
Fast hardware/software co-simulation

for virtual prototyping and trade-o� analysis

Claudio Passerone, Politecnico di Torino { Cadence Europeans Labs, Italy

Luciano Lavagno, Politecnico di Torino { Cadence Europeans Labs, Italy

Massimiliano Chiodo, Alta Group of Cadence Design Systems, USA

Alberto Sangiovanni-Vincentelli, Dept. of EECS, University of California at Berkeley, USA

Abstract

Hardware/software co-simulation is generally performed with
separate simulation models. This makes trade-o� evaluation
di�cult, because the models must be re-compiled whenever
some architectural choice is changed. We propose a tech-
nique to simulate hardware and software that is almost cycle-
accurate, and uses the same model for both types of compo-
nents. Only the timing information used for synchronization
needs to be changed to modify the processor choice, the im-
plementation choice, or the scheduling policy. We show how
this technique can be used to decide the implementation of a
real-life example, a car dashboard controller.

1 Introduction

Simulation of a mixed hardware/software system can be per-
formed at all levels of abstraction. The most commonly used
approach, including commercial tools, runs the software on
a hardware model of the processor ([Row94]). This solution
has a major problem: RTL or behavioral processor mod-
els are di�cult to develop, expensive and slow (up to tens
of clock cycles per second for RTL and thousands of clock
cycles per second for behavioral).
Hence people often resort to using bus-functional proces-

sor models, that represent the bit-true behavior of the pro-
cessor bus, but using a statistical model of the application.
These models can be used to exercise and debug the hard-
ware side of the hardware/software interface.
The software code, on the other hand, is executed and de-

bugged on instruction set (or ISA) processor models. Such
models represent explicit processor registers and interpret its
binary code. Their speed can be up to tens of thousands of
clock cycles per second ([ZM96]), but they handle only ap-
proximate timing information, even at the clock cycle level,
or no timing at all.
Recent commercial solutions, such as the Seamless envi-

ronment described in [KL96], �lter the data sent between the

0\Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advantage,
the copyright notice, the title of the publication and its date appear,
and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speci�c permission and/or a fee."

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

instruction set simulator (which must have cycle-exact sim-
ulation capabilities) and the hardware simulator. Even this
approach, though, is not completely satisfactory, because it
requires extensive manual intervention to \abstract" the in-
terface, by hiding events such as instruction fetches or some
memory accesses from the hardware simulation.

The co-simulation methodology described in this paper is
aimed exactly at �lling this \validation gap" between fast
models without enough information (e.g., instructions with-
out timing or bus cycles without instructions) and slow mod-
els with full detail.

It is based on using the very same code that will be run
on the target processor, together with timing annotation ob-
tained by performance estimation, as simulation model for
software components. It runs the simulation at full speed on
a workstation, by keeping the software synchronized with the
hardware components (also simulated using the same behav-
ioral model, but without timing) and with the environment
model (testbed).

The paper is organized as follows. Section 2 describes our
co-simulation methodology in detail. Section 3 shows with
an example our implementation and how co-simulation can
be used to interactively evaluate the performance of vari-
ous partitions of a system under various RTOS conditions.
Section 4 concludes the paper and outlines opportunities for
future research.

2 Co-simulation via software synthesis

Our co-simulation methodology is heavily based on the use
of software and hardware synthesis. This simpli�es the cus-
tomization of the generated code in order to adapt it to
simulation and execution in the target system. We use an
existing codesign environment for reactive embedded sys-
tems, called POLIS , described in [CGH+94] and available
at URL [hp], for synthesizing software and hardware, and
for analyzing their performance. It is centered around a sin-
gle Finite State Machine representation, known as Codesign
Finite State Machine (CFSM). Each element of a network of
CFSMs describes a component of the system to be modeled,
and de�nes the partitioning and scheduling granularity. The
CFSM model is based on:

� Extended Finite State Machines, operating on a set
of �nite-valued (enumerated or integer subrange) vari-
ables by using arithmetic, relational, and Boolean oper-
ators, as well as user-de�ned functions. Each transition
of a CFSM is an atomic operation. All the analysis and

synthesis steps ensure that:

1. a snapshot of the system state is taken just before
the transition is executed,

2. the transition is executed, thus updating the in-
ternal state and outputs of the CFSM,

3. the result of the transition is propagated to the
other CFSMs and to the environment.

