
Low Energy Memory
and Register Allocation Using Network Flow

Catherine H. Gebotys
Department of Electrical & Computer Engineering

University of Waterloo,
Waterloo, Ontario. N2L 3G1 Canada

Abstract

This paper presents for the first time low energy simultaneous
memory and register allocation. A minimum cost network flow
approach is used to efficiently solve for minimum energy dissipa-
tion solutions in polynomial time. Results show that estimated
energy improvements of 1.4 to 2.5 times over previous research
are obtained. This research is important for industry since energy
dissipation is minimized without requiring an increase in cost.

1.Introduction

Recently low power systems design has gained significant
attention largely due to demands from the portable electronics
industry. However system design for low power is also very
important for other industries such as automotive, telecommuni-
cations, information technology, etc... This is due to the fact that
low power designs can offer significant reductions in system
packaging costs and improvements in system reliability[1]. For
example in multimedia applications low power is believed to be
crucial[2]. This includes audio and video algorithms which pro-
cess large amounts of data, performing computations in real time.
High level design issues, such as determining the number of
external memory accesses, the number of accesses and sizes of
internal register files and memories, the amount of precomputa-
tion, and the scheduling of operations to meet real time con-
straints, are seen as having a significant impact on the final
system’s cost, performance and power dissipation. Clearly there
is a need to study high level techniques for designing low power,
high performance systems.

Tools for low energy design need to be developed to sup-
port the mapping of applications into low energy system architec-
tures. Although it is important to explore energy versus cost
tradeoffs, for many cost sensitive markets, such as multimedia,
new techniques need to be developed which provide low energy
without an increase in cost or decrease in performance. The low
energy system design problem involves several interdependent
subproblems including scheduling and allocation. However it is
critical to consider memory design, since it is well known that
external memory accesses will dissipate significantly more energy
than using on-chip memory or cache which in turn may dissipate
more energy than performing some computation (such as addi-
tion) on the chip. Typical compiler techniques for map- ping
variables to registers or variables to on-chip or off-chip memories
have concentrated on fast compile times and performance [6,7].

"Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date ap-
pear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and /or a fee."
DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..3.50 dollars

There is a need to perform this mapping to optimize energy
without any degradation of performance. It is known that these
early design decisions have a significant impact on the final
embedded system.

2.Problem Description and Related Work

The following problem, problem 1 given below, is an
important part of the low energy system design problem that will
be studied in this paper. For simplicity let us assume that an algo-
rithm to implement the application has already been assigned
based upon accuracy required, low energy implementation, etc..
The algorithm is given as a partially ordered list of code opera-
tions. For the problem definition below we assume that there is
one chip with onchip register file, onchip memory and external
(offchip) memory.

Problem 1.
Assume we are given an initial schedule of operations,

represented by an ordered list of operations. Using the
schedule, each data variable can be represented by a life-
time which is an interval of time, represented by two
values of time. The first value denotes the time when the
data variable is defined (the write time) and the second
value is the time the data variable is used and not needed
anymore (the read time). This lifetime may be broken up
into a number of intervals, called split[7] lifetimes, (for
example if the data variable is read more than once or the
data variable is spilled into memory[7,10]). Assume we
have a register file with R registers onchip and a (onchip
and/or offchip) memory component allowing memory
accesses every c control steps (or c clock cycles). For
every c control steps, determine whether each data vari-
able defined over this time is to be assigned to registers in
the register file or remains in memory storage.
The objective is to minimize the total energy dissipation

of the storage components.

One technique for reducing energy that has been previ-
ously researched is to reduce the average capacitance of the sys-
tem being switched[9,3]. Another popular technique is to reduce
energy by lowering the supply voltage, even though the the speed
of the chip decreases. This technique, called voltage scaling,
[15,13,1] increases the parallelism in the system (proportional to
cost) so that time constraints are met and all computations can be
performed with a lower supply voltage. The linear increase in
capacitance (from added parallelism) is offset by the quadratic
decrease in voltage, thus reducing the energy dissipated[3]. High
level capacitance models[3,7,9,15] for various functional units
(ie. multipliers, adders, etc), register files, interconnections, and
controllers have also been researched.

