
1

Power-conscious High Level Synthesis Using Loop Folding

Daehong Kim Kiyoung Choi

School of Electrical Engineering

Seoul National University, Seoul, Korea, 151-742

E-mail: daehong@poppy.snu.ac.kr

Abstract

 In this paper, a transformation technique, called power-
conscious loop folding is proposed for high level synthesis of a
low power system. Our work is focused on reducing the power
consumed by functional units through the decrease of switching
activity in a data path dominated circuit containing loops. The
transformation algorithm has been implemented and integrated
into a high level synthesis system for experiments. In our
experiments, we could achieve power reduction of up to 50% for
circuits dominated by functional units.

1. Introduction

 Until 1980’s, one of the most important factors that
determined the quality of a system was the speed and so much
effort had been made to increase the speed at a minimal cost or
silicon area. But, in 1990’s, as the portable system market grows
rapidly and reliability problems due to high power dissipation are
becoming an issue for systems operating in high clock frequency,
low power design is becoming more and more important and is
now one of the major concerns in system design.
 There have been many researches for low power design at low
levels of abstraction and many effective techniques have been
proposed [1] [2] [3]. However, if we consider low power design
at higher levels of abstraction, we can obtain much more effective
power reduction. At higher levels of abstraction, we can apply
various transformation techniques to system design with wider
view and obtain much more power reduction with less cost and
effort. In this paper, we focus on transformation techniques for
high level synthesis of low power systems.
 There have been quite a few researches in high level low
power design. Chandrakasan utilized various transformations to
minimize the power in application specific data-intensive circuits
[10] [13]. His approach is to introduce more concurrency in a
circuit to speed it up relatively and then to induce low power by
reducing the voltage down to the minimum without violating the
original speed constraints. To reduce the supply voltage
ultimately, he used transformation techniques such as loop
unrolling, retiming, and pipelining. Loop unrolling is used to
increase concurrency and retiming and pipelining are used to
reduce the length of critical paths. Although capacitance increases

34th Design Automation Conference®
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 97, Anaheim, California
©1997 ACM 0-89791-920-3/97/06 ..$3.50

linearly due to the growth of parallelism, the total power
dissipation decreases because of the quadratic power reduction
effect of the lowered supply voltage. Most of the transformations
used are basically the same as the conventional high level
transformations, but different cost functions are used to evaluate
the results obtained through such transformations.
 In [12], scheduling and resource binding algorithms for low
power data path design are proposed. They minimize the number
of transitions on the signals feeding functional units(adders,
multipliers, etc.) and registers, which effectively minimize the
switched capacitance. This is achieved by scheduling the
candidate nodes in control steps as close as possible and binding
them to the same resource. The candidate nodes are selected such
that there is no change of values in the input operands among
consecutive operations of the same functional unit. In addition, in
[14], high level transformation techniques such as loop
interchange and operand reordering are proposed to reduce the
activity of functional units.
 As a basic control-flow element, loop has been one of the
major targets of various transformations for optimization of the
throughput and the resource utilization. In [5] and [11], a
technique called loop folding, is presented to obtain a significant
improvement in the utilization of parallel hardware and the
throughput. In this paper, we divert the traditional concept of loop
folding to the low power design. Our work is focused on reducing
the power consumption due to the switching. We use the loop
folding technique to minimize the number of transitions in the
input operands and thereby to reduce the power consumption. The
transformation algorithm is incorporated into HYPER [9], a high
level synthesis program, so that we can obtain synthesized
hardware from a Silage specification. For the evaluation of our
algorithm, we measure the power reduction using SPA [8], a
power analysis program, mutatis mutandis.
 This paper is organized as follows. Section 2 describes the
basic concept about operand sharing, power-conscious loop
folding, and their effects on the power consumption. In Section 3,
the transformation algorithm is described. The experimental
results are presented In Section 4. Finally, conclusions and future
work are given in Section 5.

2. Basic Concept

 In this section we examine the effect of operand sharing on
power consumption. Then we describe how the power-conscious
loop folding reduces power consumption through the operand
sharing.

