
Executable Work
ows:

A Paradigm for Collaborative Design on the Internet

Hemang Lavana Amit Khetawat Franc Brglez Krzysztof Kozminski

CBL (Collaborative Benchmarking Laboratory)
Department of Computer Science
Box 7550, NC State University,

Raleigh, NC 27695, USA

National Semiconductor Corp.
2900 Semiconductor Drive,
P.O. Box 58090 M/S D3-677,
Santa Clara, CA 95052-8090

http://www.cbl.ncsu.edu/demos

Abstract { This paper introduces a directed hypergraph model
that supports (1) work
ow composition and recon�guration
while accessing and executing programs, data, and comput-
ing resources across the Internet, (2) synchronous and asyn-
chronous peer-to-peer interaction between members of any
team during work
ow composition and execution, (3) syn-
chronous and asynchronous peer-to-work
ow interaction be-
tween any team member and any object in the work
ow.

Given a library of program and data nodes, editing the
work
ow and its execution is as intuitive as the hierarchical
schematic design capture and simulation. Examples of multi-
site multi-user applications demonstrate that the proposed
work
ow implementation provides a user-friendly paradigm
for distributed and collaborative team design.

I. Introduction

Considerable research is being directed in support of collab-
orative activities using the Internet. For example, the paper
[1] provides good insights on issues related to sharing appli-
cations. Systems that are currently available include Xplexer
[2], Xshare[3], XMX [4], XTV [5], and ShowMe SharedApp[6].
However, none of these contribute directly to the collaborative
Internet-based work
ow paradigm described in this paper.
We consider the work
ow simply as an executable directed

hypergraph, with nodes representing programs and data, and
hyperedges representing data-to-program, program-to-data,
data-to-data, and program-to-program dependencies. Both
data and programs can reside on any host with a unique IP
address. Program nodes can be hierarchical: they may ex-
pand into their own work
ows of data and program nodes.
Work
ow transformations to Petri nets [7] give rise to (1) a
canonical, and (2) an executable Petri net representation; the
latter generates the schedule for work
ow execution.
User teams, at di�erent sites, control the work
ow exe-

cution by selection of its paths. When executed, all users
can observe blinking edges for any data/code transfers be-
tween nodes on di�erent hosts, and blinking nodes for any
programs executing on a particular host (programs on di�er-
ent hosts can execute in parallel). By highlighting any data
node, the user can select/view/edit from a displayed list of

This research was supported by contracts from the Semiconductor Research

Corporation (94{DJ{553), SEMATECH (94{DJ{800), and DARPA/ARO (P{

3316{EL/DAAH04{94{G{2080). During this research, K. Kozminski was

with Relative Software, Inc.

\Permission to make digital/hard copy of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for pro�t or commercial advantage, the copyright notice, the title

of the publication and its date appear, and notice is given that copying is by

permission of ACM, Inc. To copy otherwise, to republish, to post on servers

or to redistribute to lists, requires prior speci�c permission and/or a fee."

DAC 97, Anaheim, California

c
 1997 ACM 0-89791-920-3/97/06 ..$3.50

�les associated with the particular data node, be it data that
is read by the program node, or data generated by the pro-
gram node. Recon�guring work
ows is as simple as editing a
netlist schematic. Program node and data node template ed-
itors are provided to encapsulate all programs and data, such
that semantic consistency of the work
ow can be maintained.
We use Tcl/Tk and Expect [8, 9, 10] to implement a GUI

and a collaborative team environment, originally initiated
as a REcon�gurable and reUsable Benchmarking ENvironment,
REUBEN. As illustrated in the paper, collaborative bench-
marking applications may indeed be the �rst realistic test of
this environment. Programs that have been encapsulated to
date on local and remote hosts, currently without relying on
CORBA [11], include university{based public{domain tools,
commercial tools, and a number of Web browsers invoking
JAVA applications anywhere on the Internet.
The approach we propose and have implemented relates

to earlier work in the area of design methodologies and de-
sign frameworks such as [12, 13, 14, 15, 16]. Complementary
work
ow de�nitions and applications cover a wide range, e.g.
they arise in the context of o�ce automation [17], database
and scienti�c applications [18, 19], and schemas [20].
This paper is organized into the following sections: (2) an

introductory example of an executable work
ow; (3) work
ow
construction and its transformations, deriving the schedule
for work
ow execution; (4) user view of the work
ow; (5)
mechanisms to support a collaborative work
ow environment;
(6) examples of several multi-site multi-user applications.

