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Abstract

Buffer insertion seeks to place buffers on the wires of a signal net
to minimize delay. Van Ginneken [14] proposed an optimal dy-
namic programming solution (with extensions proposed by [7] [8]
[9] [12]) such that at most one buffer can be placed on a single
wire. This constraint can hurt solution quality, but it may be cir-
cumvented by dividing each wire into multiple smallersegments.
This work studies the problem of finding the correct number of seg-
ments for each wire in the routing tree. Too few segments yields
sub-par solutions, but too many segments can lead to excessive run
times and memory loads. We derive new theoretical results for
computing the appropriate number of buffers (and hence wire seg-
ments) which motivate our new wire segmenting algorithm. We
show that using wire segmenting as a precursor to buffer insertion
produces solutions within a few percent of optimal, while using
only seconds of CPU time.

1 Introduction

The scaling of process technology and device and interconnect size
has led timing optimization techniques for VLSI circuits to become
increasingly critical. Three techniques are commonly applied to
reduce the delay of an existing topology: gate sizing, wire sizing,
and buffer insertion, and this work focuses on the last technique.
One can reduce net delays by inserting buffers that either decouple
a large load that is off the critical path or directly reduce the ARC
delay of a long wire. We assume that the tree topology is fixed and
that the wire resistances and capacitances have been extracted.

Early works in buffer insertion [1] [13] sought solutions in which
the tree topology was not necessarily fixed. Berman et al. [1]
showed that simultaneously constructing a tree and placing buffers
at the internal nodes of the tree is NP-Complete. The authors of
[13] proposed a heuristic buffer insertion algorithm based on a lin-
ear delay model. The works [6] [10] perform buffer insertion by
finding the best location for asinglebuffer and then recursively ap-
plying the algorithm. Hedenstierna and Jeppson [5] studied plac-
ing consecutive buffers to optimize their SPICE-based delay model.
The algorithm of Lowe and Gulak [11] alternates buffer insertion
with buffer sizing. Chen et al. [2] use Lagrangian relaxation to
size pre-placed buffers. Finally, Dhar and Franklin [3] gave closed-
form solutions for buffer insertion with multiple sizes on a single
uniform line. Their work is similar in spirit to the theoretical por-
tion of this work, but their formulation assumes that a series of
resizable buffers drives the wire which leads to the conclusion that
all buffers are equally spaced.

Design Automation ConferenceR
Copyright c 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

Our work is an extension of Van Ginneken’s dynamic program-
ming algorithm [14] which performsoptimalbuffer placement such
that only one buffer may be placed on each wire, and the library
contains only a single, non-inverting buffer. Van Ginneken [14]
also outlined a non-polynomial extension for minimizing the total
number of buffers. The optimality of this algorithm has inspired nu-
merous variants. Lillis et al. [7] simultaneously perform wire siz-
ing and buffer insertion using a library that contains both inverting
and non-inverting buffers. The works [8] [9] extended these ideas
further by integrating slew into the delay model and by minimizing
a power function (e.g., the total number of buffers), while retain-
ing optimality. Finally, Okamoto and Cong [12] integrated Van
Ginneken’s algorithm into a simultaneous Steiner tree and buffer
insertion construction.

Works based on Van Ginneken’s algorithm are optimal only un-
der the condition that at most one buffer may be placed on each
wire. This constraint will severely restrict the solution space when
multiple buffers are required to effectively drive wires with large
lumped RCs. However, this restriction can easily be circumvented
by wire segmenting, the principle of which is shown for the 3-
pin net in Figure 1(a). The net’ssourceis represented by a black
square, and thesinksare represented by white squares. The gray
nodes show the possible locations where buffers may be inserted in
Van Ginneken’s algorithm, i.e., at the ends of any of the wires in the
routing tree. Figure 1(b) shows the same tree after segmenting each
wire into four smaller wires, thereby introducing 12 new possible
buffer locations. Segmenting each wire into arbitrarily small wires
completely eliminates the one buffer per wire restriction; however,
the time complexity and memory requirements of Van Ginneken’s
algorithm becomes exorbitant. The question that this work seeks to
answer is, “What is the ideal number of segments into which each
wire should be divided?” We make the following contributions.