2.1 Operand Sharing

 It is the power consumed in data paths that accounts for a
large fraction of overall power budget in a data path dominated

2

application specific circuit such as DSP. For this reason, various
techniques that reduce the switching activity in functional units
by minimizing the change in the input operands have been
proposed. Operand sharing described here is one of the
techniques. Generally, the power consumption (switching power)
is dependent on the correlation of the input operands. The
switching power decreases if the correlation between two
consecutive set of input operands to the same functional unit is
high. However, an accurate computation of the correlation is very
time-consuming because it requires an exhaustive simulation.
 Typically high level synthesis system takes CDFG(Control
Data Flow Graph) as the intermediate form, where nodes
represent operations that are to be bound to functional units and
edges represent control or data flows. During the synthesis,
multiple operation nodes can be implemented by one functional
unit through hardware sharing. In this case, the switching activity
of the functional unit may increase because the input operands
change between the executions of the two operations. Operand
sharing technique binds one identical functional unit to more than
two operation nodes that have at least one common input operand.
It achieves switching power reduction by maximizing the
temporal correlation of input signals to a functional unit. Assume
that P1 is the average power consumption of a binary functional
unit when only one operand changes and P2 is the average
consumption when both operands change simultaneously and α is
the ratio P1/P2. If one functional unit is shared by n operation
nodes having one common input operand, the power reduction is
given by

Considering that typical value of α is about 0.65 for a 12bit
multiplier and 0.75 for a 12 bit adder [14], power reductions of
26% and 18% are obtained for n = 4 respectively.
 The scheduling algorithm proposed by Musoll utilizes this
operand sharing technique to obtain power reduction from 5% to
8% over conventional scheduling algorithms. The limitation of
the above techniques rises from the fact that for most designs
including DSP applications, it is not easy to find common input
operands. This paper presents a novel loop transformation called
power-conscious loop folding which finds common input
operands hidden in a loop. This transformation has a significant
power-reducing effect on DSP applications such as filters.

2.2 Loop Folding

 The loop folding technique proposed here is somewhat
different from the conventional one, although the basic process of
folding loop iterations is the same.

2.2.1 Conventional Loop Folding

 Loop folding is a transformation technique which reduces the
execution time of a loop or improves the utilization of the
resource by introducing partial overlaps between the execution
times of successive loop iterations in the original description.
Figure 1 is an example of loop folding that reduces the execution
time of a loop. Assume that one adder and one multiplier are
allocated. If an adder node in time step 4 is moved to the next

loop iteration, the total latency of the loop body is reduced from 4
to 3.

*
*

*+

+
out[n]

h0 x[n] h1 x[n-1] h2 x[n-

*
*

*+

+

out[n-1]

h0 x[n] h1 x[n-1] h2

time1

time2

time3

time4 nop

nop

Figure 1. Before and after the conventional loop folding.

2.2.2 Power-Conscious Loop Folding

 While conventional loop folding aims at reducing the
execution delay of a loop or obtaining high utilization of the
resource, the proposed loop folding aims at reducing the
switching activity (hence the power consumption) of a functional
unit by minimizing changes in input operands to the functional
unit. The effect of the proposed technique is quite significant for
DSP applications such as filters. The reason is found in the
observation that for most DSP applications, the following form of
equations is frequently used in their behavioral specifications.

 As shown in the above equation, the sum of products of a
constant value and a delayed signal value determines the output
value. The equation implicitly represents a loop. Assume that one
multiplier is shared by the multiplication operations required in
the equation. The switching activity of the multiplier is
determined by the changes of values of the two input operands
occurring between each pair of consecutive executions. Note that,
without any transformation, both input operands change their
values every iteration. However, if we fold two consecutive
iterations in such a way that hix[n-i] for y[n] and h(i+1)x[(n+1)-
(i+1)] for y[n+1] are computed consecutively, we can save power
because one input to the multiplier does not change. In this case,
we need some additional codes for start-up and clean-up, but their
effect is negligible provided that a large number of loop iterations
are assumed.
 The example in Figure 2 illustrates step by step power-
conscious loop folding described above. The example represents
the operation of a 4th order FIR filter. As shown in the figure, the
number of loop iterations is decreased as the folding steps
proceed and the start-up and clean-up codes are modified
accordingly. If the number of delay terms is n (4 in our example),
the maximum number of folding steps is n-1 (3 in our example).
Every step, registers which save the results of multiplication are
produced and additional codes for start-up and clean-up are
inserted. The total number of registers required increases because
the life times of the newly produced registers are relatively long.
They can hardly be shared by multiple variables. In our example,
total overhead of about 6 registers is necessary. But, in a typical
data path, the fraction of the register overhead in area and power
is small because relatively large functional units such as
multipliers dominate the area and power consumption. Refer to
section 5 for experimental results. In this paper, we focus on
power reduction in multipliers only.