II. Motivation

We use a simple example to contrast a traditional work
ow
approach with the one proposed in this paper.
Manual Work
ow Example. Consider the three sites de-
picted in Figure 1. Site 1 (in CA) specializes in FPGA place-
ment and layout of netlists that �t into technology-speci�c li-
brary devices. Site 2 (in MD) specializes in partitioning large
netlists, given the constraints of a technology-speci�c device
library. Site 3 (in TX) specializes in logic optimization, given
a reasonably sized netlist. Assume that the team at Site 1
synthesized a design that exceeds the capacity of the largest
device, and recognized the need for a netlist partitioner

such as the one at Site 2, and a logic optimizer such as one
at Site 3. The team at Site 1 has the following choices:
1. Download and install(!) partitioner from Site 2 and

optimizer from Site 3.
2. Get accounts on Sites 2 and 3 and rely on telnet and

ftp to move data and access tools at each site. Figure 1
shows a
ow of typical steps performed manually.

3. Get accounts on Sites 2 and 3 and create an executable
work
ow such as shown in Figure 2 that provides a consis-
tent and e�cient implementation of a combined recursive
partitioning and optimization paradigm.

http://www.cbl.ncsu.edu/demos

(1) telnet

(4
) f

tp

(6
) f

tp(5
) f

tp

Site 1 (California)

placer & router
device.lib
system.net
partitions.net
devices.routed

Site 2 (Maryland)

netlist partitioner

Site 3 (Texas)

logic optimizer

(2) telnet

(7) ftp

system.net, device.lib

pa
rti

tio
ns

.n
etpartitions.net

(3) ftp

Fig. 1. Steps in a manually executed multi-site work
ow.

Whereas the �rst two choices are time-consuming and error-
prone, we argue the third choice to be more e�ective in terms
of the proposed collaborative environment. Downloading a
complex tool may be simple, installation and maintenance is
not. Even if the installation of all tools is successful, we still
don't have a work
ow such as one in Figure 2. In the context
of the Web, where we maintain lists of URLs rather than big
documents or applets, the work
ow implemented in Figure 2
has the advantage of tool updates as well as on-site expertise.

Once a site supports an executable work
ow environment
and broadcasts it simultaneously to the displays of users at
participating sites, all sites become aware of the global de-
sign objectives, tool and data dependencies to achieve them,
and the expertise distributed between the sites. A collabo-
rative and synergistic control mechanism, whereby each site
not only observes the action of others but also lends expertise
within the relevant part of the work
ow (be it partitioning,
logic optimization, or placement and routing), has the poten-
tial of signi�cantly improving the overall design process when
contrasted with improvements achieved in isolation.

Executable Work
ow Example. The work
ow in Fig-
ure 2 is an executable directed hypergraph, with nodes repre-
senting executable programs and data, while hyperedges rep-
resent data-to-program, program-to-data, data-to-data, and
program-to-program dependencies. As shown, both data and
programs can reside on any host with a unique IP address at
any site. While the GUI is designed with color-coded nodes
and edges, all nodes in this �gure are depicted with white
background for improved readability. This is an example of a
non-trivial work
ow that implements a rather complex parti-
tioning and optimization algorithm, based on the description
provided in [21], and we will use it repeatedly to motivate and
illustrate the main ideas in our approach.

The algorithm implemented by the work
ow in Figure 2 is
a recursive application of a bi-partitioning tool that partitions
a large netlist into a tentative partition and a remainder. The
tentative partition is optimized by a logic optimizer tool, and
evaluated for �t into the largest device from the device library.
If the optimized partition is not acceptable, variables for the
bi-partitioner are adjusted and the bi-partitioner re-executes
to generate a smaller tentative partition. Eventually, the op-
timized partition is acceptable and the partition is placed and
routed into a library-based device. The process now repeats
on the partition remainder until the complete netlist is parti-
tioned into a number of library devices.