Other studies identified that the energy dissipation of
memory accesses and offchip transfers can be very signifi-
cant[14]. For example a 16 bit multiplication, onchip memory
read, onchip memory write, and offchip transfer required 4, 5, 10,
and 11 times more energy dissipation respectively than a 16 bit
addition operation in a CMOS library optimized for low

energy[14]. Cache was found to be important in [2] reducing
energy dissipation by reducing the number of offchip accesses
and it was found that reordering memory accesses to reduce the
switching activities of addresses sent offchip was also useful in
reducing energy dissipated. Researchers in [16] found that
accessing words in parallel from memory would decrease energy
dissipation by reducing number of memory accesses.

Researchers in [20,21] optimize the number of external
and internal memory accesses and the number of extra computa-
tions (or data regeneration) for tasks such that the total estimated
energy dissipation is minimized. This approach applies a network
flow technique to solve this problem in polynomial time. Some
recent algorithms developed for memory allocation either have
not addressed low energy [18,10,12], or are very application-
specific[16]. The problem of register allocation which minimizes
energy dissipated was researched in [8] using a maximum cost
flow approach, however memory allocation was not considered.
Researchers in [9] found significant reduction in energy could be
obtained by avoiding memory operands and recommended the use
of optimal register allocation. Researchers have found that by
using multiple memory modules one could reduce energy dissipa-
tion by using parallel access instructions[15], by entering inactive
memory modules into sleep modes[4], or by reducing the switch-
ing of memory address lines [19]. Mapping data variables to both
registers and memory has been studied by standard compiler tech-
niques in [6,7,8] for performance objectives, unfortunately energy
or power dissipation was not considered. Researchers in [8] use
register spilling in conjunction with loop unrolling techniques.

In this manuscript a new approach is presented to solve
problem 1, low energy register/memory design for VLSI systems
synthesis. Unlike previous research, a minimum cost network
flow approach to finding minimum energy solutions is introduced
to simultaneously partition data variables into memory and/or
allocate them into registers. A globally optimal solution can be
obtained in polynomial time using very efficient algorithms[17].
This technique is used to determine the optimal partitioning of
data variables into registers and memory and simultaneous regis-
ter allocation. Single port or multiport register files and memory
are supported. Voltage scaling of internal or external memory
modules and register spilling is supported. Unlike previous
research[8,4,15,16,18], we partition data variables into memory
and registers simultaneously with register allocation, account for
memory read and write energy dissipation, can support split life-
times and can support memory components that run at lower fre-
quencies for saving power. The next section will outline the
assumptions and terminology to be used in the rest of the paper.

3.Assumptions and Notation

The following terminology will be used in this paper:
Energymsystem= energy dissipated by the memory components of a

system.
Eopn

x = energy dissipated by performing the operation on data vari-
able v in the x component, where x=m for memory or x=r for
register file. and opn=r(v) for reading variable v or opn=w(v) for
writing variable v . For example Ew(v)

r is the energy dissipated by
writing variable v to the register file, r .
Vx= the value of the scaled voltage[3,11] of a memory com-

ponent (x=m ,r).
Crw

x = the average switched capacitance of module x , where
x=r ,m , performing read/write access to registers, rw .
H(v1,v2)= the hamming distance between data variables v1 and

v2.

Both static[3] and activity based[13] energy models can
be supported. The first equation below is the static energy model
which has separate read and write terms for both memory and

registers. The second equation supports the activity based energy
model for the register file where the hamming distance or other
researched measures[8] of successive data variables which share
the same register are multiplied by a total capacitance. Energy
models for memory component design, where vεM ,R represent a
data variable v mapped to memory M or registerfile R respec-
tively, are given as:

Energymsystem=
v,vεM
Σ [Ew(v)

m +Er(v)
m]+

v,vεR
Σ [Ew(v)

r +Er(v)
r] (1)

=
v,vεM
Σ [Ew(v)

m +Er(v)
m]+

v1→v2,v1,v2εR
Σ H(v1,v2)Crw

r Vr2] (2)

The model uses an activity based model as in (2) for register files.
Although it does not account for switching of address lines it allo-
cates a minimum number of locations in memory so that a
minimum number of addresses can be used. These issues will be
discussed further in section 7 of this paper. The energy model
presented above will be used to estimate the relative power sav-
ings in the rest of this paper.