(a) (b)

Figure 1: (a) A 3-pin net with 4 wires and (b) the same net after
wire segmenting with 16 wires.

� We derive new theoretical results which illustrate the cor-
rect number of buffers that should be placed on a wire of
fixed length for a given technology. In contrast to Dhar and
Franklin [3], we do not allow resizing of the driver and sink,
and this assumptions leads to the different conclusion that
buffer spacing is non-uniform and depends on the driver size
and sink capacitance.

� We utilize these results within a new wire segmenting algo-
rithm which has been incorporated into the buffer insertion
algorithm of [9].



� Our experiments show that wire segmenting leads to signif-
icantly lower delays than no wire segmenting. Further, on
average our algorithm produces solutions within 4% of opti-
mal while using only a few seconds of CPU time, which is
orders of magnitude more efficient than the time needed to
compute an optimal solution.

The remainder of the paper is as follows. Section 2 defines the
buffer insertion problem. Section 3 overviews the basic dynamic
programming paradigm [9] [14]. Section 4 presents theoretical re-
sults that determine the appropriate number of buffers that should
be inserted on a given wire. Section 5 describes our wire segment-
ing algorithm. Section 6 presents our experimental results, and Sec-
tion 7 gives directions for future work.

2 Problem Formulation

We assume that the routing tree topology has been fixed or that an
initial Steiner estimation is available for the given a net. A routing
tree T= (V;E) consists of a set ofn nodes Vand a set ofn� 1
wires E. We writeV asffsog [SI[ INg whereso is the unique
sourcenode,SI is the set ofsinknodes andIN is the set ofinternal
nodes. A wiree2 E with length le is an ordered pair of nodes
e= (u;v) in which the signal propagates fromu to v. Observe that
for each nodev2 SI[ IN, there is a uniqueparent wire(u;v) 2 E.
The tree is assumed to bebinary, i.e., each node can have at most
two children. A non-binary tree can be converted into an equivalent
binary tree by inserting wires with zero resistance and capacitance
where appropriate. Let the left and right children ofv be denoted by
le f t(v) andright(v) respectively. Ifv has no left (right) child, we
write le f t(v) = /0 (right(v) = /0). We are also given a buffer library
B of sizem which consists of inverting and non-inverting buffers
b1; : : : ;bm.

Following [9] [12] [14] , we adopt the Elmore delay model [4]
for interconnect delays and a linear model for gate delays. For each
gatev, let Cv denote the input capacitance,Rv the intrinsic resis-
tance andKv the intrinsic delay ofv. The lumped capacitance and
resistance for each wiree2 E are given byCe andRe respectively.

Let T(v) denote the subtree rooted atv. The load at nodev
is given by the total lumped capacitanceCT(v) of T(v). If T(v) =
(fvg[SI0 [ IN0;E0) then

CT(v) = ∑
u2SI0

Cu+ ∑
e2E0

Ce:

The Elmore delay for the wiree= (u;v) is given by

Delay(e) = Re(
Ce

2
+CT(v)):

The lumped RC model preserves the property that the Elmore delay
is the same for a given wire no matter how the wire may be sub-
divided.

The delay through a gatev2 fsog[B is a linear function of the
load atv:

Delay(v) = Kv+RvCT(v):

The delay from a nodev2V to a sinksi is

Delay(v�si) = ∑e= (u;w) 2 path(v;si)Delay(e)+Delay(u);

wherepath(v;si) is the set of edges on the path fromv to si. If u
is not a gate but simply an internal node, thenDelay(u) = 0. Note
that any off-path buffers decouple the load and effectively serve as
“sinks” of T(v), while buffers on the path fromv to si serve as
internal nodes with non-zero delays.