Figure 2 shows that nodes in this work
ow have been as-
signed to Hosts 1, 2, and 3 corresponding to three sites in Fig-
ure 1. Nodes on Host 1 consist of data directories that contain
the original netlists and the device library as inputs, while
the outputs can be viewed as data directories that archive
partitions in terms of placed and routed technology-speci�c
devices. Partitioner on Host 2 implements the partitioning
algorithm, Optimizer on Host 3 depicts a hierarchical node

Fig. 2. Example of an Internet-based executable work
ow.

that performs logic optimization, Place & Route on Host 1
performs placement and routing within the designated FPGA
device and is a commercial tool [22]. Data nodes have oval
shapes and represent a �le directory that contains any num-
ber of �les of class data. Program nodes represent encapsu-
lated programs of arbitrary complexity, interfaced to data and
script nodes, and controlled by decision nodes, Unix utilities
such as ls, cp, ftp, telnet, etc. All relevant information
pertaining to hosts, such as IP address and user login name,
are de�ned in a host template. Each node refers to such a
host template by a mnemonic host ID as shown in Figure 2.
Nodes without a host ID inherit the host ID of the work
ow.
Compiler supports simple syntax and semantics con-

straints. For example, data-to-program dependencies must
satisfy a range of pre-con�gured matching pattern constraints:
only data �les that match the program template pattern are
accepted when creating dependency edges to a given program.
Semantically, an unconditional data-to-data dependency, in
the context of a data node on host i and a data node on host
j, implies an unconditional and explicit �le transfer of a data
�le from host i to host j. In this case, data nodes at host i
and host j are shown explicitly. On the other hand, an uncon-
ditional data-to-program dependency of a data node on host
i and a program node on host j implies an unconditional and
implicit �le transfer of a data �le from host i to host j. In
this case, the data node at host j is not shown explicitly. We
have examples where both concepts are useful. In addition
to satisfying simple work
ow-speci�c syntax and semantics
constraints, the work
ow is also expected to execute correctly
under all valid input data. For example, a data node can
be written and over-written by several program nodes in the
work
ow, but never at the same point in time.

III. Multi-Site Executable Workflow: Formal View

A user-generated work
ow is a concise description of sev-
eral heterogeneous applications in a directed hypergraph. A
well-de�ned procedure is required to guarantee successful ex-
ecution of a work
ow, such as one in Figure 2, given that it
may be concurrent, asynchronous, and distributed. We �nd it
convenient to use Petri nets as a modeling tool for describing
and executing such a work
ow. A Petri net [7] is a directed,
weighted, bipartite graph consisting of two kinds of nodes:
places and transitions, and edges connecting nodes of di�er-
ent kinds.
A user-generated work
ow is systematically transformed

Di

Dj

Tij = {ftp, cp}

(a) (b)

D1 D2 Dk

(c)

D1

(d)

• • •

• • • • • •

Tij

Pi

Pj

Ti Pi Ti T0
P0

Tj P1 Pk T1 TkPjTj

(e)

D1

• • • • • •

Pk T0 TkP1

Pk+1 Tk+1

(f)

• • •

• • •

• • •
T*1

T*2

T*i

• • •

• • •

Tk

Ti+1

Ti+j

• • •

• • •

• • •

T*2

T*1

T*i

• • •

• • •

Tk

Ti+1

Ti+j

(h)(g)

• • • • • •

• • • • • •

T1,fb

Tk

Tk,A-join

Ti+1 Ti+j

Tk

Ti+1 Ti+j

Ti,fb

T1,fb

Ti,fb

• • •

• • •
Tp

Tj

T1,fb
Ti,fb

• • •

Tk

• • •

• • •

Tk

Tj • • •

Ti,fb T1,fb

Tk,B-join

Tp

Fig. 3. Work
ow to executable Petri net transformations.

into an executable Petri net in �ve steps: (1) Generate a
canonical Petri net representation; (2) Identify the cycles and
feedback nodes; (3) Transform the canonical representation
into an executable Petri net; (4) Generate a �ring schedule
for all transitions; (5) Execute the work
ow.

Step1: Canonical Petri net representation. Six rules
R1-R6 transform a work
ow into a canonical Petri net repre-
sentation. The basis for the rules is a one-to-one correspon-
dence of program nodes Pi in the work
ow and the transitions
Ti in the Petri net. It is important to distinguish between a
regular program node Pi and a decision node P �i ; we have Ti
and T �i transition nodes in a Petri net. The correspondence
of data nodes Di to a place in the Petri net is subject to the
transformations.

R1 Every program node Pi is replaced by a transition Ti;
every decision node P �i is replaced by a transition T �i ; and
every data node Di is replaced by a place.