The next section will provide an introduction to minimum
cost network flow. The following sections, will illustrate how the
low energy memory design problem is mapped into a network
flow problem and provide examples illustrating how memory
components can also run at different frequencies. Finally exam-
ples will be presented to show that new energy optimized solu-
tions are produced unlike approaches using previous research.

4. Introduction to Network Flow

The minimum cost network flow problem is defined on a
directed acyclic graph, G , composed of nodes and arcs, G=(V ,A),
where each arc has a capacity associated with it. The capacity is a
real valued quantity where arc i→j , i ,jεV , has an associated
capacity ci→j . Each arc has a cost which is also a real valued
quantity where arc i→j has associated cost ei→j . Let the variable,
xi→j , represent the flow in arc i→j . We will call this the flow
variable. For any node in the graph the flow into the node is
equal to the flow out of the node (known as the conservation of
flow [17]). The flow along any arc (in the same direction as the
arc) must be positive valued but less than or equal to the capacity
of that arc. There are two special nodes in this graph called node s
and node t . The flow out of s is equal to the flow into node t .
Arcs incident to s only leave node s and arcs incident to node t
only are directed into node t . The maximum flow problem [17] is
to find the maximum amount of flow from node s to node t
through the network graph, such that the conservation of flow is
maintained.

The minimum cost network flow problem[17] is, given a
fixed amount of flow, F , from s to t , find the flow with the
minimum cost such that the sum over all arcs of the multiplication
of the flow in each arc and the cost of each arc is minimum. The
following equations represent the formulation of the minimum
cost network flow problem as a mathematical programming prob-
lem.

Minimize
i→j
Σ ei→jxi→j

Subject to

i |i→j
Σ xi→j −

k | j→k
Σ xj→k = 0, ∀j ,j≠s ,j≠t ,jεV.

i |i→t
Σ xi→t = F

k |s→k
Σ xs→k = F

0 ≤ xi→j ≤ ci→j , ∀(i→j)εA ,i ,jεV.

In the problem above the flow F , capacities ci→j ,∀(i→j)εA and
costs ei→j ,∀(i→j)εA are given. The problem is to solve for
values of xi→j that represent the flows in the network graph,
G=(V ,A), such that the objective function is minimum. As long
as the capacities and the flow, F , are integer, we can be
guaranteed of obtaining integer flows in the solution of this prob-
lem [17]. This problem can be solved in polynomial time using
linear programming or more commonly by using faster and more
efficient network algorithms[17].

5. Methodology and Modeling

This section will briefly describe the methodology for low
energy systems synthesis followed by a description of how the
minimum cost network flow formulation is used to solve problem
1. First an algorithm is selected for the application based upon
cost, performance and energy dissipation requirements. The algo-
rithm is represented as a task flow graph. Initially the task flow
graph is scheduled to obtain an analysis of how many chips or
what amount of parallelism is required to meet or exceed the real-
time constraints. Transformations are performed within each task
such as data regeneration[20,21], loop tiling, precomputation,
etc.. to reduce energy dissipation. Each task is placed in an
ordered list, and detailed scheduling of computations within each
task is performed. Finally the minimum cost network flow
approach is applied to each basic block in each task to obtain
further reductions in energy dissipation by optimaly mapping
variables at different times to registers or memory using the tech-
nique presented in this paper. The lifetimes of data variables
assigned to memory are then used to form another network flow
graph. The minimum cost network flow is then solved on this
graph to reallocate memory using an activity based energy model.
After this stage is completed detailed instruction mapping and
data layout (for example adding loads and stores, or substituting
in instructions with a memory operand etc) and system synthesis
is completed. The two sections below will describe in detail how
the minimum cost network flow is used to solve problem 1.

5.1. Mapping to Min-Cost Flow

To model problem 1 as a network flow problem, we first
have to develop a graph. An interval graph is built and then
transformed into a network flow graph. Next capacities and costs
are assigned to each arc in the network flow graph and the
minimum cost flow problem is solved.

