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Abstract

In this paper, we present a new hypergraph partitioning algorithm
that is based on the multilevel paradigm. In the multilevel paradigm,
a sequence of successively coarser hypergraphs is constructed. A
bisection of the smallest hypergraph is computed and it is used to
obtain a bisection of the original hypergraph by successively pro-
jecting and refining the bisection to the next level finer hypergraph.
We evaluate the performance both in terms of the size of the hyper-
edge cut on the bisection as well as run time on a number of VLSI
circuits. Our experiments show that our multilevel hypergraph par-
titioning algorithm produces high quality partitioning in relatively
small amount of time. The quality of the partitionings produced by
our scheme are on the average 4% to 23% better than those produced
by other state-of-the-art schemes. Furthermore, our partitioning al-
gorithm is significantly faster, often requiring 4 to 15 times less time
than that required by the other schemes. Our multilevel hypergraph
partitioning algorithm scales very well for large hypergraphs. Hy-
pergraphs with over 100,000 vertices can be bisected in a few min-
utes on today’s workstations. Also, on the large hypergraphs, our
scheme outperforms other schemes (in hyperedge cut) quite consis-
tently with larger margins (9% to 30%).

1 Introduction

Hypergraph partitioning is an important problem and has extensive
application to many areas, including VLSI design [2], efficient stor-
age of large databases on disks, and data mining [14]. The problem
is to partition the vertices of a hypergraph in k roughly equal parts,
such that the number of hyperedges connecting vertices in different
parts is minimized. Formally, a hypergraph H = (V;Eh

) is de-
fined as a set of vertices V and a set of hyperedges Eh, where each
hyperedge is a subset of the vertex set V .

Hypergraphs can be used to naturally represent a VLSI circuit
[14]. Hypergraph partitioning has many applications including de-
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sign packaging, HDL-based synthesis, design optimization, rapid
prototyping, simulation, and testing. A high quality hypergraph par-
titioning algorithm greatly affects the feasibility, quality, and cost of
the resulting system.

The problem of computing an optimal bisection of a hypergraph
is NP-complete. However, because of the importance of the prob-
lem in many application areas, many heuristic algorithms have been
developed. The survey by Alpert and Khang [2] provides a detailed
description and comparison of various such schemes. In a widely
used class of iterative refinement partitioning algorithms, an initial
bisection is computed (often obtained randomly) and then the parti-
tion is refined by repeatedly moving vertices between the two parts
to reduce the hyperedge-cut. These algorithms often use the Schwe-
ikert-Kernighan [21] (an extension of Kernighan-Lin (KL) [17] for
hypergraphs), or the faster Fiduccia-Mattheyses (FM) [8] refinement
heuristic to iteratively improve the quality of the partition. The par-
tition produced by these methods is often poor, especially for larger
hypergraphs, for a number of reasons. First, these methods choose
vertices for movement based only upon local information. Second,
if many vertices have the same gain, then the method offers no in-
sight on which of these vertices to move [18]. Third, a hyperedge
that has more than one vertices on both sides of the partition line
does not influence the computation of the gain of vertices contained
in it, making the gain computation quite inexact [5]. Hence, these
algorithms have been extended in a number of ways [18, 20, 5, 6]
that tend to enhance the performance of the basic KL/FM refinement
algorithms, at the expense of increased run time.

Another class of hypergraph partitioning algorithms [7, 10, 9,
22] consists of two different phases. In the first phase, they clus-
ter the hypergraph to form a small hypergraph and use the FM al-
gorithm to bisect the small hypergraph. In the second phase, they
use the bisection of this contracted hypergraph to obtain a bisec-
tion of the original hypergraph. The overall performance of such a
scheme depends upon the quality of the clustering method. In many
schemes, the projected partition is further improved using the FM
refinement scheme [22].