R2 Whenever a data node Di drives a data node Dj, the
edge connecting the two is replaced with two edges and a
new transition Tij between two places, as shown in Figure
3(a). This new transition Tij may signify nodes such as
copy, ftp, : : : , etc, depending on whether the two places
represent data nodes on the same or di�erent hosts. In
Figure 2, an edge from Original Netlist on host 1 to
New Netlist on host 2 implies FTP of data.

R3 Whenever a program node Pi drives another program
node Pj , a conceptual place is introduced between their
respective transitions Ti and Tj , as shown in Figure 3(b).
Such a place indicates completion of the transition Ti.
Figure 2 depicts such a program node Evaluator driving
the Partition Acceptable?.

R4 If a program node Pi drives data nodes D1, D2, : : : , Dk

and the same data nodes drive a program node Pj, then a
single place replaces all data nodes between transitions Ti
and Tj, as shown in Figure 3(c).

R5 Whenever a data node is driven by program node P0 and
drives program nodes P1, P2, : : : , Pk, we have k edges
from transition T0 driving k places before reaching tran-
sitions T1, T2, : : : , Tk, as shown in Figure 3(d). In
Figure 2, data node Optimized Partition is driven by
Optimizer and drives Evaluator and FTP.

AAA
AAAB-join

AA
AAA-join

AAAOptimizer

AAA
AAAList

Remainder

AAEnd

AA
AABegin

1

7

9
2

3

4

5

6

7

8

9

10

0

10

7

fb1

fb2 & fb3

1
AFTP

AAAPartitioner

AA
AAEvaluator

YN

AAA
AAA

Any
Remainder?YN

AAA
AAA

Partition
Acceptable?

AA
AAFTP

AA
Place

& Route

AA
AA

copy

AA
AAModify

variables

AAA
AAA

Initialize
variables

fb1
fb2

fb3

YN

AAA
AAAAny

Remainder?YN

AAA
AAAPartition

Acceptable?

A
copy

AAAPartitioner

AAAOptimizer

AA
AAFTP

AAA
List

Remainder

AAEndAAA
Place

& Route

AAA
AAAEvaluator

AA
AA

Begin

AAA
AAAInitialize

variables

AAA
AAAModify

variables

(a) Canonical
 Petri-net

(b) Executable
 Petri-net

AA
AAFTP

AA
AAFTP

1
AAFTP

Fig. 4. Canonical and executable Petri net representations.

R6 Whenever a data node is driven by program nodes P1,
P2, : : : , Pk and drives a program node Pk+1, we have k
edges from transitions T1, T2, : : : , Tk driving k places
before reaching transition Tk+1, as shown in Figure 3(e).
In Figure 2, data node New Netlist drives partitioner
node and is driven by a Copy and an implied FTP nodes.

Rule R1 must be applied to all work
ows to transform any
work
ow into its canonical representation. Depending on the
structure of the work
ow, one or more of rules R2-R6 may be
required to complete the transformation. The canonical Petri
net is a unique representation of the underlying work
ow. If
acyclic, the canonical representation itself is executable, since
the �ring schedule can be readily derived.
Step2: Cycles in a work
ow. Cycles typically occur when
certain programs need to be executed repeatedly. In every
cycle, at least one node can be identi�ed as a feedback node,
signifying a return to the top of the loop in the work
ow.
The transition at the top of the loop can never be enabled

since tokens cannot be generated for input places which are
driven by feedback paths. Hence, canonical Petri nets that
are cyclic are not executable. This problem is overcome by
identifying, in a canonical Petri net, all cycles and their feed-
back nodes that exist in the graph, and applying rules R7-
R9 to create an executable Petri net model. In Figure 4(a),
three feedback nodes have been identi�ed: two driving the
Partitioner and one driving the Initialize Variables.
Step3: Executable Petri Net Representation. Trans-
formations R7-R9 create an executable Petri net.
R7 All places that are on paths of transitions T �1 , T

�

2 , : : : ,
T �i , and incident at transition Tk are replaced by a single
place incident at transition Tk, as shown in Figure 3(f).

R8 All places incident at transition Tk and driven by tran-
sitions T1;fb, T2;fb, : : : , Ti;fb, in the feedback vertex set
are replaced by a single place incident at transition Tk. In
addition, the single place incident at transition Tk is also
driven by a new transition Tk;A�join which is introduced
to merge all remaining places incident at transition Tk,
as shown in Figure 3(g). In Figure 4(a) and (b), tran-
sitions Modify Variables, Copy, Partitioner, FTP and
Initialize Variables depict such a situation and its cor-
responding transformation. Note this rule is not applied
to the feedback transition Copy since R9 is applicable.