In order to form the interval graph a time axis (represent-
ing control steps) from time 1 to time x is defined, where x is the
maximum number of control steps it takes to perform the compu-
tations in the basic block. Each data variable is represented by an
interval (or lifetime) that starts at the time it is defined (write
time) and ends at the time it is last used (read time). For illustra-
tion purposes only we will assume each data variables is read
only once. Extensions for data variables with multiple reads will
be presented in section 5.2. Nodes s and t are added to this graph
at times 0 and x+1 respectively. Regions of maximum lifetime
density, or sections of time where a maximum number of data
variable’s lifetimes intersect, are identified as well. Inbetween
adjacent regions of maximum lifetime density, several data vari-
able lifetimes may end and other lifetimes may begin. A com-
plete bipartite graph is formed between these nodes. This tech-
nique is also used between node s and the first region of max-
imum lifetime density. It is also used to connect the nodes in the
last region of maximum lifetime density to node t . This guaran-
tees that a minimum number of addresses will be used in memory

allocation (see section 7 for further discussion). Alternatively one
could also form edges between all nonintersecting lifetimes like in
[8], however a minimum number of address locations in memory
is no longer guaranteed (see section 6).

Figure 1a) shows an interval graph, where each edge is
labeled with the data variables names a ,b ,c ,d ,e . The left hand
side shows the control steps from 1 to 7, where each control step
is illustrated with two dashed lines. Variables represented by
edges which end/begin at the top/bottom dashed line are
read/written during that control step. For example at control step
three, variables a and b are read and variable d is written. In fig-
ure 1b) nodes s and t are added at times 0 and 8 (or as shown in
diagram after the last time, 7). Variables d and c are read after
time 7 by another task, so their lifetime intervals extend to after
time 7. Dashed arcs in the network flow graph are also added
inbetween regions of maximum variable lifetime densities. For
example a region of maximum lifetime density is from time 2 to
time 3 and another region is from time 5 to time 6.

1

2

3

4

5

6

7

...

...

..

..

...

...

..

..

..

..

...

...

..

..

a b

e d

c

(a)

s

t

a b

e d

c

(b)

s

t

a b

e d

c

c

(c)

Figure 1. Example of interval graph for variables a ,b ,c ,d ,e in a)
and it’s network flow graph representation in b), and with
restricted memory access times in c).

Inbetween these two adjacent regions lifetimes of data variables a
and b end and lifetimes of data variables e and d begin. So a
complete bipartite graph is formed between these regions by con-
necting edges from read times of data variables a and b to write
times of data variables e and d shown with dashed arcs. This is
also used to connect nodes s and nodes t to the variables lifetime
edges. Now that the network graph is formed we next assign
costs to each arc.

Given the network flow graph, G=(V ,A), we use capaci-
ties along all arcs equal to one, and the flow is fixed at the total
number of registers in our processor. The total flow in the net-
work graph is equivalent to the number of registers, R , in the
register file. The objective function to be minimized is the total
estimated energy dissipated. We can formulate total energy dissi-
pation as the sum of energy dissipated by writes and reads to/from
memory and to/from registers. For data variables (v) where the

flow into it’s write node (w(v)) and out of it’s read node (r(v)) is
zero, energy is dissipated from a write and read to memory.
Other data variables where the flow described above is one, dissi-
pates energy from register file accesses. Arcs (r(v1)→w(v2))
from the read time of one data variable (v1) into the write time of
another data variable (v2) have costs assigned to them in order to
support an activity based energy model. For example we can use
previously researched activity models[8] for the cost of these arcs.
The cost of each arc is calculated as follows:

ew(v)→r(v) = 0, ∀(w(v)→r(v))εA , w(v),r(v)εV. (3)

er(v1)→w(v2) = −Ew(v2)
m −Er(v1)

m +Ew(v2)
r +Er(v1)

r (4)

= −Ew(v2)
m −Er(v1)

m +H(v1,v2)Crw
r , (5)

∀(r(v1)→w(v2))εA , v1≠v2, r(v1),w(v2)εV.

Now the objective function will be formulated using the flow
variables xr(v1)→w(v2). The first term below represents the energy
dissipated by memory for each read and write of all data vari-
ables. The second term represents data variables which are
mapped into register files, which have costs that subtract away the
memory read/writes and adds the register file read/writes.

