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Abstract| Presented here is an analytical methodology

to determine the average signal activity, T , from the high-

level signal statistics, a statistical signal generation model,

and the signal encoding. Simulation results for 16 bit sig-
nals generated via AR(1) and MA(1) models indicate an

estimation error in T of less than 2%. The application

of the proposed method to the estimation of T in DSP

hardware is also explained.

I. INTRODUCTION

Power dissipation has become a critical design concern in
recent years driven by the emergence of mobile applications.
Reliability concerns and packaging costs have made power op-
timization relevant even for tethered applications. As system
designers strive to integrate multiple-systems on-chip, power
dissipation has become an equally important parameter that
needs to be optimized along with area and speed. Therefore,
extensive research into various aspects of low-power system
design is presently being conducted. These include power re-
duction techniques [3{5]; low-power synthesis techniques; [7,
19]; power estimation [15]; and fundamental limits on power
dissipation [18]. While the work presented in this paper fo-
cuses on estimation of signal transition activity, our eventual
objective is to enable low-power synthesis.

At the logic and circuit levels, such techniques as, [8, 10{
12, 14, 17, 20] exist for power estimation. However, these tech-
niques are applicable once the design has reached a substantial
degree of maturity because a gate or transistor level descrip-
tion of the circuit is required. While a large amount of work
has been done at the circuit and logic levels, less has been done
for power estimation at the architectural level. Architectural
level power estimation tools are of critical importance as they
allow the system designer to choose between competing ar-
chitectures and also permit major design changes when it is
easiest to do so. In [9, 16], techniques based upon the concept
of entropy are presented for estimating the average transition
density inside a combinational circuit block.

Architectural level power estimation requires estimation of
the transition activity and the capacitance. Our aim in this
paper is to derive an analytical method for determining the
average signal transition activity, T , for power estimation pur-
poses, from available signal statistical description. The closest
approach to our work is described in [6] where a word-level
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signal is broken up into: 1.) uncorrelated data bits, 2.) corre-
lated data bits, and 3.) sign bits. The uncorrelated data bits
are from the least signi�cant bit (LSB) up to a certain break-
point BP0, with a �xed transition activity. The transition
activity of the sign bits, which are from the most signi�cant
bit (MSB) to another break-point BP1, are measured by an
RTL simulation. A linear model is employed for the switching
activity of correlated data bits, which lie between the sign bits
and uncorrelated data bits. Empirical equations de�ning BP0
and BP1 in terms of such word-level statistics as mean (�),
variance (�2), and autocorrelation (�) are also presented.

Our approach, in this paper, is similar to [6] in that we
present a method for estimating the average number of tran-
sitions in a signal from its word-level statistical description.
However, unlike [6], the proposed approach is analytical re-
quiring: 1.) high-level signal statistics, 2.) a statistical sig-
nal generation model, and 3.) the signal encoding (or number
representation) to estimate the transition activity for that sig-
nal. Therefore, the two novel features of the proposed method
are: 1.) it is a completely analytical approach and 2.) its
computational complexity is depends on the width of the sig-
nal word rather than on its length (i.e., number of samples).
Both of these features distinguish the proposed approach from
most existing techniques to estimate signal transition activity.
While [6] also estimates power dissipation by characterizing
input capacitances, we focus only on estimation of transition
activity.

We �rst derive a new relation between the transition activ-
ity (ti), probability (pi) and the autocorrelation (�i) for a sin-
gle bit signal bi. Then, we employ word-level signal statistics
(namely �, �, and �), signal generation models (such as auto-
regressive (AR), moving-average (MA) and auto-regressive
moving-average (ARMA) models), along with a certain num-
ber representation (such as unsigned, sign-magnitude, one's
complement, or two's complement) to estimate the word-level
transition activity T of the signal. Proceeding further, we
propagate the input statistics through commonly used digital
signal processing (DSP) blocks such as adders, multipliers,
multiplexers, and delays. The word-level transition activities
of all the signals in a system composed of these DSP blocks is
determined and accumulated to determine the total transition
activity of the �lter.