Each sinksi has a required arrival timeRAT(si), and we assume
that RAT(so) = 0. For the circuit to function properly, we must

haveDelay(so-si)� RAT(si) for everysi2 SI. Theslackfor every
v2V is given by

q(v) = max
si2T(v)

(RAT(si)�Delay(v-si)):

For the slack atv to be meaningful, buffer insertion must have al-
ready been performed onT(v). Observe that this definition only
looks at the subtreeT(v) and not at the whole routing tree. Once
the slack for the source is computed, the “real slacks” for the sink
nodes can then be propagated down the tree.
Buffer Insertion Problem : Given a treeT = (ffsog[SI[ IN;E),
a buffer libraryB, andRAT(v) values for eachv2 SI, place buffers
from B on wires inE to maximizeq(so).

Observe that various formulations can be captured by manip-
ulating theRAT(si) values. For example, ifsi is the only critical
sink thenRAT(w) = ∞ for all w2 SI�fsig. Alternatively, setting
all slacks to be equal captures minimizing maxsi2SIDelay(so-si).

3 Review of the Dynamic Programming Algorithm

The algorithm’s main idea is to construct possible candidate solu-
tions for each node in the tree. The candidates for nodev only can
be computed after the candidate solutions have been computed for
all nodes inT(v)�fvg. A candidateis a 5-tuple(C, q, b, cndl ,
cndr ) whereC is the load seen atv, q is the slack atv, b is a poten-
tial buffer inserted at nodev, andcndl andcndr are the candidates
for the left and right children ofv that were used to construct the
current candidate. Given a candidate for a nodev, the only infor-
mation needed to compute the slack for the parent ofv is the load
at v, the slack atv, and the parent wire capacitance and resistance.
Hence,C andq are used to percolate new candidates up the tree,
andb, cndl , andcndr are only needed to recover the final solution
when the algorithm terminates.

Buffer Optimization (T, B) Algorithm
Input: T = (fsog[SI[ IN;E)� Routing tree

B� Buffer library
Output: cnd� Best candidate solution for nodev
Variables: S� List of candidates for the source
1. T = SegmentWires(T;B).
2. S= Find Cnds(T;B;so).
3. for eachcnd= (C;q;b;cndl ;cndr ) 2 Sdo

Setq= q�Kso�RsoC
4. return cnd2 Swith maximum slack

Figure 2: Buffer Optimization Algorithm

Figure 2 shows the Buffer Optimization algorithm which takes
a routing tree and buffer library and returns a candidate solution for
the source. The entire solution is revealed by recursively examin-
ing the left and right candidate solutions of the returned candidate.
Step 1 performs wire segmenting, which is described in Section 5.
Step 2 calls FindCnds (i.e., FindCandidates) which is presented
in Figure 3 (see [9] [14] for a detailed explanation).1 It returns a
set of possible candidates for the source, but without accounting for
driver delay. Hence, Step 3 updates each candidate to include the
driver delay, and Step 4 returns the candidate with largest slack. As
noted by [9] the complexity of the buffer optimization algorithm is
O(n2jBj2).

1Several enhancements [9] can be made to the FindCnds procedure: (i) inverters
can be incorporated by maintaining two candidate lists, instead of one; (ii) one can
optimize some “power” function of the buffers in the solution, e.g., the total number
of buffers; (iii) signal slew can be integrated into the gate delay model, although time
complexity increases; and (iv) wire sizing can be integrated by viewing each possible
wire size as a choice from a “wire library”.