Minimize
v
Σ[Ew(v)

m +Er(v)
m]

+
r(v1)→w(v2)

Σ [Ew(v2)
r +Er(v1)

r −Ew(v2)
m −Er(v1)

m]xr(v1)→w(v2)

Note that the first term is constant so we can remove it in our
minimization problem. The energy dissipation for the registers
will be formulated below with the activity based energy model.
The final formulation of the minimum cost flow problem defined
for G=(V ,A) as a mathematical programming problem is given
below.

Minimize

r(v1)→w(v2)
Σ [H(v1,v2)Crw

r −Ew(v2)
m −Er(v1)

m]xr(v1)→w(v2)

Subject to

v |r(v)→w(v1)
Σ xr(v)→w(v1) − xw(v1)→r(v1) = 0,

∀w(v1),w(v1)≠s ,w(v1)≠t ,w(v1)εV.

xw(v1)→r(v1) −
v |r(v1)→w(v)

Σ xr(v1)→w(v) = 0,

∀r(v1),r(v1)≠s ,r(v1)≠t ,r(v1)εV.

v |r(v)→t
Σ xr(v)→t = R

v |s→w(v)
Σ xs→w(v) = R

0 ≤ xw(v)→r(v) ≤ 1, ∀(w(v)→r(v))εA ,w(v),r(v)εV.

0 ≤ xr(v1)→w(v) ≤ 1, ∀(r(v1)→w(v))εA ,w(v),r(v1)εV.

5.2 Extensions for Multiple Reads (Split Lifetimes)

In the previous sections we assumed that each data vari-
able is read only once. For realistic applications data variables
may be read several times. Furthermore memory access times
may be restricted due to operating the memory module at a dif-
ferent frequency than the processor. In particular for low energy
applications, memory modules may be operating at lower fre-
quencies (and lower supply voltages to save energy[3]). Other
reasons may also exist for using split lifetimes such as spilling of

registers[7,10] or as will be shown in section 6 to minimize
number of memory accesses. All of these cases can be supported
with our model. Each data variable lifetime is divided into multi-
ple lifetimes (or split lifetimes) by cutting the lifetime at memory
access times and/or multiple read times. The multiple edges are
connected to other edges in the network graph as if they would
represent separate lifetimes using the procedure described earlier
in section 5.1. However the edges costs and bounds on the flow
variables are defined differently in these two cases, as will be
explained below.

Figure 1c) shows an example of restricted memory access
times, times 1,3,5, and the resulting network flow graph. The
lifetime of data variable c intersects these memory access times
so it becomes a split lifetime represented with two arcs. Any
variables represented by lifetimes or split lifetimes which either
begin and/or end inbetween the memory access times must be
stored in the register files during these times. Therefore we place
a lower bound on the flow in this arc to be 1. This extension to
our problem can still be solved optimally in polynomial time as a
minimum cost flow problem[17]. In figure 1c) these arcs are
shown in bold for variable e and c (top arc of split lifetime). The
arc costs must now support split lifetimes which may be both
read/written from/to memory as well as register files (or spilled to
memory from registers etc). Note we could have also split vari-
ables c and d into two segments, defined from control steps 3 to 5
and from 5 to 7. Figure 2 illustrates the different dashed arcs
which may be defined with restricted memory access times. We
use the following terminology to describe a split lifetime with
multiple arcs w1(v)→r1(v), w2(v)→r2(v),..., wlast(v)→rlast(v)
or wi(v)→ri(v) ∀v ,i=1,2,...,rlastv. For example in figure 2c)
dashed arc from v1 column to v2 column is ri(v1)→wi(v2) where
wi≠w1(v2). Arcs are also placed inbetween these split lifetime
arcs for the same data variable as shown in figure 2. For variables
with multiple reads the objective function becomes:

Minimize
v
Σ[Ew(v)

m +(rlastv)Er(v)
m]

+
ri(vk)→wj(vl)

Σ [eri(vk)→wj(vl)]xri(vk)→wj(vl)

where the first term accounts for one write and rlastv reads of
variable v . Again the first term is constant, so in the solution of
the minimization problem, it can be deleted. This objective func-
tion is defined using equations (3,6,7,8,9,10) to define the coeffi-
cients. The general network flow constraints (defined at the end
of the previous section 5.1) do not change, except their defined
now over the new network flow graph which has more edges
defining split lifetimes. Figure 2a) is the standard arc cost which
we previously defined in equations (4) or (5), since the arc is con-
nected from the last read node of v1 to the write node of v2,
rlast(v1)→w1(v2), we have rewritten it in equation (10). Figure
2b),c),d) are examples for which arc costs are given below in
equations (6),(7) and (8) respectively. In figures 2b) and 2c) vari-
able v1 has two reads and in figures 2c) and 2d) variable v2 has
two reads.