Simulation results for 16 bit signals generated via �rst or-
der AR model (AR(1)) and �rst order MA model (MA(1))
indicate that an error in T of less than 2% can be achieved.
Employing AR(1) and MA(10) models for audio and video sig-
nals, the proposed method results in errors of less than 10%.
Simulation results with AR(1) and MA(1) inputs show that
errors less than 4% are achievable in the estimation of the
total transition activity in the �lters.



II. PRELIMINARIES

In this section, we will present de�nitions and review exist-
ing results that will be employed in later sections.

Let x(n) be a B-bit signal with mean �, variance �2, and
lag-i temporal correlation �(i). In this paper, we will be inter-
ested only in �(1) and therefore we will denote it by �. Let
X be the set of values that x(n) can assume. Let pi be the

probability that the ith bit, bi(n), of x(n) is 1. If Xi is the set
of all elements in X such that the ith bit is 1, then:

pi = Pr(x(n) 2 Xi) (1)

=
X
8j2Xi

1

�
p
2�

e
�(j��)2

2�2 (assuming normal distr.) (2)

Clearly, the value of pi is dependent on the statistical distribu-
tion of the values in X . While we have provided an example of
a normal distribution here, there is no restriction on the dis-
tribution itself. Note that, the probability distribution of x(n)
can either be estimated or obtained from the knowledge of the
parameters of the signal generation models to be discussed in
the next subsection. However, without loss of generality, we
will assume that the probability distribution of x(n) is known
a priori.

The temporal correlation, �i, of the i
th bit is de�ned as:

�i =
E[(bi(n)�pi)(bi(n�1)�pi)]

E[(bi(n)�pi)2]
=

E[bi(n)bi(n�1)]�p
2
i

pi�p
2
i

: (3)

If pi = 1 or pi = 0 then �i is de�ned to be 1.

The transition activity (or transition probability [15]), ti, of

the ith bit is de�ned as

ti = Pr(bi(n) 6= bi(n� 1)): (4)

If the bits bi(n) and bi(n � 1) are independent then the
transition activity is given by [15],

ti = 2pi(1� pi): (5)

We de�ne the word-level transition activity T as follows

T =

B�1X
i=0

ti: (6)

We will employ Auto-Regressive Moving-Average (ARMA)
signal generation models [2] to calculate transition activity.
These signal models are commonly employed to represent sta-
tionary signals in general and have found widespread applica-
tion in speech [1] and video coding [13]. Furthermore, signals
obtained from such sources as speech, audio, and video can
also be modeled employing ARMA models.

An (N;M) order ARMA model (ARMA(N;M)) can be
represented as

x(n) =

NX
i=0

bi
(n� i) +

MX
i=1

aix(n� i) (7)

where the signal 
(n) is a uncorrelated noise source with zero
mean, and x(n) is the signal being generated. If a given signal
source, such as speech, needs to be modeled via (7), then we
can choose coe�cients ai and bi to minimize a certain error
measure (such as the mean-squared error) between x(n) and

the given source. In that case, we say that x(n) represents the
given signal source. As mentioned in the previous subsection,
if the ai's and bi's in (7) are known, along with the distribution
of 
(n), then we can obtain the probability distribution of
x(n).

It is possible to transform (7) into one that depends only
on the inputs, 
(n), as shown below:

x(n) =

1X
i=0

hi
(n� i); (8)

where hi can be computed according to the following recur-
sion,

hk = bk +

NX
i=1

aihk�i; (9)

where hk = 0 for k < 0, and h0 = b0. Finally, AR
and MA models are special cases of ARMA. An M th or-
der auto-regressive (AR(M)) signal model is identical to an

ARMA(0;M) model. Similarly, an N th order moving-average
(MA(N)) signal model is the same as an ARMA(N; 0) model.