Find Cnds (T, B, v) Procedure
Input: T = (fsog[SI[ IN;E) � Routing tree

B� Buffer library
v� Current node to be processed

Output: S� List of candidate solutions for nodev
Variables: Sb;Sl ;Sr � Temporary lists for candidates

cnd;cndl ;cndr � Candidate solutions
e� Parent wire ofv

S= Sb = /0.
1. if v2 SI then

S= f(Cv;RAT(v); /0; /0; /0)g.
2. else if le f t(v) = /0 then

for eachcnd= (C;q;b;cndl ;cndr ) 2 Find Cnds(T;B; right(v)) do
S= S[ (C;q; /0; /0;cnd)

3. else ifright(v) = /0 then
for eachcnd= (C;q;b;cndl ;cndr ) 2 Find Cnds(T;B; le f t(v)) do

S= S[ (C;q; /0;cnd; /0)
4. else
5. Sl = Find Cnds(T;B; le f t(v)). Sr = Find Cnds(T;B; right(v)).
6. Seti = 1 and j = 1.
7. while i � jSl j and j � jSr j do
8. Letcndl = (Cl ;ql ; : : :) be theith candidate in listSl .

Let cndr = (Cr ;qr ; : : :) be thejth candidate in listSr .
9. S= S[f(Cl +Cr ;min(ql ;qr ); /0;cndl ;cndr )g:

10. if ql � qr then i = i+1.
if qr � ql then j = j+1.

11. if v is a feasible buffer locationthen
12. for each bufferb2 B do

Find (C;q;b;cndl ;cndr ) 2 S that maximizesq�Kb�RbCb.
Sb = Sb[f(Cb;q�Kb�RbCb;b;cndl ;cndr )g.

13. S= S[Sb.
14. for eachcnd= (C;q;b;cndl ;cndr ) 2 Sdo

S= S[f(C+Ce;q�Re(
Ce
2 +C);cndl ;cndr )g�cnd.

15. PruneSof inferior solutions.
16. StoreSas candidate list forv andreturn S

Figure 3: FindCandidates Procedure

4 Theoretical Results

The above algorithm is optimal under the condition that a buffer can
only be placed at the end of a wire. We can avoid this by dividing
each wire into arbitrarily small segments, but this may significantly
increase CPU times. Our goal is to enable the designer to automate
buffer insertion for several thousand nets. Even if the CPU time
resulting from arbitrarily small segmenting of wires is reasonable
for a single net, it will not be for a task of this magnitude.

We now analytically explore the problem of finding the optimal
number of buffers to insert on a given wire. Consider inserting a
single buffer on a net with two pins connected by a single wire (see
Figure 4(a)). In this caseT = (fsog [ fsig [ /0;feg) wheresi is
the single sink node ande= (so;si). Let R=

Re
le

andC =
Ce
le

be
the unit resistance and capacitance for wiree respectively, and let
Dk = delay(so-si) with k buffers placed optimally one.

Theorem 1 GivenT = (fsog[fsig[ /0;feg) and a bufferb, D1 <

D0 if and only if

le>
Rb�Rso

R
+

Cb�Csi

C
+2

r
RbCb+Kb

RC
; (1)

i.e., it is worthwhile to insert at least one buffer one.

Proof: The delayD0 is the sum of the wire delayRle(
Cle
2 +Csi)

plus the delay of the sourceRso(Cle+Csi)+Kso.

D0 = Rso(Cle+Csi)+Kso+Rle(
Cle
2

+Csi)

x l − xe

x y y

(a)

(b)
el − x − (k−1)y 

Figure 4: (a) The placement of a single buffer at distancex from
the source and (b) the placement ofk buffers each separated by
distancey.

Let x be the distance that bufferb is placed from the source so that
D1 is minimized. The delayD1 is the sum of the delays of the two
wire segments plus the source and buffer delays:

D1 = Rso(Cx+Cb)+Kso+Rx(
Cx
2

+Cb)+Kb (2)

+Rb[C(le�x)+Csi]+R(le�x)(
C(le�x)

2
+Csi)

Setting the derivative ofD1 with respect tox to 0 and solving forx
yields

dD1

dx
= RsoC+RCx+RCb�RbC�RC(l �x)�RCsi = 0

x=
le
2
+

Rb�Rso

2R
+

Csi�Cb

2C
(3)

Thus, if only a single buffer may be placed on a given wire, its
optimal location is at distancele2 +

Rb�Rso
2R +

Csi�Cb
2C from the source.