Recently a new class of multilevel partitioning techniques was
developed [3, 12, 11, 4]. These algorithms consist of three phases,
namely, coarsening phase, initial partitioning phase, and uncoarsen-
ing and refinement phase. During the coarsening phase, a sequence
of successively smaller (coarser) graphs is constructed; during the
initial partitioning phase, a bisection of the coarsest graph is com-
puted; and during the uncoarsening and refinement phase, the bi-
section is successively projected to the next level finer graph, and
at each level an iterative refinement algorithm such as KL or FM is
used to further improve the bisection. The various phases of multi-
level bisection are illustrated in Figure 1. Karypis and Kumar exten-
sively studied this paradigm in [16, 15] for partitioning of graphs.
They presented new powerful graph coarsening schemes for which
even a good bisection of the coarsest graph is a pretty good bisection
of the original graph. This makes the overall multilevel paradigm



even more robust. Furthermore, it allows the use of simplified vari-
ants of KL and FM refinement schemes during the uncoarsening
phase, which significantly speeds up the refinement without com-
promising the overall quality. METIS [16], a multilevel graph par-
titioning algorithm based upon this work, routinely finds substan-
tially better bisections and is often two orders of magnitude faster
than the hitherto state-of-the-art spectral-based bisection techniques
for graphs.

G
G

O
O

G

G2

G

G

1

G3

G2

G1

4

3

refined partition
projected partition

C
o

a
rs

e
ni

ng
 P

ha
se

Initial Partitioning Phase

Multilevel Graph Bisection

U
nc

o
a

rse
ning

 a
nd

 Re
fine

m
e

nt Pha
se

Figure 1: The various phases of the multilevel graph bisection.

The improved coarsening schemes of METIS work only for graphs,
and are not directly applicable to hypergraphs. If the hypergraph is
first converted into a graph (by replacing each hyperedge by a set
of regular edges), then METIS [16] can be used to compute a par-
titioning of this graph. This technique was investigated by Alpert
and Khang [1]. The conversion of a hypergraph into a graph by re-
placing each hyperedge by a clique does not result in an equivalent
representation [14]. The fundamental problem associated with re-
placing a hyperedge by its clique, is that there exists no scheme to
assign weight to the edges of the clique that can correctly capture
the cost of cutting this hyperedge [13]. This hinders the partition-
ing refinement algorithm since vertices are moved between parti-
tions depending on the reduction in the number of edges they cut in
the converted graph, whereas the real objective is to minimize the
number of hyperedges that are cut in the original hypergraph.

In this paper we present a multilevel hypergraph partitioning al-
gorithm, hMETIS, that operates directly on the hypergraphs. A key
contribution of our work is the development of new hypergraph coars-
ening schemes that allow the multilevel paradigm to provide high
quality partitions quite consistently. The use of these powerful coars-
ening schemes also allow the refinement to be simplified consider-
ably (even beyond the plain FM refinement), making the multilevel
scheme quite fast.

We evaluate the performance both in terms of the size of the hy-
peredge cut on the bisection as well as run time on a number of VLSI
circuits. Our experiments show that our multilevel hypergraph par-
titioning algorithm produces high quality partitioning in relatively
small amount of time. The quality of the partitionings produced by
our scheme are on the average 4% to 23% better that those produced
by other state-of-the-art schemes [1, 5, 6, 19, 11]. The difference
in quality over other schemes become even greater for larger hy-
pergraphs. Furthermore, our partitioning algorithm is significantly
faster, often requiring 4 to 10 times less time than that required by
the other schemes. For many benchmark circuits in the well known
ACM/SIGDA benchmark set 1, our scheme is able to find better par-

1Available on the WWW at http://vlsicad.cs.ucla.edu/˜cheese/benchmarks.html.
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Figure 2: Various ways of matching the vertices in the hypergraph
and the coarsening they induce.

titionings than those reported in the literature for any other hyper-
graph partitioning algorithm.

2 Multilevel Hypergraph Bisection

We now present the framework of hMETIS, in which the coarsening
and the refinement schemes treat hyperedges without any distortion.
We have developed new algorithms for both of these phases, which
in conjunction have the capability of delivering very good quality
solutions. In the rest of this section, we briefly describe the algo-
rithms used in the coarsening and the uncoarsening phases. Exten-
sive descriptions can be found in [14].

