount of energy required to execute the
task on any of the available processors is selected and added up to
the overall power consumption of the entire set of tasks. The result-
ing power consumption is further reduced by scaling the voltage of
the power supply according to timing requirements of the fastest
perfectly balanced solution. In order to obtain a perfectly balanced

solution, for each task the minimal number of cycles required to ex-
ecute the task is selected, added up and divided by the total number
of processors in the configuration.

Note that meta-algorithmic approach by itself can be consid-
ered as an assignment algorithm. While the search for optimal as-
signment parameters progresses, the meta-algorithmics generates
numerous assignments. We run the meta-algorithmics approach on
all test examples and record the best solutions (resulting in minimal
power consumption) regardless of the used parameters. The main
disadvantage of the solution developed by the meta-algorithmics
itself is the execution time of the program.

Bound Results Ratio
Task(cpu) Lower Random Heuristic %

20($1) 148 442 255 173.307
40($1) 327 1263 565 223.557
40($2) 270 3602 632 569.143
80($1) 589 1799 1030 174.529
80($2) 510 6573 1155 568.698
80($3) 476 12488 943 1322.89
160($1) 1268 4452 2067 215.394
160($2) 1012 12939 2296 563.557
160($3) 970 18720 1839 1017.73
160($4) 942 37940 1736 2184.69
320($1) 2574 9524 4110 231.734
320($2) 2102 25331 4414 573.777
320($3) 2016 26581 3807 698.174
320($4) 1986 46620 3388 1375.95
320($5) 2249 188588 3783 4984.81

Table 4: Power consumptions for 15 sets of tasks (allocation and
assignment).

In the second phase the allocation algorithm is evaluated. To
obtain the lower bound solution we relax several constraints im-
posed by the proper integral solution requirement: we assume that
fractional number of processors can be allocated, that best power
and timing characteristics of processors can be combined, and that
perfect balancing is achievable. These approximations transform
the problem which has several layers of NP-hard subproblems into
one which can be solved rapidly in polynomial time. This is achieved
in the following way.

First, for each task the most time and power efficient processors
are identified. For each task the nominal power consumption at the
initial operational voltage is accepted as the most power efficient
option. Next, the cost of cycle per dollar for each task on its most
time efficient processor is calculated. This cost is multiplied by
the ratio of the number of cycles vs. the iteration period for each
task, and added up for all tasks. By dividing the total specified cost
by this sum we obtain the factor by which the cycle time can be
prolonged as well as the bound on how much we can reduce the
supply voltage.

Similarly to the case of assignment evaluation, we generated
the best random solution by using lower bound assignments in 300
random allocation runs. The relative performance of the new allo-
cation algorithm versus the described three comparison options are
given in Table 4.

The experimental results for the task assignment heuristic are
shown in Table 3. The table shows power consumption for 15 dif-
ferent classes of sets of tasks and processors. Each class is repre-
sented by 10 different sets of constant number of tasks and units.
The first column provides information about the number of tasks
and processors. The first number in the first column corresponds to
the number of tasks followed by the corresponding number of pro-
cessors. The next four columns provide power consumption data

per iteration for lower and meta bound, best random result in 1500
runs, and the proposed new approach respectively.

Table 4 provides information about the effectiveness of the allo-
cation algorithm. The first column contains information about the
number of tasks and the number of processors used by our alloca-
tion algorithm. The next three columns provide power consumption
produced by the lower bound algorithm, best random solution, and
our solution.

9 Conclusion

We developed a system-level approach for power minimization of
cost-constrained hard real-time designs. The approach simulta-
neously optimizes all three degrees of freedom for power mini-
mization, namely switching activity, effective capacity and sup-
ply voltage. Novel meta-algorithmics approach strategy is used
for computer-aided statistical optimization of the assignment algo-
rithm. The comprehensive experimental results demonstrate the
quality of the proposed optimization techniques.

Acknowledgments

The authors wish to acknowledge the support given by Okawa Foun-
dation for this work.

REFERENCES

[1] A.P. Chandrakasan and et. al. Low-power cmos digital design.
IEEE Journal of Solid-State Circuits, 27(4):473–484, April
1992.

[2] M. Chiodo and et. al. A case study in computer-aided co-
design of embedded controllers.Design Automation for Em-
bedded Systems, 1(1-2):51–67, January 1996.

[3] D. D. Gajski, F. Vahid, and S. Narayan. A system-design
methodology: Executable specification refinement. InEuro-
DAC, pages 458–463, 1994.

[4] R. K. Gupta and G. De Micheli. Hardware-software cosynthe-
sis for digital systems.IEEE Design and Test of Computers,
10(7):29–41, September 1993.

[5] T. B. Ismail, K. O’Brien, and A. Jerraya. Interactive system-
level partitioning with partif. InEuro-DAC, pages 464–468,
1994.

[6] D. Kirovski and M. Potkonjak. System level synthesis of
low power hard real time systems. Technical Report 960051,
CSD, UCLA, September 1996.

[7] M.T.-C. Lee and et. al. Power analysis and low-power
scheduling techniques for embedded dsp software.Fujitsu
Scientific and Technical Journal, 31(2):215–229, 1995.

[8] M. Potkonjak and W.H. Wolf. Cost optimization in asic im-
plementation of periodic hard-real time systems using behav-
ioral synthesis techniques. InICCAD, pages 446–451, 1995.

[9] D. Singh and et al. Power conscious cad tools and method-
ologies.Proceedings of IEEE, 83(4):570–594, 1995.

[10] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo.
Implications of classical scheduling results for real-time sys-
tems.IEEE Computer, 28(6):16–25, June 1995.

[11] R.L. Rivest T.H. Cormen, C.E. Leiserson.Introduction to al-
gorithms. MIT Press, Cambridge, MA, 1990.

[12] W.H. Wolf. Hardware-software co-design of embedded sys-
tems.Proceedings of IEEE, 82(7):967–989, July 1994.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