eri(v1)→w1(v2) = −Er(v1)
m −Ew(v2)

m +Ew(v1)
m +H(v1,v2)Crw

r , (6)

eri(v1)→wi(v2) = Ew(v1)
m +H(v1,v2)Crw

r , (7)

erlast(v1)→wi(v2) = −Er(v1)
m +H(v1,v2)Crw

r , (8)

eri(v)→wi+1(v) = −Er(v)
m (9)

erlast(v1)→w1(v2) = −Ew(v2)
m −Er(v1)

m +H(v1,v2)Crw
r , (10)

For example in figure 2b) if flow on arc r1(v1)→w1(v2) is equal
to 1 on this dashed arc then data variable v1 was stored in the

register file and now is being written back into memory while
data variable v2 is replacing it by being written into the same
register in the register file. So we have to account for subtracting
out the energy dissipated for reading v1 from memory (first term),
writing data variable v2 into memory (second term in equation
(6)), and add in the energy dissipated by storing v2 into the same
register as data variable v1 (fourth term in equation (6)), and
finally writing data variable v1 into memory (third term in equa-
tion (6)). Equation (9) defines costs for arcs of the same data
variable but defined inbetween split lifetimes, such as the dashed
arc in figure 1c) from the node representing variable c at the top
of the control step 3 to the node representing variable c at the bot-
tom dashed line of control step 3. Here if two segments are stored
in the register file, we must subtract the read of this variable from
memory that would have taken place at that time.

v2

v1

v1

(b)

v2

v2

v1

v1

(c)

v2

v1

(a)

v2

v2

v1

(d)

Figure 2. Different examples of arcs between data variables
including split lifetimes for v1,v2.

6. Experimental Results

Several examples, along with a real industrial example
(radar signal processing algorithm), are used to illustrate this
methodology. A static energy model for onchip memory and
register files was used with capacitances in [3] for onchip single
port 256 X16 bit memory and single port 16X16bit register file.
Although our model supports multiple port memory, energy
models were not available, so single port memory models were
used as an approximation. Activity based energy measures were
also estimated using capacitance data in [3] along with models
from [13]. Other energy measures previously
researched[2,11,9,13,15] could not be used because for example
they did not have both read/write register access energy values
(separate from operations) and memory read/write access energy
dissipation.

Figure 3a) shows a simple example of lifetimes of data
variables a ,b ,c ,d ,e ,f . The switching activities between each
appropriate pair of data variables is given at the left hand side of
the figure (as number of bits which change over total number of
bits). The optimal solution for register allocation previously
researched[8] would be figure 3a) which has a total switching
activity of 2.4 (for illustration purposes we can assume that 0.5 of
the bits change at time 0). If we then partition these symbolic
registers into memory and registers we would ideally place the
registers with highest switching activity in the register file (since
average switched capacitance is smaller[3]). This is shown in the
same diagram where the bold lifetimes represent data variables
that are stored in the register file (which has capacity of one regis-
ter in this simple example). By using the approach presented in
this paper, simultaneously allocating registers and placing vari-
ables into memory to optimize energy, we obtain the solution
shown in figure 2b). It has a lower switching activity in memory
by 1.5 times and fewer memory accesses as well. The solution in
figure 2b) has 1.4 times improvement in energy dissipation using
a static energy model and 1.3 times using the activity based
energy model.