Coarsening Phase The purpose of coarsening is to create a
small hypergraph, such that a good bisection of the small hyper-
graph is not significantly worse than the bisection directly obtained
for the original hypergraph. In addition to that, hypergraph coarsen-
ing also helps in successively reducing the size of the hyperedges.
That is, after several levels of coarsening, large hyperedges are con-
tracted to hyperedges connecting just a few vertices. This is partic-
ularly helpful, since refinement heuristics based on the Kernighan-
Lin algorithm [17, 21, 8] are very effective in refining small hyper-
edges but are quite ineffective in refining hyperedges with a large
number of vertices belonging to different partitions.

The group of vertices that are merged together to form single
vertices in the next level coarse hypergraph can be selected in differ-
ent ways. We have developed three different algorithms for coars-
ening. In edge coarsening (illustrated in Figure 2(a)) a heavy-edge
maximal matching of the vertices of the hypergraph is computed to
select the pairs of vertices. These vertices are then merged together.
In Hyperedge Coarsening(illustrated in Figure 2(b)) an independent
set of hyperedges is selected and the vertices that belong to these
hyperedges are contracted together. This scheme gives preference
to the hyperedges that have large weight and those that are of small
size. In Modified Hyperedge Coarsening(illustrated in Figure 2(c))
after the hyperedges to be contracted have been selected using the
hyperedge coarsening scheme, all the uncontracted hyperedges are
considered again. And for each uncontracted hyperedge, the ver-
tices that do not belong to any other contracted hyperedge are match-
ed to be contracted together.

Uncoarsening and Refinement Phase We calculate the
initial partitioning using “balanced” random bisection. This parti-
tioning is then carried along in the uncoarsening phase. During the
uncoarsening phase, a partitioning of the coarser hypergraph is used



to obtain a partitioning for the finer graph. This is done by succes-
sively projecting the partitioning to the next level finer hypergraph
and using a partitioning refinement algorithm to reduce the cut and
thus improve the quality of the partitioning. Since the next level
finer hypergraph has more degrees of freedom, such refinement al-
gorithms tend to improve the quality.

We have implemented two different partitioning refinement al-
gorithms. The first is the FM algorithm [8] which repeatedly moves
vertices between partitions in order to improve the cut. We have
made two simplifications in FM, which are (i) we limit the maxi-
mum number of passes performed by the FM algorithm to only two
and (ii) we stop each pass of the FM algorithm as soon as we have
performed k vertex moves that did not improve the cut (this mod-
ification is called early-exit FM (FM-EE)). The second algorithm,
called Hyperedge Refinement(HER), moves groups of vertices be-
tween partitions so that an entire hyperedge is removed from the
cut. Unlike FM, this algorithm has the capability to refine hyper-
edges that have many nodes on both sides of the partitioning bound-
ary. Note that unlike FM, HER is not a hill-climbing algorithm, as
it does not perform moves that can lead to a larger cut (i.e., negative
cut reduction).

3 Experimental Results

We experimentally evaluated the quality of the bisections produced
by our multilevel hypergraph partitioning algorithm on a large num-
ber of hypergraphs that are part of the widely used ACM/SIGDA
circuit partitioning benchmark suite. The characteristics of these
hypergraphs are shown in Table 1. We performed all our experi-
ments on an SGI Challenge that has MIPS R10000 processors run-
ning at 200Mhz, and all reported run-times are in seconds. All the
reported partitioning results were obtained by forcing a 45–55 bal-
ance condition.

To compare the performance of the bisections produced by our
multilevel hypergraph bisection and refinement algorithms, both in
terms of bisection quality as well as runtime, we created Table 1.
Table 1 shows the size of the hyperedge cut produced by our algo-
rithms (hMETIS) and those reported by various previously developed
hypergraph bisection algorithms. In particular, Table 1 contains re-
sults for the following algorithms: PROP [5], Opt. KLFM(scheme
by Hauck and Borriello [11]) CLIP-PROPf [6], PARABOLI [19],
and GMetis [1]. Note that for certain circuits, there are missing re-
sults for some of the algorithms. This is because no results were
reported for these circuits. The column labeled “Best” shows the
minimum cut obtained for each circuit by any of the earlier algo-
rithms. Essentially, this column represents the quality that would
have been obtained, if all the algorithms have been run and the best
partition was selected.