In proving Theorem 1 in the next section, we will also em-
ploy the following result from [10],

Lemma 1: E[bi(n)bi(n� 1)] = pi � ti

2

III. WORD-LEVEL SIGNAL TRANSITION

ACTIVITY

In this section, we will present techniques for estimating
word-level transition activity T of a signal x(n) from its word-
level statistics. We will �rst present a theorem relating bit-
level quantities, which are the transition activity ti, the prob-
ability pi, and temporal correlation, �i. Next, two techniques
for estimating �i are presented. The �rst is referred to as the
exact method, whereby �i is explicitly determined for the B
bits i = 0; : : : ;B� 1 in x(n). The second method is called the
approximate method in which break-points BP0 and BP1 (as
de�ned in [6]) are determined from an ARMA model of the
signal. Simulation results will be provided in support of the
theory.

A. Transition Activity For Single-bit Signals

For single-bit signals, we have an expression given by (5)
for independent bits bi(n) and bi(n � 1). We now present
a general result which is also applicable when the temporal
correlation between bi(n) and bi(n� 1) (i.e., �i) is not zero.

Theorem 1:

ti = 2pi(1� pi)(1� �i) (10)

Proof: Substitute for E[bi(n)bi(n�1)] from Lemma 1 into
(3) and solve for ti.

Note that, substitution of �i = 0 (corresponding to the case
of uncorrelated bits) in (10) reduces it to (5). In subsequent
sections, we present two methods (the exact and approximate
methods) for calculating �i from word-level statistics. These
will then be substituted in (10) to obtain ti.

B. Calculation of �i: The Exact Method

From (3), we see that it is necessary to compute pi and
E[bi(n)bi(n�1)] in order to estimate �i. As pi can be obtained



from the probability distribution function of x(n), we will now
focus upon E[bi(n)bi(n� 1)], which is given by:

E[bi(n)bi(n� 1)] = Pr((bi(n) = 1) ^ (bi(n� 1) = 1))

= Pr(x(n) 2 Xi ^ x(n� 1) 2 Xi) (11)
In particular, we will employ AR(1) and MA(N) signal mod-
els to estimate E[bi(n)bi(n� 1)]. First, we present the follow-
ing result for an AR(1) model.

Theorem 2: For an AR(1) signal,

E[bi(n)bi(n � 1)] =X
8j2Xi

Pr(x(n� 1) = j)
X
8k2Xi

Pr(
(n) = k� a1j)(12)

Proof: From the de�nition of E[bi(n)bi(n� 1)] in (11), we
have

E[bi(n)bi(n� 1)] =

X
(8j2Xi)

X
(8k2Xi)

Pr(x(n) = k ^ x(n� 1) = j): (13)

Substituting the expression for an AR(1) model (obtained by
substituting N = 0, M = 1 and b0 = 1) in (7)) into (13), we
obtain

E[bi(n)bi(n � 1)] =X
(8j2Xi)

X
(8k2Xi)

Pr(
(n) + a1j = k ^ x(n� 1) = j)

=
X

(8j2Xi)

X
(8k2Xi)

Pr(
(n) + a1j = k)Pr(x(n� 1) = j)(14)

where the last step is justi�ed because 
(n) and x(n� 1) are
independent. Note that, (12) can now be obtained by a simple
rewriting of (14). Furthermore, each of the summations in
(12) can be evaluated via the knowledge of the probability
distribution function. 2

In order to verify Theorem 2, we compared the measured
values of ti and �i for the data generated by an AR(1) signal,
SIG2, in Table I, with the estimated values predicted by the
theorem. Figure 1 indicates that the measured and theoretical
values match well. The error in T was less than 1%. The mean
absolute error in ti for SIG1 was 1.03%.
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We now consider an MA(1) process and present the follow-
ing result.