Substituting this value forx into Equation (2) gives us:

D1 =
RCl2e

4
+Kso+Kb+

le
2
[C(Rso+Rb)+R(Cb+Csi)]

+
(Rso+Rb)(Cb+Csi)

2
�

(Rso�Rb)
2C

4R
�

R(Cb�Csi)
2

4C

Clearly, it is worthwhile to insert a buffer only if the delay is re-
duced by the buffer’s insertion, i.e., ifD0�D1 > 0.

0 < D0�D1

= l2e +2le(
Rso�Rb

R
+

Csi�Cb

C
)�

4Kb

RC
�

(Rso�Rb)
2

R2 +

2Rso(Csi�Cb)�2Rb(Cb+Csi)

RC
+

(Cb�Csi)
2

C2

which is a quadratic inle. Solving forle using the quadratic formula
gives us Equation (1).

Theorem 1 gives a threshold value for the wire length for in-
serting one buffer. We now extend this result to the insertion ofk
buffers. First, we need the following corollaries:

Corollary 1 GivenT = (fbg[fbg[ /0;feg), i.e., a 2-pin net with
sourceb and sinkb connected by a single wire, the optimal location
for the placement of a bufferb on the wire is half-way between the
source and sink (apply Equation (3) withso= b andsi= b).

Corollary 2 Given T = (fbg [ fbg [ /0;feg), the optimal place-
ment ofk buffers of typeb is to space them at equal increments of

le
k+1 on the wire.

Consider a non-equally spaced solution. Then there must exist
a bufferb that lies closer to either its predecessorb1 or its successor
b2. But thenb1 can be viewed as the driver for a net with sinkb2,



so the optimal location forb must be equidistant betweenb1 andb2
by Corollary 1.2

Theorem 2 GivenT = (fsog[fsig[ /0;feg) and a bufferb, Dk <

Dk�1 if and only if

le>
Cb�Csi

C
+

Rb�Rso

R
+

r
2k(k+1)(Kb+RbCb)

RC
(4)

i.e., it is worthwhile to place at leastk buffers one.

Proof: See Figure 4(b). Letx be the distance between the source
and the first buffer and lety be the distance between two consecu-
tive buffers. From Corollary 2, one concludes that the buffers are
equally spaced from each other (but not necessarily from the source
and sink). The optimal delay for the placement ofk homogeneous
buffers one is given by

Dk = Rso(Cx+Cb)+Kso+
1
2

RCx2+RxCb+ (5)

(k�1)[Rb(Cy+Cb)+Kb+
1
2

RCy2+RyCb]+

Rb(C(le�x� (k�1)y)+Csi)+Kb+

1
2

RC(le�x� (k�1)y)2+R(le�x� (k�1)y)Csi

Equation (5) is a quadratic inx andy and is clearly convex. Hence,
Dk has a unique global minimum which can be found by setting
∂Dk
∂x = 0 and∂Dk

∂y = 0 and solving forx andy.

x=
le� (k�1)y

2
+

Rb�Rso

2R
+

Csi�Cb

2C
; y=

le�x
k

+
Csi�Cb

kC

Combining these equations yields:

x =
1

k+1
(le+

k(Rb�Rso)

R
+

Csi�Cb

C
)

y =
1

k+1
(le�

Rb�Rso

R
+

Csi�Cb

C
)

Now that we have the optimal buffer locations, we can substitute
thesex andy values into Equation (5) to obtain the optimum delay
explicitly in terms of known quantities:

Dk =
Rle(kCb+Csi)+Cle(Rso+kCb)+(kCb+Csi)(kRb+Rso)

k+1

+Kso+kKb+
(RCl2e +

kR(Cb�Csi)
2

C �
kC(Rb�Rso)

2

R )

2(k+1)
: (6)