The last two columns of Table 1 shows the partitionings pro-
duced by our multilevel hypergraph bisection and refinement algo-
rithms. In particular, the column labeled “hMETIS-EE20” corresponds
to the best partitioning produced from 20 runs of our multilevel al-
gorithm that uses early-exit FM during refinement (FM-EE). Of these
twenty runs, ten runs are using hyperedge coarsening (HEC) and ten
runs are using modified hyperedge coarsening (MHEC). The col-
umn labeled “hMETIS-FM20” corresponds to the best partitioning
produced from 20 runs when FM is used during refinement and coars-
ening is performed similarly to “hMETIS-EE20”. In both of these
schemes, we used random initial partitionings during the initial par-
titioning phase.

To make the comparison with previous algorithms easier, we
computed the total number of hyperedges cut by each algorithm,
as well as the percentage improvement in the cut achieved by our
algorithms over previous algorithms. This cut improvement was
computed as the average improvement on a circuit-by-circuit level.
Looking at these results, we see that both of our algorithms produce

partitionings whose quality is better than that produced by any of
the previous algorithms. In particular, hMETIS-EE20 is 4.1% better
than CLIP-PROPf , 6.2% better than PROP, 9.9% better than Opt.
KLFM, 10.0% better than GMetis, and 21.4% better as compared to
PARABOLI. If all these algorithms are considered together, hMETIS-
EE20 is still better by 0.5%. Comparing hMETIS-EE20 with hMETIS-
FM20 we see that hMETIS-FM20 is about 1.1% better than hMETIS-
EE20, and about 1.7% better than all the previous schemes com-
bined. In particular, hMETIS-FM20 was able to improve the best-
known bisections for 9 out of the 23 test circuits.

The last subtable of Table 1 shows the total amount of time re-
quired by the various partitioning algorithms. These run-times are
in seconds on the respective architectures. Because of the differ-
ence in CPU speed at the various machines, it is hard to make direct
comparisons. However, we tested our code on Sparc5 and we found
that it requires about four times more time than when it is running
on R10000. Taking into consideration a scaling factor of four, we
see that both hMETIS-EE20 and hMETIS-FM20 require less time than
either PROP, Opt. KLFM, CLIP-PROPf , or PARABOLI. In partic-
ular, hMETIS-EE20 is about four times faster than PROP, nine times
faster than CLIP-PROPf , ten times faster than PARABOLI, and fif-
teen times faster than Opt. KLFM. Comparing against GMetis, we
see that hMETIS-EE20 requires approximately the same time, whereas
hMETIS-FM20 is about twice as slow. Note that GMetis runs METIS
100 times on each graph but each of these runs is substantially faster
than hMETIS, partly because METIS is a highly optimized code for
graphs, and partly because coarsening and refinement for hypergraphs
is more complex than the refinement schemes used in METIS. How-
ever, both hMETIS-EE20 and hMETIS-FM20 produce bisections that
cut substantially fewer hyperedges than GMetis.

Furthermore, from Table 1, we can see that our scheme is more
powerful relative to the other schemes for larger hypergraph. For
example, restricting to only the larger hypergraphs (with 10K or more
nodes) in the benchmark set, we find that hMETIS-FM20 performs
4.8% better than the “Best”.

4 Conclusions and Future Work

The multilevel hypergraph partitioning algorithm presented here is
quite fast and robust. Even a single run of the algorithm is able to
find reasonably good bisections. With a small number of runs (e.g.,
20) our algorithm is able to find better bisections than those found
by all previously known algorithms for many of the well-known ben-
chmarks. Also, our algorithm scales quite well for large hypergraphs.
hMETIS is very fast, often requiring 4 to 15 times less time than that
required by the other schemes. The quality of the bisection pro-
duced by hMETIS can be further improved by using the multi-phase
refinement algorithm described in [14].

hMETIS is written in C language and is available at

http://www.cs.umn.edu/˜karypis/metis
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