R9 All places that are on path of transition Tj and driven
by transitions T1;fb, T2;fb, : : : , Ti;fb, in the feedback ver-
tex set are merged to drive a new transition Tk;B�join.
The new transition Tk;B�join drives the place incident
at transition Tk, as shown in Figure 3(h). In Fig-
ure 4(a), <Any Remainder?!Copy!Partitioner> and
<Any Remainder?!Initialize Variables> are two such
feedback paths, their corresponding transformations are
shown in Figure 4(b).

Host1

Begin ?

End ?

Place and Route ?

FTP ?

FTP ?

Host2

A join ?

B join ?

Initialize Variables ?

Modify Variables ?

FTP ?

Copy ?

List Remainder ?

Partitioner ?

Evaluator ?

Partition Acceptable? ?

Any Remainder ?

Host3

Optimizer ?

Level of Petri net transition 0 1 2 3 4 5 6 7 8 9 10

Fig. 5. Firing schedule of an executable Petri net.

Step4: A �ring schedule. Given an executable Petri net,
the �ring schedule for all the transitions is easily generated, as
shown in Figure 5. Each transition has a level at which it may
be �red, indicated by a ?. Two or more transitions occurring
at the same level: (1) �re concurrently if on di�erent hosts,
(2) �re sequentially if on the same host.

Step5: Work
ow execution. We have evolved a simple
yet su�ciently powerful methodology to abstract any user-
generated work
ow into an executable work
ow by use of
Petri nets. We further realize that a one-to-one correspon-
dence exists between program nodes and transition nodes.
Hence, every transition node in a Petri net can be thought
of as a virtual node which always �res and generates tokens
when enabled, irrespective of whether its corresponding pro-
gram node requires execution or not.

Whenever a transition node is enabled, its corresponding
program node is examined for its input and output data node
dependencies. A program node re-executes only if any of its
output data is missing or its time-stamp is older with re-
spect to any of its input data or programs. Depending on the
type of program-data dependency, such as main, optional,
multiple or matching, a re-executable program node invokes
as many times as there exist data �les of main dependency,
but only once for every multiple type of dependency. Report
[23] describes more details. Figure 6 shows the Partitioner

program node with its input and output data �le dependen-
cies.

For multi-site nodes, where the program and data nodes
reside on several hosts, there may be a non-trivial time di�er-
ence between the GMT times of the two hosts. Hence, time-
stamps of such data �les are adjusted by � (on the order of
a few minutes) before examining such nodes for re-execution.
Program re-execution, if required, results in data �le trans-
fers among hosts before and after its invocation. Thus, while
a program node may not execute at all, the corresponding
transition node will still generate its output token(s).

Having formalized an e�ective way of modeling work
ows,
we next highlight some of the aspects of creating and editing
work
ows. Complete details are available in the user manual.

IV. Multi-Site Executable Workflow: Editing View

The graphical user interface of the work
ow consists of a
number of specialized windows.

Work
ow Editor. A casual user may only be interested
in editing the work
ow using an existing library of prede-
�ned REUBEN objects such as program nodes, data nodes, de-
cision boxes, hierarchical work
ow nodes, etc. These objects

Fig. 6. Program and Data Node Editor windows.

are instantiated in the work
ow in a manner similar to the
schematic capture of a gate from a device library.
Standard features present in many drawing editors, such as

adjustable grid spacing, undo/redo, etc., are provided to aid
in work
ow composition. Editing operations include adding,
deleting, and rearranging nodes, as well as hooking them to-
gether with links representing the dependencies.
Program and Data Node Editor. Figure 6 shows the
elements used in de�ning a program node Partitioner on
Host 2 and a data de�nition editor for Device Library on
Host 1. Input and output data dependencies in relation to
the program are speci�ed by creating a link of appropriate
type between the two in the graphical window. The lower
portion of the editor consists of various �elds used to specify
commands to execute on program invocation, the working di-
rectory and the host on which to invoke the program node.
Other �elds, like variables, allow the user to initialize and dy-
namically modify, using script nodes, parameters passed to
the command arguments during execution. Important �elds
for de�ning a data node are: (1) data �lename matching pat-
tern, (2) directory, and (3) host location.