Theorem 3: Let j; k; l 2 Xi, where j + b1k 2 Xi and k +
b1l 2 Xi. Then, for anMA(1) signal x(n) = 
(n)+b1
(n�1),

E[bi(n)bi(n � 1)] =
X
j

X
k

X
l

Pr(
(n) = j)Pr(
(n� 1) = k)

Pr(
(n� 2) = l)

Proof: The proof is similar to the proof of Theorem 2 and
can be obtained by substituting the expression for an MA(1)
signal into (11). The expression for an MA(1) signal can be
obtained by substituting N = 1, M = 0, and b0 = 0 into (7).
2

In Figure 2, we show the simulation results in support of
Theorem 3. Again, we compared the measured values for ti
and �i in data generated by theMA(1) signal, SIG3, in Table I
with the values predicted by the theorem. In this case, we
found that the errors between the measured and predicted
values of T were less than 2%.
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Fig. 2. Measured & Theoretical ti & �i for SIG3

Finally, we consider the computation of E[bi(n)bi(n � 1)]
for an MA(2) signal and show that Theorem 3 can also be
extended to calculate E[bi(n)bi(n� 1)] for an MA(N) signal.
For an MA(2) signal x(n) = 
(n) + b1
(n� 1) + b2
(n� 2),
the quantity E[bi(n)bi(n� 1)] is given by:

E[bi(n)bi(n� 1)] =
X

j;k;l;m

Pr(
(n) = j)Pr(
(n� 1) = k)

Pr(
(n� 2) = l)Pr(
(n� 3) =m);

where j; k; l;m : j + b1k + b2l 2 Xi and k + b1l + b2m 2 Xi.
It can be checked easily that E[bi(n)bi(n � 1)] for AR(M)
and ARMA(N;M) signals is di�cult to calculate for M > 1.
However, we can estimate E[bi(n)bi(n� 1)] for an AR(M) or
an ARMA(N;M) signal by approximating the signal with an
MA(N 0) signal, where N 0 is su�ciently large, or by approxi-
mating with an AR(1) signal.

C. Estimation of �i: The Approximate Method

In the previous subsection, an exact method for computing
�i was presented. For large values of B, this computation can
become expensive. In order to alleviate this problem, we will
present a computationally e�cient method (referred to as the
approximate method) to estimate �i from word-level statistics
using a model similar to that described in [6].

In Figure 3, we plot �i for the signals in Table IV. It can
be seen that �i is approximately zero for the LSBs and close
to the word-level temporal correlation � for the MSBs. Fur-
thermore, there is a region in between the LSBs and MSBs
where �i increases approximately linearly. As proposed in [6],
we divide the bits in the word into three regions of contiguous
bits referred to as the LSB, linear, and MSB regions. The
break-points BP0 and BP1 separate the LSB from the lin-
ear region and the linear from the MSB region, respectively.
Furthermore, the graph of �i for the LSB, linear, and MSB

regions has slopes of zero, non-zero, and zero respectively.



In spite of this similarity with [6], the proposed approach
di�ers from [6] in: 1.) the way BP0 and BP1 are computed,
and 2.) our use of (10) (to compute ti) and (6) to compute T
analytically. In particular, we do not employ simulations to
estimate transition activity of the MSBs.

For now, we will assume that 2's complement representation
is employed. By de�nition, �i = 0 for i < BP0 and �i =
�BP1 for i � BP1 � 1. Hence, we can make the following
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approximation:

�i =

8<
:

0 (i < BP0)
(i�BP0+1)�BP1

BP1�BP0
(BP0 � i < BP1 � 1)

�BP1 (i � BP1 � 1)

(15)

We now examine the relation between BP0, BP1, and �BP1
and word-level statistics.

C.1 Calculation of BP0

For an uncorrelated signal, 
(n), a reasonable estimate of
BP0 is given by log2 �
 , where �2
 is the variance of 
(n)
[6]. If the signal x(n) has non-zero correlation then it can
be modeled using a signal model, which can then be used
to calculate BP0. For instance, if x(n) is modeled using an
ARMA model then it can be expressed using (8). Since the
signals hi
(n� i) are uncorrelated, BP0 for each of the signals
can be estimated as log2 jhij�
 . The break-point BP0 for a
signal x(n) =

P
i
hi
(n � i) can now be estimated as the

maximum of the BP0's of the signals hi
(n� i). Hence,

BP0 = [log2 hmax�
 ]; (16)

where hmax = max(jhij) and [:] returns the nearest integer.
We veri�ed (16) by comparing the measured and estimated
values of BP0 obtained from data generated with the �ve sig-
nals shown in Table I. The results are shown in Table II,
where it can be seen that the measured and estimated values
of BP0 match quite well.