In the proof of Theorem 1, a buffer was worthwhile inserting if
D0 > D1. Similarly, k buffers are preferred tok� 1 buffers if
Dk�1 > Dk. Dk�1 can be derived by substitutingk� 1 in for k
in Equation (6). The result of simplifyingDk�1 > Dk is:

(RCle+R(Csi�Cb)+C(Rso�Rb))
2
> 2k(k+1)RC(Kb+RbCb)

Solving for le gives the desired result.
Despite using a two-variable analysis for the proof of Theorem

2, we observe that Theorems 1 and 2 are consistent, which makes
Theorem 2 supersede Theorem 1. We can now compute the opti-
mum number of buffersk for a given wire:

2Note that our results are similar to [3] in that they conclude that buffers should be
equally spaced. However, their formulation assumed that the driving and sink buffers
were resizable, while we assume a fixed driver and sink in the next theorem. This
yields a solution in which all nodes arenot equally spaced.

Theorem 3 Given T = (fsog [ fsig [ /0;feg) and a bufferb, the
number of buffersk which minimizes theDelay(so-si) is

k= b�
1
2
+

s
1+

2(RCle+R(Cb�Csi)�C(Rb�Rso))
2

RC(RbCb+Kb)
c (7)

Proof: The optimum number of buffers can be determined by find-
ing k such that Theorem 2 holds fork but not fork+ 1. We can
rewrite Equation (4) as the following quadratic ink

2k2+2k�
RC(le�

Cb�Csi
C � Rb�Rso

R )2

Kb+RbCb
< 0:

Solving fork yields

k<�
1
2
+

s
1+

2(RCle+R(Cb�Csi)�C(Rb�Rso))2

RC(RbCb+Kb)

and the optimal value is obtained by finding the maximumk such
that the above equation holds.

5 The Wire Segmenting Algorithm

The above analysis assumes that the tree has only one wire and that
the buffer library has only one buffer. Varying tree topologies and
multiple buffer libraries make it more difficult to find closed form
solution for the exact number of buffers, so we attempt to estimate
it while preferring to err on the side of too many buffers. The cost
of underestimation could be an inferior solution while the cost of
overestimation is additional CPU time.

u v

Figure 5: Isolation of a single wire(u;v) in a tree. The upper
bound on the load atv isCT(v).

Consider each wiree= (u;v) individually as part of a routing
tree (see Figure 5). If buffer insertion has already been performed
for the other wires, then the previous analysis can be applied to wire
e. The subtree atv can be replaced by a single sink with capacitance
CT(v) and all off-path subtrees can be replaced by their loads. Since
the load may become decoupled by buffer insertion, we compute
Equation (7) for the extreme casesCsi = T(v) andCsi = 0 and pick
the one which yields the higherk value. We tried computing Equa-
tion (7) for drivers from the buffer library and found that the source
generally yields the highest value fork; hence, the original source
is assumed as the driver for every wire. We compute Equation (7)
for eachb2 B and setk to be the highest resulting value.

Figure 6 presents our wire segmenting algorithm. It accepts
an unbuffered treeT and a buffer libraryB as inputs and returns a
modified tree with segmented wires. Step 1 computes the load ca-
pacitance for each subtree by recursively propagating sink capaci-
tances up the tree. Step 2 iterates through all the wires(u;v) 2 E.
Steps 4-6 compute Equation (7) for each buffer inB and for the
casesCsi = 0 andCsi =CTv and stores the largest value fork. The
value ofk seen in Step 7 is our estimate for the number of buffers



that might be needed for wiree. Steps 7-9 then createk+1 new
nodes andk+1 wire segments of lengthle

k+1. We usek+1 instead
of k to allow buffer insertion just prior to nodev (in order to decou-
ple a very large load); a zero length wire is added betweenv and
v0.3 The complexity of the procedure isO(njBj) assuming that the
maximum value fork is a constant (which must hold for any given
technology).