V. Multi-Site Executable Workflow:

Collaborative View

Designers working on complex projects may be distributed in
space and time. Current methods to support distributed team
collaboration include e-mail, phone, and relatively expensive
video conferencing between remote sites.
The Internet, intranets and powerful desktop workstations

o�er an opportunity to dramatically improve real-time col-
laborative environments. Team members can interact syn-
chronously with applications on displays attached to their
hosts. All members are given the capability to control, one at
a time, an application of common interest, and all members
have the opportunity to observe the results.
We considered three methods to implement a collaborative

environment for Tcl/Tk applications: (1) Tcl/Tk architecture
modi�cation by incorporating an intermediate layer between
the Tcl/Tk application code and the Tcl/Tk Interpreter such
that it dynamically generates code to draw graphics on multi-
ple displays as well as receive events from them; (2) Multiple
interpreter invocation for each user in the session to control
the events, such as mouse clicks and drawings, on each display

Application Sharing Layer (ASL) (Token holder)

User 1

Display
(Host 1)

User 2

Display
(Host 2)

User 3

Display
(Host 3)

Tcl
Application

AAAAA
AAAAA
AAAAATcl /Tk

Interpreter

FlowSynchronizer

Hostlist

Dynamic
Code

Generator

Display
Controller

Original Application (Hello):

label .hello -text "Hello World"

pack .hello

Multi-cast Application (M-Hello) generated by ASL:

DisplayController and FlowSynchronizer initialization:

toplevel .screen1 -screen screen@site1:0

toplevel .screen2 -screen screen@site2:0

toplevel .screen3 -screen screen@site3:0

Dynamic code generation:

label .screen1.hello -text "Hello World"; pack .screen1.hello;

label .screen2.hello -text "Hello World"; pack .screen2.hello;

label .screen3.hello -text "Hello World"; pack .screen3.hello;

Fig. 7. Multi-user collaborative architecture.

and, in turn, communicate with a master interpreter which
manages the application; (3) Double Bu�ering in two phases,
�rst routing all graphics data to an o�-screen bu�er, and then
updating the changes in this bu�er to multiple displays. We
choose to implement the �rst method since double bu�ering
requires large bandwidth and multiple interpreter is di�cult
to implement.
Multi-user collaborative environment. The top portion
of Figure 7 shows an Application Sharing Layer (ASL) be-
tween the Tcl/Tk application code and the Tcl/Tk Inter-
preter. This layer consists of three components: FlowSyn-
chronizer to facilitate real-time conferencing, Display Con-
troller to manage control exchanges among the collaborators
and Dynamic Code Generator (DCG) to multicast the appli-
cation as well as process incoming events from the collabo-
rator's displays. The user designated as Token Holder can
control the application.
A simple application Hello to illustrate the essential ideas

of the multicasting operation is shown in the bottom portion
of Figure 7. Original application code and its corresponding
display window are adjacent in the �gure, followed by code
for multicast application M-Hello shown in two parts:
� Display Controller and FlowSynchronizer initialization.
Initialization process uses toplevel command to invoke
the FlowSynchronizer window on each display. It also
sets up a control manager to furnish the designated To-
ken Holder with the initial control of the application.

� Dynamic Code Generation. This intercepts all Tcl/Tk

commands and dynamically generates multiple com-
mands, one for each display, before passing it to the in-
terpreter.

Control in a collaborative multi-user environment. In
most applications, it is essential that at any time during the
execution of the application, only one user controls the input.
Several methods proposed for allocation of control to multiple
users include:
1. No Control. All users can execute or terminate the ap-
plication at any time, resulting in contentions.

2. Single User Control. A single user controls the entire
application, while others are mere spectators.

3. Automated Control. The control is pre-con�gured to

switch between the end-users based on their actions, such
as in a chess game, both players secure control alterna-
tively after each move.

4. Floating Control. The application is invoked without any
user-control; the �rst user to grab it get the controls.

5. Request-based Control. The initial control is speci�ed at
the time the application is launched; however, another
user may acquire control upon request later on.

We use a request-based control mechanism to exchange con-
trol among collaborators. It is not necessary to use C or C++
in order to manipulate the widgets, and useful applications
can be built very rapidly using Tcl/Tk. This is in sharp con-
trast to groupware tools such as Xplexer and Xshare, which
use the Xlib and Motif toolkits for implementation.