power reduction
power consumed after operand sharing

power consumed before operand sharing

P n P

nP

n n

= −

= − + −

= − −

°

°
°

° °

± °

±

()

()() /α

y n h x n ii
i

[] []= −∑

3

 Assume that Pmul1 is the average power consumed by a
multiplier when only one operand changes and Pmul2 is the
average power consumed when both operands change
simultaneously and α is the ratio Pmul1/Pmul2. In our example, if
only one multiplier is shared by the 4 multiplication operations,
the power consumption before the loop folding is 4⋅Pmul2 and
that after the folding is (Pmul2 + 3⋅Pmul1), resulting in power
reduction of 75(1-α)% as explained above. Power reduction of
about 26% can be obtained for a typical value of α (0.65 for a 12
bit multiplier). Because the power consumed by multiplier
accounts for a large fraction of the total power budget, the effect
of overall power reduction corresponding to reduction of
multiplier can be taken.
 Generally if there are (n+1) delay terms and n folding steps
are performed, we obtain power reduction of (n-1)(1-α)/n and
overhead of n(n-1)/2 registers.

out[n-3] = h0x[n]+h1x[n-1]+h2x[n-2]+h3x[n-3]

(3...N-1)
m0[n-3]= h0x[n]
m1[n-3]= h1x[n-1]
m2[n-3]= h2x[n-2]
m3[n-3]= h3x[n-3]
a1[n-3]= m0[n-3]+m1[n-3]

a2[n-3]= m2[n-3]+m3[n-3]
out[n-3] = a1[n-3]+a2[n-3]

(3...N-2)
m0[n-3]= h0x[n]
m1[n-2]= h1x[n]
m2[n-2]= h2x[n-1]
m3[n-2]= h3x[n-2]
a1[n-3]= m0[n-3]+m1[n-3]

a2[n-3]= m2[n-3]+m3[n-3]
out[n-3] = a1[n-3]+a2[n-3]

m1[0]= h1x[2]
m2[0]= h2x[1]
m3[0]= h3x[0]

m0[N-4]= h0x[N-1]
a1[N-4]= m0[N-4]+m1[N-4]
a2[N-4]= m2[N-4]+m3[N-4]
out[N-4] = a1[N-4]+a2[N-4]

start-up code

clean-up code

(3...N-3)
m0[n-3]= h0x[n]
m1[n-2]= h1x[n]
m2[n-1]= h2x[n]
m3[n-1]= h3x[n-1]
a1[n-3]= m0[n-3]+m1[n-3]

a2[n-3]= m2[n-3]+m3[n-3]
out[n-3] = a1[n-3]+a2[n-3]

m2[1]= h2x[2]
m3[1]= h3x[1]

m0[N-5]= h0x[N-2]
m1[N-4]= h1x[N-2]
a1[N-5]= m0[N-5]+m1[N-5]
a2[N-5]= m2[N-5]+m3[N-5]
out[N-5] = a1[N-5]+a2[N-5]

(3...N-4)
m0[n-3]= h0x[n]
m1[n-2]= h1x[n]
m2[n-1]= h2x[n]
m3[n]= h3x[n]
a1[n-3]= m0[n-3]+m1[n-3]
a2[n-3]= m2[n-3]+m3[n-3]
out[n-3] = a1[n-3]+a2[n-3]

m3[2]= h3x[2]

m0[N-6]= h0x[N-3]
m1[N-5]= h1x[N-3]
m2[N-4]= h2x[N-3]
a1[N-6]= m0[N-6]+m1[N-6]
a2[N-6]= m2[N-6]+m3[N-6]
out[N-6] = a1[N-6]+a2[N-6]

Figure 2. Steps for power-conscious loop folding.

3. Algorithm for Power-Conscious Loop

Folding

 Before we describe the algorithm, let’s define terms: base
index and base operand. The base index for a loop is the largest
index used for input operands in the loop body and the base
operands are the corresponding input operands.
 Power-conscious loop folding consists of the following three
steps.

1. Increase the index (decrease the delay) by one for all the
input operands except for the base operands.

2. Increase by one the index of the result of each
multiplication whose operand has an index increased at step
1. This process generates a new variable(register) which
will be used in the following iterations.

3. Generate start-up and clean-up codes
Above steps are repeated until the indices of all input operands
are the same as the base index.