C.2 Calculation of BP1

Let the values of x(n) lie between the values xmin and xmax.
In a normal distribution, xmin = �� 3� and xmax = �+ 3�.
We de�ne BP1 such that for i � BP1� 1, �i is approximately
constant. Since the dynamic range of x(n) is xmax-xmin, the
least signi�cant log2(xmax-xmin) bits are required to cover
this range. Hence, we have

BP1 = [log2(xmax-xmin)];

= [log2 6�] (for a normal distribution), (17)

TABLE I

Signal details

Signal x(n) �
 � � �

SIG1 
(n) � 0:5x(n � 1) 866 1000 -0.50 0
SIG2 
(n) + 0:99x(n � 1) 141 1000 0.99 0
SIG3 
(n) + 0:5
(n � 1) 100 111 0.40 0
SIG4 
(n) + 0:99x(n � 1) 141 1000 0.99 16384
SIG5 
(n) + 0:4
(n � 1) + 0:2
(n � 2)+ 1000 2309 0.89 0

:07
(n � 3) + :5x(n � 1) + :3x(n � 2)+
0:1x(n � 3) + 0:05x(n � 4) � :2x(n � 5)

TABLE II

Measured and Estimated BP0 and BP1

Signal BP0 BP1
Measured Estimated Measured Estimated

SIG1 11 10 13 13
SIG2 8 7 13 13
SIG3 8 7 10 9
SIG4 8 7 13 13
SIG5 11 10 14 14

where �2 is the variance of x(n). The estimate for BP1 in (17)
is di�erent from that in [6], which is also given in (18) below
for comparison purposes:

BP1 = [log2(j�j+ 3�)]: (18)

When j�j � 3�, both (17) and (18) are approximately equal
with the maximum di�erence of 1 occuring at � = 0. However,
in the case where j�j � 3� the di�erence between (17) and
(18) is non-trivial. This is because for j�j > 3� there are 3
regions in which �i is a constant. The �rst region consists of
the bit positions i such that i < BP0. The second region has
bit positions i lying between BP1 and another break-point
BP2, which will be de�ned later. The third region consists of
bits with positions beyond BP2 where the bits do not have any
transitions. BP2 can be calculated by computing the common
MSBs in the binary representations of the numbers xmax and
xmin.

We have veri�ed (17) by comparing it with the measured
values of BP1 obtained from data generated by various signals
in Table I. The results are shown in Table II where it can be
seen that the measured and estimated values match closely.
In Figure 4, we plot �i and ti for signals SIG2 and SIG4. Note
that from Table I, SIG2 and SIG4 are identical except for their
mean �. It can be seen from Figure 4, that the value of BP1
(13) is independent of �, which is also indicated by (17). For
SIG4 BP2 is 15 because the binary representations of xmax

(19384) and xmin (13384) have only 1 common MSB.
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All that now remains in the approximate method is to esti-
mate the value for �BP1 . If the model for x(n) is known then



we can use the exact method to calculate �BP1 . On the other
hand, if the model for x(n) is not available, then we assume
that �BP1 = �. This is especially valid for audio and video
signals (see Figure 3).

D. Calculation of T

Employing (6), Theorem 1, (16), (17), we computed T for
the signals in Table I for 2's complement. The measured and
estimated T for all the signals using our method and the DBT
method in in [6] are shown in Table III. The errors for our
method are less than 2% for 2's complement representation.