A Display of a Collaborative Work
ow. Upon the initial
invocation of a collaborative work
ow with REUBEN, users at
all sites typically see two windows, such as shown in Figure 8:
an application speci�c work
ow, and the FlowSynchronizer.
We say more about the purpose of this work
ow in the next
section. The purpose of FlowSynchronizer is two-fold: (1)
to transmit typed messages between team members, and (2)
to dynamically exchange control using a request-based mech-
anism. The FlowSynchronizer can support n collaborating
sites, providing controlled access to two window segments at
each site: (a) a clickable button designating the UserSite,
and (b) a scrollable window which provides a real-time con-
ferencing environment. At any time, one and only one site is
designated as a TokenHolder, by coloring its UserSite button
in a color di�erent from all other sites. At any time, each
collaborator can transmit text messages in the scrollable win-
dow to all other sites. However, only the TokenHolder has
the capability to click on another UserSite button to pass the
token, and hence the control of the entire environment, in-
cluding any application and data displayed in the work
ow
window.
Additional details about the implementation, and experi-

ence with the collaborative processes, are given in [23].

VI. Multi-Site Executable Workflow: Experiments

Our web site (http://cbl.ncsu.edu/demos/) supports
REUBEN demos that include several collaborative work
ow ex-
periments. In this paper, we brie
y describe only two.

A Collaborative Experiment with WELD. The collab-
orative work
ow example in Figure 8 has been tested with
members of the WELD team at UC Berkeley in Sept. 1996
(..//www-cad.EECS.Berkeley.EDU/Respep/Research/weld/).
The main purpose of the work
ow is to demonstrate a multi-
site work
ow that encapsulates tools such as the FSM editor
accessible as browser node through its URL (a JAVA-applet
http://yoyodyne.EECS.berkeley.EDU/fsm/fsm.html), a
university-based tool SIS (synthesis and logic optimization
tool, [24]), and a commercial tool APR (automatic place-
ment and routing tool [22]). While FSM editor is executed
at the UCB site, both SIS and APR are executed at CBL
site. As shown in the FlowSynchronizer window, the work-

ow is launched from zodiac@CBL and is multicast to yoy-
odyne@berkeley. The user at CBL is passing control to a
specialist at the UCB site for assistance with the FSM editor.
At some other time, a user at CBL may choose to enter the
FSM design speci�cations on his/her own. Once the control is
passed back to CBL, the design speci�cations are transferred
to CBL, optimized by the SIS tool and mapped to FPGAs
using Xilinx's automatic place and router (APR). CBL may
pass control to UCB so the APR's layout can be reviewed at
the UCB site. CBL may be requested to manually route the
netlist, or there may be a change of FSM speci�cations that
will result in a new layout with improved timing performance.

Fig. 8. Typical user views in a multi-user collaborative environment.

Collaborative Benchmarking Experiment. The work-

ow in Figure 9 illustrates a process we have tested to per-
form a series of collaborative Internet-based benchmarking
experiments which in this case may involve: (1) two technol-
ogy mappers using the same library, (2) two libraries using
the same technology mapper, or (3) a combination of both.
As described earlier, a window named TechnologyMapping

is displayed at multiple sites, while the window named
FlowSynchronizer which coordinates token passing between
all participants. There may be up to three teams participat-
ing in this experiment, each at a site that may be a conti-
nent away from the other. We show both data and programs
(technology mappers, veri�cation tools) residing at one of the
three sites and supported by three hosts. Host 0 archives
data (benchmarks) to be used by both technology mappers.
Upon completion of technology mapping at either Host 1 or
Host 2, results are transferred back to Host 0 for logic equiv-
alence veri�cation, report generation, and archival. As de-
scribed earlier, the work
ow can be executed collaboratively
in a synchronous mode (by selecting any of its path segments)
or in a batch mode.

We are interested in discussing options with potential par-
ticipants about testing, hosting, and facilitating benchmark-
ing experiments within the context described in this and the
companion paper [25]. For more details, send e-mail to bench-
marks@cbl.ncsu.edu with the following information in the
body of the message: subscribe demos

Fig. 9. A collaborative benchmarking experiment.

ACKNOWLEDGEMENTS. We appreciate the access to tools used
in this research: SIS and WELD from teams at UC Berkeley,
PROP from Roman Ku�znar from U. of Ljubljana (Slovenia),
and APR from Xilinx Inc.