SegmentWires (T, B) Procedure
Input: T = (fsog[SI[ IN;E)� Routing tree

B� Buffer library
Output: T � Modified routing tree with segmented wires.
1. for eachv2V do computeCT(v).
2. for each wiree= (u;v) 2 E do
3. LetR=

Re
le

andC =
Ce
le

. Setk= 0.
4. for eachb2 B do

5. Setk1 =� 1
2 +

r
1+

2(RCle+R(Cb�CT(v))�C(Rb�Rso))2

RC(RbCb+Kb)

Setk2 =� 1
2 +

q
1+ 2(RCle+RCb�C(Rb�Rso))2

RC(RbCb+Kb)

6. k= bmax(k;k1;k2)c
7. Createk+1 new nodesv0;v1; : : : ;vk and add them toIN.

Let vk+1 = u.
8. Add wire(v0;v) with capacitance and resistance 0 toE.
9. for i = 0 to k do

Create wiree0 = (vi+1;vi) with le0 =
le

k+1,
Re0 =

Re
k+1, andCe0 =

Ce
k+1. Add e0to E.

10. return T.

Figure 6: SegmentWires Procedure

6 Experimental Results

Our algorithm was implemented in C++ on an IBM RS6000/390.
We changed Step 6 in Figure 6 tok = bM� max(k;k1;k2)c, where
M � 0 is a parameter used to test various degrees of wire segment-
ing. Thus, we tested the following cases by simply changing the
value of M: (i) M = 0 corresponds to no wire segmenting; (ii)
M = 1 corresponds to our proposed wire segmenting scheme; (iii) a
very large value ofM corresponds to the optimal solution. We have
observed thatM = 30 is sufficiently large. Our experiments show
that usingM = 1 yields solutions that are within a few percent of
optimal, while using significantly less CPU time thanM = 30.

All of our test cases were routed on two layers using parasitics
from a current technology. We set all sink slacks to be equal to
minimize the maximum delay. Our buffer library consisted of 9
inverting and 3 non-inverting buffers. The intrinsic delays, resis-
tances, and input capacitances for the buffers ranged from 6.83 -
120 ps, 0.044 - 0.752Ω, and 31.8 - 488 fF respectively. Our test
cases had from 1 to 15 sinks with input capacitances ranging from
10-500 fF. The intrinsic delays and resistances of the drivers ranged
from 32-37 ps and 0.077 - 1.26Ω respectively. We studied 13 test
cases based on three topologies:

1. Each of thewc test cases consist of two long wires that con-
nect a single sink to the source; the lengths of the wires vary
between 7 and 14 mm.

2. Each of theconetest cases contains between 3 and 5 sinks.
These cases represent the typical instance in terms of the
number of sinks and total wirelength for which buffer inser-
tion will be applied.

3The length of the “zero” wire can be set to some nominal length to satisfy mini-
mum gate spacing requirements.

3. Each of thestar test cases contain 15 sinks that span a large
portion of the chip. These cases comprise some of the more
complex instances for which our algorithm will be applied.

Test Elmore Delay (ps) # Buffers CPU(s)
Case 0 1 30 0 1 30 1 30
wc1.3 3388 1321 1217 1 8 7 0.5 302
wc2.3 1651 1119 1099 2 8 8 0.4 48
wc3.3 1696 1133 1116 2 8 8 0.3 49
wc1.4 5733 1889 1724 1 14 12 0.9 486
wc2.4 3078 1665 1622 2 10 12 0.4 107
wc1.5 8587 2434 2265 1 17 17 1.5 861
wc2.5 5013 2189 2147 2 16 16 0.7 201
wc3.5 4819 2082 2054 1 16 16 0.7 167
cone1 278 276 275 2 2 2 0.5 687
cone2 487 411 409 1 6 5 0.3 227
cone3 608 541 540 2 6 6 1.2 507
star1 2349 1112 1024 7 13 12 5.3 1939
star2 1255 662 610 5 8 9 3.3 10496

Table 1: Maximum source-sink delays, total number of inserted
buffers and CPU times obtained by the Buffer Optimization al-
gorithm forM = 0;1 and 30. We usedM = 15 instead of 30 for
the star1 test case sinceM = 30 exceeded our system’s memory
capacity. CPU times forM = 0 were all less than 0.5 seconds.