A second example is shown in figure 4. In figure 4a) and
4b) we have used the network graph researched in [8], where all
nonoverlapping lifetimes are connected by edges. Figure 4a) and
b) show in bold the optimal solutions for partitioning after register
allocation and the simultaneous approach respectively. Note that
the solution in figure 4b), has a minimum number of memory
accesses however uses more storage locations in memory. Using
this type of network flow graph[8] we have no guarantee of using
a minimum number of storage locations, unlike the use of the
graph presented in this paper. Therefore in order to use this type
of graph, one would have to account for energy dissipation in
address lines as well which will be a part of future research. The
solution in figure 4c) uses the network graph presented in this
paper. The lifetime of data variable f is split to obtain a solution
that has both a minimum number of storage locations in memory
and a minimum number of memory accesses. It has 1.35 times
improvement in energy dissipation than the solution in figure 4a).

arc cost

a → b 0.2

a → f 0.5

e → b 0.6

e → f 0.3

b → c 0.8

d → e 0.1

a

b

c

d

e

f

(a)

a

f
b

c

d

e

(b)

Figure 3. Memory partition after register allocation in (a), versus
simultaneous partition and allocation in (b) respectively.

arc cost
a → b 0.2
a → f 0.5
e → b 0.6
e → f 0.3
b → c 0.8
d → e 0.1
f → b 0.5

a

b

c

d

e

f

(a)

a

f b

c

d

e

(b)

a

f

f

b

c

d

e

(c)

Figure 4. Fewer number of memory accesses than (a) using split
lifetimes in (c) with fewer storage locations than (b).

A radar signal processing example was chosen to illustrate
the minimum cost flow approach to simultaneous memory parti-
tioning and register allocation with restricted memory access
times. Table 1 outlines the design results of restricting memory
access times thus allowing the memory module to operate at a
lower frequency in a low power mode (using scaled supply vol-
tage ranging from 5V to 2V). This example had a maximum den-
sity of variable lifetimes of 26. The memory module required one
read/write port for solutions in rows 1 and 2, and required two
read ports, one write port for the solution in the last row of table
1. Both static (E) and activity based (aE) energy estimates were
used.

7. Discussions and Conclusions

In summary energy savings from 2.8 to 4.9 (see table 1)
were attained with a real industrial signal processing example.
Simultaneous memory partitioning and register allocation was
found to have an improvement of 1.4 to 2.5 times for energy

Table 1. Energy Results for RSP application.
Memory # Accesses Relative

Frequency Mem Reg E aE
f 6 12 4.9 2.8

f/2 7 11 2 1.6
f/4 8 10 1 1

dissipation over previously researched techniques.

The technique presented in this paper performs memory
and register allocation. In order to simultaneously support an
activity-based energy dissipation model for memory allocation a
two-commodity flow problem would be required. Unfortunately
the two-commodity flow problem is NP-complete[5]. After
memory accesses, address circuitry is the next most significant
source of energy dissipation[11]. This technique directly minim-
izes the number of memory accesses and by allocating a
minimum number of storage locations in memory attempts to
minimize the energy dissipation of address circuitry as well (see
figure 4c) improvement over figure 4a)). The number of memory
or register file ports is determined from the solution of our net-
work flow problem, however it could be also specified as a con-
straint in our problem. For a fixed number of memory or register
file ports the technique described in section 5.2 which sets certain
arc flows to 1 can be used.

In contrast to previous research[2,7,10,16,15] which
examined register allocation without memory partitioning, or did
not consider low energy objectives, or performed memory parti-
tioning without register allocation, we have examined the problem
of simultaneous memory partitioning and register allocation. This
problem is important since memory has been shown to be a cru-
cial component of the total system energy dissipation[11] and low
energy demands optimal register allocation[9]. We have intro-
duced the application of network flow to this problem, which has
been shown here for the first time to be beneficial in reducing
estimated energy dissipation at negligible cost. Since large net-
work flow problems have been solved with very efficient algo-
rithms [17], extending this problem to very large basic blocks or
beyond basic blocks should be a viable future research direction.

We have introduced a methodology for energy minimiza-
tion of storage components in large realtime compute intensive
applications. The methodology incorporates a new approach to
low energy memory design which simultaneously performs
memory partitioning and register allocation. For the first time
network flow is applied to the problem of determining when and
what data should be stored in memory and which data should
share registers in order to minimize estimated energy dissipation.
Restricted memory access times and split lifetimes are supported.
The network flow approach finds globally optimal solutions in
polynomial time. Results showed that 2.8 to 4.9 times improve-
ment in energy dissipation is attainable with a real industrial radar
signal processing application. Significantly larger savings in
energy are expected when this network flow technique is applied
to offchip memory, where energy dissipation of memory accesses
is several orders of magnitude higher[2,19,14] than the onchip
memory accesses. It is also interesting to note that this approach
comes at no expense to performance or cost, unlike other tech-
niques where cost may be traded for energy dissipation, such as
voltage scaling. This research is important for industry since
energy dissipation consideration during these early stages of
design are critical to ensuring that the final product will be cost
effective, competitive, and meet high performance requirements.
This approach has recently been extended to solve the multiple
offset assignment problem in software synthesis for DSP proces-
sors where performance, code size and power objective functions
are supported. This research is supported in part by grants from
NSERC and ITRC.