(1...N-1)
m0[n-1] = h0x[n]
m1[n-1] = h1x[n-1]
out[n-1] = m0[n-1]+m1[n-1]

(1...N-2)
m0[n-1] = h0x[n]
m1[n] = h1x[n]
out[n-1] =m0[n-1]+m1[n-1]

loop folding

m[0] = h1x[0]

m0[N-2] = h0x[N-1]
out[N-2] =m0[N-2]+m1[N-2]

(a)

read

x[n]

*

h0

read

x[n-1]

*

h1

+

write

out[n-1]

read

x[n]

*

h0

+

write

out[n-1]

read

x[n]

*
lpdelay_0

e1

e2

“e2#1”
e2

(b)

h1

Figure 3. CDFG before and after power-conscious loop folding.

Figure 3 shows a simpler example.
Figure 3(b) shows two CDFGs: one before the power-

conscious loop folding and one after the folding. The nodes
represent functional operations, read operations, write operations,
and delays and the edges show the dependency(the dashed lines
and solid lines indicate control and data dependency respectively).
After one iteration of the loop folding, vertex lpdelay_0 and edges
e1,e2, and “e2#1” are inserted as shown in the CDFG on the right
hand side of Figure 3(b). Edge e1 indicates the data dependency
from the CDFG for the start-up code and edge e2 indicates the
data dependency to the CDFG for the clean-up code as well as the
data dependency to the delay node. Vertex lpdelay_0 is a queue
that saves the multiplication results which will be used in the
following iterations. Edge “e2#1” indicates the data dependency
between the output from the multiplier and the input to the adder
across one iteration. An edge “e#n” indicates data dependency
across n iterations.

Each of the three steps described above corresponds to each of
the following steps applied to the CDFG.
1. Replace x[n-k] by x[n-k+1] for all the input operands other

than base operands.
2. Insert a delay node and edges between the multiplication

node having an input operand modified at step 1 and the
addition node unless there exists a delay node. Name the
output edge of the delay node “e#1”. If there already
exists a delay node with an output edge named “e#n”, just
replace the name by “e#(n+1)”

4

3. Generate two additional CDFGs -one for the start-up code
and the other for the clean-up code- and insert edges to
represent the dependency among the three CDFGs.

The CDFG described here is a hierarchical graph, which is
suitable for representing control constructs such as loops,
conditional branches, etc. In the CDFG, a loop is represented by a
node at the right upper level of hierarchy.
 Figure 4 shows the pseudo-code for the transformation
algorithm.
 Routine PCLP() searches the CDFG for loop nodes from the
top level and then searches each loop for nodes that are inputs to
multiplication nodes. Then it determines the base index and base
operands and starts repeating the folding operation by calling
routine Folding(), which modifies the CDFG by increasing
indices of input operands, inserting delay nodes and edges, and
creating graph nodes and edges for the start-up and clean-up
codes.

PCLP() {
 Search graph nodes for loop
 For each loop {
 Search for Input nodes to multiplication
 Find base index and base operands
 Repeat {
 Call Folding() for one step of folding
 } until (all the input nodes have the same
 index as the base operands)
 }
}

Folding(){
 For all the non-base input nodes {
 Increase index by one
 If (any delay node between

 multiplication node and adder node) {
 Increase the value in the name of the
 output edge of the delay node by one

 } else {
 Create the delay node and edges
 }

Create nodes and edges for start-up and
 clean-up codes
 }
}

Figure 4. Pseudo-code for transformation algorithm.

4. Experimental Results

 The transformation algorithm was incorporated into HYPER.
HYPER takes a Silage specification and converts it to the
flowgraph database format (.afl file). We applied the proposed
transformation algorithm to the .afl files and generated SDL files
using scheduling and hardware mapping routines of HYPER. In
this section, we estimated the power consumed by the functional
units in the circuits and the total power consumed by the whole
circuits. We compare the estimation results for circuits
synthesized with and without loop folding. For the estimation of
power, we utilized SPA. Because SPA does not support control
constructs such as loops, we estimated the power consumption of
a loop for one iteration. In all the circuits, only one multiplier was
allocated. Table 1 shows the comparison results obtained for 4
circuits: 11th order fir filter, wavelet filter, noise canceller, and
volterra filter.