We ran Buffer Optimization for each test case and forM = 0;1
and 30. The Elmore delay, the total number of inserted buffers, and
the required CPU time obtained for each run are reported in Table
1. We observe that theM = 1 delays are significantly lower than
the M = 0 delays which shows that wire segmenting is certainly
necessary. TheM = 1 delays are 3.8% worse on average than the
M = 30 delays, which are virtually optimal solutions. TheM = 1
solutions can typically be computed in less five seconds while the
M = 30 solutions can require several minutes, and require much
more memory. This time savings is an enormous advantage for
automating buffer insertion for thousands of nets. We successfully
ran buffer insertion withM = 1 on a suite of 11000 nets for in under
22 minutes. ForM = 30, the job did not terminate after working
for several hours on one of the more complex nets in the suite.

Source
Sinks
Buffers

(a)

Source
Sinks
Buffers

(b)

Figure 7: Solutions for the wc3.5 test case (a) generated using
our wire segmenting scheme (M = 1) and (b) corresponding to
the optimal solution (M = 30).

Note that additional buffers commonly offer only marginal de-
lay improvements. Our implementation computes the solution with
lowest delay for each possible number of buffers. For example, the
M = 1 solutions obtained for the wc3.5 test case with 1, 2, 4, 8
and 12 buffers have delays of 4819, 3626, 2801, 2272, and 2125



picoseconds respectively. Note that even if only two buffers can be
used, the delay obtained byM = 1 (3626) is still significantly better
than theM = 0 solution (4819), despiteM = 0 having two possible
locations to insert buffers. TheM = 1 delay is virtually identical to
the optimal 2-buffer delay (3619) which shows that even if only a
few buffers are desired, wire segmenting is still necessary, but too
much wire segmenting may be wasteful.
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Figure 8: wc3.5 CPU/delay tradeoff.

Figures 7(a) and (b) show the locations of the inserted buffers
for the wc3.5 test case. TheM = 1 solution in (a) contains 16
buffers and was segmented to allow up to 20 buffers to be inserted.4

The M = 30 solution in (b) also yields 16 buffers, but has 542
possible locations for buffers (only about one-fourth of which are
shown).
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Figure 9: star1 CPU/delay tradeoff.

Finally, Figures 8 and 9 show the tradeoff between CPU time
and delay that results from using different values forM. The log-
log data plots shown are for the wc3.5 and star1 test cases. Each
point corresponds to the solution obtained by the algorithm for a
particular value ofM, and the square data points correspond to

4This implies that Steps 4-6 of Figure 6 predicted 18 buffers in the final solution.
Our SegmentWires procedure typically overestimated the actual number of buffers
produced in the optimal solution by 2-4 for the wc test cases. For the star and cone
examples, the overestimates were much greater since the loads at subtrees were not
known during the SegmentWires procedure.

M = 1 solutions. Note that each “square” solution is reasonably
close to the “elbow” of its curve. AsM increases, the wc3.5 de-
lays decrease very slightly, but for star1, there is a fairly significant
delay reduction between 100 and 500 CPU seconds.

Our wire segmenting algorithm produces a reasonably good so-
lution on the CPU-delay tradeoff curve. If CPU time is not much
of a factor, we suggest using a higher value ofM in order to derive
a better solution.

7 Conclusions

We have proposed integrating wire segmenting into the buffer in-
sertion algorithms of [9] [14]. Our approach is motivated by new
theoretical results which show the tradeoff between wire length and
the optimal number of buffers needed for a 2-pin net. Experiments
show that our method yields Elmore delays within 4% of optimal
while using much less CPU time. Future work seeks to handle
slew thresholds on the gates and to find alternative wiring strategies
when large portions of the net are routed over macros that cannot
permit buffer insertion.
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