References

[1] Hussein Abdel-Wahab and Kevin Je�ay. Issues, Problems and Solutions

in Sharing X Clients on Multiple Displays. In Journal of Internetworking

Research and Experience, pages 01{15, March 1994.

[2] The Application Sharing Technology. Published under URL:

http://andru.unx.com/DD/advisor/docs/jun95/jun95.minenko.shtml , 1995.

[3] XShare: Workstation Conferencing. Published under URL:

http://www.eit.com/software/xshare/ , 1996.

[4] XMX : A X Protocol Multiplexer. Published under URL:

http://www.cs.brown.edu/software/xmx/ , 1990.

[5] XTV: A User's Guide. Published under URL:

http://www.visc.vt.edu/succeed/xtv.html , 1993.

[6] ShowMe SharedApp . Published under URL:

http://www.sun.com:80/cgi-bin/show?products-n-solutions/

sw/ShowMe/products/ShowMe_SharedApp.html , 1996.

[7] T. Murata. Petri Nets: Properties, Analysis, and Applications. Proceed-

ings of IEEE, pages 541{580, April 1989.

[8] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[9] D. Libes. Exploring Expect. O'Reilly and Associates, 1995.

[10] The Tcl/Tk Project At Sun Microsystems Laboratories. URL:

http://www.sunlabs.com:80/research/tcl/ , 1997.

[11] Jon Siegel. CORBA Fundamentals and Programming. J. Wiley, 1996.

[12] D. S. Harrison, R. A. Newton, R. L. Spickelmier, T. J. Barnes. Electronic

CAD Frameworks. Proc. of IEEE, 78(2):1062{1081, Feb 1990.

[13] J. Daniell and S. W. Director. An Object Oriented Approach to

CAD Tool Control Within a Design Framework. IEEE Transactions on

Computer-Aided Design, 10(6):698{713, June 1991.

[14] A. Casotto and A. Sangiovanni-Vincentelli. Automated Design Man-

agement Using Traces. IEEE Transactions on Computer-Aided Design,

12(8):1077{1095, August 1993.

[15] E. W. Johnson and J. B. Brockman. Incorporating Design Schedule

Management into a Flow Management System. In 32nd Design Automa-

tion Conference, ACM/IEEE, pages 82{87, June 1995.

[16] J. Altmeyer, B. Schurmann and M. Schutze. Generating ECAD Frame-

work Code from Abstract Models. In 32nd Design Automation Confer-

ence, ACM/IEEE, pages 88{93, June 1995.

[17] Layna Fischer. The Work
ow Paradigm. Future Strategies Inc., 1995.

[18] Munindar P. Singh. Synthesizing Distributed Constrained Events from

Transactional Work
ow Speci�cations. In Proceedings of the 12th Inter-

national Conference on Data Engineering, March 1996.

[19] M. A. Vouk and M. P. Singh. Quality of Service and Scienti�c Work-

ows. In The Quality of Numerical Software: Assessment and Enhance-

ments, editor: R. Boisvert, Chapman and Hall, pages 77-89, 1997.

[20] J. B. Brockman and S. W. Director. The Schema-based Approach to

Work
ow Management. IEEE Transactions on Computer-Aided Design,

14(10):1445{1267, October 1995.

[21] R. Ku�znar and F. Brglez. PROP: A Recursive Paradigm for Area-

E�cient and Performance Oriented Partitioning of Large FPGA

Netlists. In IEEE Intl. Conf. on Computer-Aided Design, November 1995.

[22] Xilinx. User Guide and Tutorials. Xilinx Incorporation, 2100 Logic

Drive, San Jose, California, 1991.

[23] H. Lavana, A. Khetawat, and F. Brglez. REUBEN User Guide. Techni-

cal Report 97-TR-Prep@CBL-03.1, CBL, CS Dept., NCSU, Box 7550,

Raleigh, NC 27695, 1997. This report is available as a postscript �le via

http://www.cbl.ncsu.edu/demos.

[24] SIS { Release 1.1. UC Berkeley Software Distribution, September 1992.

[25] N. Kapur and D. Ghosh and F. Brglez. Towards A New Benchmark-

ing Paradigm in EDA: Analysis of Equivalence Class Mutant Circuit

Distributions. In Intl. Symp. on Physical Design, 1997.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