 The third column compares the switched capacitance values
estimated for functional units and for the entire circuit. The fourth
column represents the power consumed in one iteration of the
loop respectively. In the fifth column, we give the ratio of the
power consumed at the functional unit to that consumed at an
entire circuit. This ratio indicates the fraction of the power
consumed by functional units in the total power budget of the
circuit and hence shows how functional units dominate the rest of
the circuit in power’s point of view. The last column of the table
shows the estimated power reductions achieved by the loop
folding transformation technique in functional units and in the
whole circuit. The effect of the power reduction in functional
units is compensated by the power consumed by the newly added
multiplexers and registers. Moreover, the effect is somewhat
hidden by the power consumed in the control units. That is why
the number for the entire circuit is smaller than that for the
functional units.

Table 1. Comparison of power consumption.

switched
capacitance (pF)

power
(mW)

power
reduction

(%)
Fold
-ing

func total func total

powfunc

powtot func total

with
-out

2119 3147 44.1 65.6 67.3
1

with 800 1407 18.2 32.0 56.9
58.7 51.2

with
-out

683 1632 11.4 27.2 41.8
2

with 544 1446 9.1 24.1 37.6
20.2 11.4

with
-out

1675 3767 10.7 24.1 44.5
3

with 1523 3651 11.5 27.7 41.7
-7.5 -15

with
-out

19 327 0.3 4.5 5.7
4

with 16 312 0.3 5.2 5.2
0 -30

1. 11th order fir filter 2. Wavelet filter
3. Noise canceller 4. Volterra filter

For the 11th order fir filter, we obtained a power reduction
greater than we expected. Such an unusual reduction is related to
the symmetry of constants, fed to one of the two inputs of the
multiplier. Although the original description of the filter has 11
multiplications in one iteration of the loop body, the transformed
one has only 6 effective multiplications as shown in Figure 5. So
the multiplier consumes only half of the power that is consumed
in usual case where there is no symmetry of constants. For this
reason, the symmetry of constants amplifies the effect of power-
conscious loop folding. Of course, this effect is cancelled if the
original description does summations such as (In[n-10]+In[n]),
(In[n-9]+In[n-1]), etc. first and then does multiplications with a0,
a1,, a5 to obtain the final result.
 For the adaptive noise cancellation using LMS(Least Mean
Square) algorithm and volterra filter, we observe that both of
power consumed by the functional units and the entire circuit
increase contrary to the decrease in the switched capacitance
shown in the third column of Table 1. It is because the latency is
reduced due to the loop folding as shown in Table 2. The
reduction of latency is another merit of our method. For a fair
comparison, we estimated the energy reduction both in functional
units and in the entire circuit as shown in Table 2. The table also
shows the estimation of area obtained with and without folding.
We allocated the same number of functional units. In spite of the
increase in power, we observe that the energy is reduced even for

5

the noise canceller and volterra filter. However, the amount of
reduction for these two circuits is still small compared to the other
circuits. The reason is as follows. In the noise canceller, the
number of products of a constant and a delayed signal is small
compared to the total number of products. In the volterra filter,
the power consumed by functional units does not dominate the
total power of the circuit. In particular, in the volterra filter the
ratio on the fifth column of Table 1 is so small that the energy
reduction of 20% in the functional units results in the reduction of
just 4.9% in the entire circuit. So power-conscious transformation
is not very suitable for these kinds of applications. As can be
observed, however, it is possible to achieve a power reduction of
up to 50% in circuits whose power is dominated by that of
functional units.

m0[n-10]= a0 * In[n-10]
m1[n-10]= a1 * In[n-9]
m2[n-10]= a2 * In[n-8]
m3[n-10]= a3 * In[n-7]
m4[n-10]= a4 * In[n-6]
m5[n-10]= a5 * In[n-5]
m6[n-10]= a4 * In[n-4]
m7[n-10]= a3 * In[n-3]
m8[n-10]= a2 * In[n-2]
m9[n-10]= a1 * In[n-1]
m10[n-10]= a0 * In[n]

m0[n]= a0 * In[n]
m1[n-1]= a1 * In[n]
m2[n-2]= a2 * In[n]
m3[n-3]= a3 * In[n]
m4[n-4]= a4 * In[n]
m5[n-5]= a5 * In[n]
m6[n-6]= a4 * In[n]
m7[n-7]= a3 * In[n]
m8[n-8]= a2 * In[n]
m9[n-9]= a1 * In[n]
m10[n-10]= a0 * In[n]

Figure 5. Symmetry of constants.