E. E�ect of Signal Encoding/Number Representation

The results presented so far in this section (Theorems 2 and
3) have implicitly included the e�ect of the signal encoding.
This is because the elements of the sets X and Xi will depend
upon the signal encoding. In this subsection, we examine
explicitly the e�ect of number representation on transition
activity.

In the previous subsections, we have considered 2's com-
plement number representation. The unsigned representation
will have the same transition activity as 2's complement be-
cause the MSBs of the former behave identical to the sign bits
of the latter.

The 1's complement representation is identical to the 2's
complement for positive numbers. For negative numbers, we
can generate the 2's complement representation from that of
the 1's complement by adding a 1 to the LSB, which will usu-
ally a�ect only the LSBs. In the approximate method, since
we assume that LSBs are uncorrelated, the activity of the
LSBs in the 1's complement will be close to that of the 2's
complement. The remaining bits will have the same temporal
correlation as in the 2's complement representation. There-
fore, �i for 1's complement representation will be the same as
that for 2's complement. The measured and estimated T for
various signals employing 1's complement are shown in the
second set of the three columns in Table III. The measured T
was obtained by generating data using the signal model and
measuring T in that data. The error in T is the same as the
error for the 2's complement representation, except for one
signal, SIG5, where it is slightly higher. The error in T is less
than 2% for 1's complement representation.

In the sign magnitude representation there is only one sign
bit; namely, the MSB, bB�1(n). This bit will have the same
temporal correlation as the sign bits in 2's complement rep-
resentation because the temporal correlation of the sign bit
depends on the sign transitions. The bits bi(n) for i < BP0
are uncorrelated as in the case of 2's complement. We again
assume a linear model for �i for BP0 � i < BP1 � 1. The
resulting expression for �i is as follows:

�i =

8><
>:

0 (i < BP0)
(i�BP0+1)�BP1

BP1�BP0
(BP0 � i < BP1 � 1)

1 (BP1 � 1 � i < B � 1)
�BP1 (i = B � 1)

(19)

The measured and estimated T for the signals are shown in
the last three columns of Table III. As before, the measured
T was obtained by generating data using the signal model and
measuring T in that data. It can be seen that the error in T
is less than 2% for all the signals except for SIG4 where the
error is less than 5%.

TABLE III

Word-level transition activity for different number

representations

Signal Unsigned, Two's complement One's complement Sign magnitude
Meas. Est. % Err. DBT % Err. Meas. Est. % Err. Meas. Est. % Err.

SIG1 8.79 8.82 0.34 8.93 1.59 8.79 8.82 0.34 6.07 6.16 1.48
SIG2 4.99 5.03 0.80 5.05 1.20 4.99 5.03 0.80 4.65 4.74 1.94
SIG3 6.97 6.94 0.43 6.82 2.15 6.97 6.94 0.43 4.20 4.15 1.19
SIG4 4.99 5.03 0.80 5.25 5.21 4.99 5.03 0.80 4.65 4.86 4.52
SIG5 6.54 6.42 1.83 6.24 4.59 6.55 6.42 1.98 5.91 5.89 0.34

TABLE IV

Description of data-sets

Signal Description � � �

Audio3 2.88MB, 16 bit PCM music 1.43 7349.20 0.96
Audio4 2.88MB, 16 bit PCM music -17.63 4040.40 0.97
Audio5 0.37MB, 16 bit PCM speech 59.46 2661.75 0.90
Audio6 0.61MB, 16 bit PCM speech 23.62 2328.79 0.96
Audio7 2.88MB, 16 bit PCM music -39.35 3086.30 0.99
ATM 0.80MB, 16 bit comm. channel 0.49 5581.60 0.30
Video3 9.70MB (380 QCIF frames), 8 bit 99.71 55.57 0.92

From the expressions for �i (15), (19) we see that the
temporal correlation and hence transition activity for un-
signed, 1's complement, and 2's complement representations
are nearly equal. Also, the transition activity for sign mag-
nitude is less than or equal to 2's complement because the
number of sign bits in sign magnitude representation (one) is
less than or equal to that in 2's complement representation.
These conclusions are supported by the results in Table III.