References
[1] K.Keutzer, "The Impact of CAD on the Design of Low Power

Digital Circuits", IEEE Symposium on Low Power Electronics,
1994, p42-45.
[2] S.Wuytack,F.Catthoor,F.Franssen,L.Nachtergaele, H.DeMan,

"Global Communication and Memory Optimizing Transforma-
tions For Low Power Systems", International Workshop on Low
Power Design, 1994, p 203-208.
[3] A.Chandrakasan,et.al."Optimizing Power Using Transforma-

tions", IEEE Transactions on CAD, Jan 1995,Vol14,No.1, p12-
31.
[4] A.Farrahi, G.Tellez,M.Sarrafzadeh, "Memory Segmentation

to Exploit Sleep Mode Operation", Design Automation Confer-
ence, 1995.
[5] Garey and Johnson,Computers and Intractability New

York Freeman and Co 1979.
[6] G.Chaitin, "Register Allocation & Spilling via Graph Color-

ing", ACM SIGPLAN Symp on Compiler Construction, 1982
[7] F.Chow,J.Hennessey, "The Priority-Based Coloring

Approach to Register Allocation", ACM Transactions on Pro-
gramming Languages and Systems, p501-536, Oct 1990.
[8] J.Chang, M.Pedram, "Register Allocation and Binding for

Low Power", Design Automation Conference, 1995.
[9] V.Tiwari, S.Malik,A.Wolfe, "Power Analysis of Embedded

Software ;A First Step Towards Software Power Minimization,
IEEE Trans on VLSI, Vol. 2, No. 4, Dec 1994, p437-445,
[10] D.Kolson,A.Nicolau,N.Dutt,K.Kennedy, "Optimal Register

Allocation to Loops for Embedded Code Generation", Interna-
tional Symposium on Systems Synthesis, p42-47, 1995.
[11] S.Wuytack,F.Catthoor,L.Nachtergaele,H.DeMan, "Power

Exploration for Data Dominated Video Applications", ISLPED,
p359-364, 1996.
[12] W.Cheng, Y-L.Lin, "A Transformation-Based Approach for

Storage Optimization", ACM/IEEE Design Automation Confer-
ence, 1995.
[13] P.Landman, J.Rabaey, "Activity-Sensitive Architectural

Power Analysis", IEEE Transactions on CAD,Vol.15,No.6, June
1996.
[14] P.A.Beerel, USC, Panel Presentation on "Where Does the

Power Go?" at International Symposium on Low Power Design,
April 1995.
[15] Lee,Tiwari, "A Memory Allocation Technique for Low-

Energy Embedded DSP Software", Symposium on Low Power
Electronics, Oct, 1995, p24-5.
[16] Lidsky,Rabaey, "Low-Power Design of Memory Intensive

Functions", IEEE Symposium on Low Power Electronics, 1994,
p16-7.
[17] Nemhauser, Wolsey, Integer and Combinatorial Optimi-

zation, New York Wiley Interscience, 1988.
[18] H.Schmitt,D.Thomas, "Array Mapping in Behavioral Syn-

thesis ", Int’l Symp on Systems Synthesis, 1995.
[19] P.Panda, N.Dutt, "Low Power Mapping of Behavioral

Arrays to Multiple Memories", Int’l Symp on Low Power Elec-
tronic Design, p289-292, 1996.
[20] C.Gebotys, "Low Energy Memory Component Design for

Cost-Sensitive High Performance Embedded Systems", IEEE
Custom Integrated Circuits Conference, p397-400, 1996.
[21] C.Gebotys,R.Gebotys, "Performance-Power Optimization of

Memory Components for Complex Embedded Systems", IEEE,
30th Hawaii International Conference on System Sciences,
ECCS-6, Jan. 1997.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