Table 2. Comparison of area, latency, and energy.

energy (nJ)
energy

reduction
(%)

Fold-
ing

area
(mm2)

latency
(clock
cycles)

func total func total

with-
out

8.98 12 53.0 78.7
 1

with 9.63 11 20.0 35.2
62.2 55.2

with-
out

3.45 15 17.1 40.8
2

with 4.67 15 13.6 36.2
20.5 11.3

with-
out

3.53 39 41.9 94.2
3

with 3.78 33 38.1 91.3
9.1 3.1

with-
out

1.00 18 0.5 8.2
4

with 1.08 15 0.4 7.8
20 4.9

 The increase in the estimated area, given in the first column of
Table 2, describes the overhead mainly due to registers. The
amount of overhead is proportional to the number of folding steps.

5. Conclusions and Future Work

 In this paper, we discussed a high level transformation
technique, called power-conscious loop folding. This
transformation allows us to obtain a significant power reduction
in DSP applications such as filters. Such a reduction is based on
reducing the switching activity of functional units by minimizing

changes in input operands to the functional units. With the loop
folding transformation, a significant power reduction is achieved
in circuits whose power consumption is dominated by that of
functional units, even though we have some additional code
overhead for start-up and clean-up and some additional register
overhead.
 The transformation technique has been tested with some DSP
applications. The results show that it is possible to obtain a power
reduction of up to 50% for circuits such as fir filters But, this
technique is not so effective in circuits whose power is dominated
by that of control units.
 In this paper, the impact of the correlation between constants
fed to the multiplier when we apply the power conscious loop
folding has not been addressed. We are currently trying to further
reduce power consumption through scheduling using the
correlation between constant operands. We are also planning to
apply the proposed technique to the generation of DSP
application software running on DSP processors to achieve
system level power reduction.

References

[1] V. Tiwari, P. Ashar, and A. Malik, “Technology mapping for
low power,” In Proc. of Design Automation Conf., pp. 74-79,
1993.

[2] J. Monteiro, S. Devades, and A. Ghosh, “Retiming sequential
circuits for low power,” In Proc. of the IEEE Int. Conf. on
Computer-Aided Design, pp. 398-402.

[3] C. Tsui, M. Pedram, and A. Despain, “Technology
decomposition and mapping targeting low power dissipation,”
In Proc. of Design Automation Conf., pp. 68-73, 1993.

[4] A. P. Chandrakasan and R. W. Brodersen, “Minimizing
power consumption in digital CMOS circuits,” Proc. of the
IEEE, vol. 83, pp. 498-523, Apr. 1995.

[5] C. T. Hwang, Y. C. Hsu, and Y. L. Lin, “Scheduling for
functional pipelining and loop winding,” In Proc. of Design
Automation Conf., pp. 764-769, 1991.

[6] P. N. Hilfinger, Silage reference manual, 1993.
[7] A. Raghunathan and N. K. Jha, “An iterative improvement

algorithm for low power data path synthesis,” In Proc. of the
IEEE Int. Conf. on Computer-Aided Design, pp. 597-602,
1995.

[8] P. E. Landman and J. M. Rabaey, “Architectural power
analysis: the dual bit type method,” IEEE Trans. on VLSI
Systems, vol. 3, pp. 173-187, June 1995.

[9] C. Chu, et al., “HYPER: An interactive synthesis environment
for high performance real time applications,” In Proc. of the
IEEE Int. Conf. on Computer Design , Nov. 1989.

[10] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. M. Rabaey,
and R. W. Brodersen, “Optimizing power using
transformations,” IEEE Trans. on Computer-Aided Design,
vol. 14, pp. 12-30, Jan. 1995.

[11] G. Goossens, J. Vandewalle, and H. D. Man, “Loop
optimization in register-transfer scheduling for DSP-systems,”
In Proc. of Design Automation Conf., pp. 826-831, 1989.

[12] E. Musoll and J. Cortadella, “Scheduling and resource
binding for low power,” In Proc. of Int. Symp. on System
Synthesis, pp.104-109, 1995.

[13] A.P. Chandrakasan, M. Potkonjak, J. M. Rabaey, and R. W.
Brodersen, “HYPER-LP: A system for power minimization
using architectural transformations,” IEEE Trans. on
Computer-Aided Design, pp. 300-303, Nov. 1992.

[14] E. Musoll and J. Cortadella, “High-level synthesis technique
for reducing the activity of functional units,” in Proc. of Int.
Symp. on Low Power Design, pp. 99-104, 1995.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