IV. RESULTS WITH REALISTIC BENCHMARK

SIGNALS

We have so far presented results using the synthetic signals
in Table I. In this section, we will present simulation results
for the signals in Table IV. First, we apply the approximate
method (see section III(C)) to compare the measured and es-
timated T for these signals. Then, we process these signals
through direct form FIR and IIR, transpose FIR and IIR �l-
ters to compute the total T in these structures.

A. Realistic benchmark signals

For the signals described in Table IV, the approximate
method was employed to compare the measured and estimated
T . The results are shown in Table VI where the measured T

was calculated directly from the data. We assumed �BP1 = �.
To estimate BP0 we assumed AR(1) models for all data sets
except Audio5 and Video3. The measured and estimated BP0
and BP1 are shown in Table V. We used MA(10) models for
Video3 and Audio5 because AR(1) models resulted in higher
errors. In general, the model order should be chosen such that
the mean square modeling error is below a certain level. In
Table VI we see that for unsigned, 2's complement, and 1's
complement representations, the estimation error in T is less
than 10%. For sign magnitude, the error in T is less than
18%. The mean absolute error in ti for Audio3 was 11%.

B. Total word-level transition activity, T , for FIR and IIR
�lters

In this subsection, we present the measured and estimated
transition activity with signals in Table I and Table IV for
a direct form �lter and its transpose (see Table VII), and
an IIR �lter and its transpose (see Table VIII). The word-
level statistics of the input are propagated through the �l-



TABLE V

Measured and Estimated BP0 and BP1

Signal BP0 BP1
Measured Estimated Measured Estimated

Audio3 10 11 16 15
Audio4 9 10 15 15
Audio5 0 3 15 14
Audio6 4 9 14 14
Audio7 5 9 14 14
ATM 12 12 15 15
Video3 1 1 8 8

TABLE VI

Word-level transition activity

Signal Uns., 2's comp. One's complement Sign magnitude
Meas. Est. % Err. Meas. Est. % Err. Meas. Est. % Err.

Audio3 6.42 6.32 1.56 6.43 6.32 1.71 6.17 6.24 1.13
Audio4 5.80 6.06 4.46 5.80 6.06 4.46 5.55 5.89 6.13
Audio5 4.78 4.40 7.95 4.79 4.40 8.14 4.22 4.23 0.24
Audio6 5.38 5.59 3.90 5.38 5.59 3.90 4.62 5.43 17.53
Audio7 5.05 5.52 9.31 5.05 5.52 9.31 4.78 5.44 13.81
ATM 7.76 7.56 2.58 7.76 7.56 2.58 7.09 6.94 2.12
Video3 2.31 2.15 6.93 2.31 2.15 6.93 2.16 2.15 0.15

ter and then used to estimate T for each signal in the �l-
ter. These are then summed up to obtain T for the �l-
ter. The transfer function of the FIR �lters is given by
H(z�1) = 0:09765625 + 0:1953125z�1 + 0:39453125z�2 +
0:1953125z�3 + 0:09765625z�4. The transfer function of the
IIR �lters is given by H(z�1) = 1

1�0:1z�1
. The errors in T

for all the �lters are less than 12%. The estimated transition
activity using the DBT method in [6] is also presented for the
direct form FIR �lter. Table IX compares the run times for
simulation, the DBT method in [6], and the run time for our
approximate method on a 85 MHz SparcStation 5. In most
cases the run time for our approximate method is an order of
magnitude less than that for simulation. The simulation time
depends on the length of the input sequence whereas the time
for the approximate method depends on the bit width of the
signals (8 for video3 and 16 for the rest). This is because in
our method, the computational complexity is determined by
the calculation of pi using (2) where the summation is over

2B elements where B is the bit width. We can make the com-
putation time of pi essentially independent of bit width by

calculating the sum over points spaced 2
BP0
2 apart with basi-

cally no change in the accuracy of the sum. The running time
for the fast approximate method is also shown in Table IX.
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