� The interaction between CFSMs is asynchronous in or-
der to support \neutral" speci�cation of hardware and
software components by means of a single CFSM net-
work. This means that:

1. The execution delay of a CFSM transition is un-
known a priori. It is only assumed to be non-
zero in order to avoid the composition problems of
Mealy machines, due to undelayed feedback loops.
The synthesis procedure re�nes this initial speci�-
cation by adding more precise timing information
as more design choices are made (e.g., partition-
ing, processor selection, and compilation). The
designer or the analysis steps may in addition add
constraints on this timing information that syn-
thesis must satisfy. The overall design philosophy
of POLIS is to provide the designer with tools
to satisfy these constraints, rather than a push-
button solution.

2. Communication between CFSMs is not by means
of shared variables (as in the classical composi-
tion of Finite State Machines), but by means of
events. Events are a semi-synchronizing commu-
nication primitive that is both powerful enough to
represent practical design speci�cations, and e�-
ciently implementable within hardware, software,
and between the two domains.

2.1 Software synthesis

Software synthesis techniques from formal speci�cations
have reached a good degree of maturity for at least some spe-
ci�c application domains, like embedded control ([Ber96]). A
design environment based on software synthesis allows the
designer to specify the system in a high level formal lan-
guage, describing the functionality of each block and how
they are connected together. After translating this speci�-
cation into an intermediate format, all sorts of optimization
can be carried out to reduce the size and increase the speed
of execution (see, e.g., [CGH+95]).
Software synthesis in POLIS is based on a Control-Data

Flow Graph (CDFG) called S-graph [CGH+95]. The S-
graph is considerably simpler than the CDFG used, for ex-
ample, by a general purpose compiler because its purpose is
only to specify the transition function of a single CFSM.
An S-graph computes a function from a set of �nite-valued

variables to a set of �nite-valued variables.

1. The input variables correspond to input signals1 . Each
signal is a control signal, a data signal, or both, and
can be associated with

(a) a Boolean control variable, which is true when an
event is present for the current transition, and

1States, i.e., signals that are fed back in the CFSM network, can
be treated as a pair of input and output signals connected together
for the purpose of this discussion.

(b) an enumerated or integer subrange variable.

An S-graph is a Directed Acyclic Graph (DAG) consisting
of the following types of nodes:

BEGIN, END are the DAG source and sink nodes, and
have one and zero children respectively,

TEST nodes are labeled with a �nite-valued function, de-
�ned over the set of input and output variables of the
S-graph. They have as many children as the possible
values of the associated function.

ASSIGN nodes are labeled with an output variable and a
function, whose value is assigned to the variable. They
each have one child.

Traversing the S-graph from BEGIN to END computes the
function represented by it. Output variables are initialized
to an unde�ned value when beginning the traversal. Output
values must have been assigned a de�ned value whenever a
function depending on them is encountered during traversal
of a well-formed S-graph.

It should be clear that an S-graph has a straightforward,
e�cient implementation as sequential code on a processor.
Moreover, the mapping to object code, whether directly or
via an intermediate high-level language such as C, is almost
1-to-1.

We use this 1-to-1 mapping to provide accurate estimates
of the code size and execution time of each S-graph node.
This estimation method works satisfactorily if:

1. The cost of each node is accurately analyzed. This is a
relatively well-understood problem, since each S-graph
node corresponds roughly to a basic block of code, that
is a single-input, single-output sequence of C code state-
ments. Any one of a number of estimation techniques
can be applied, including the benchmark-based cost es-
timation method described in [SSV96].

2. The interaction between nodes is limited (also known
as the \additivity hypothesis" in the literature). This
is approximately true in the case of an S-graph, since
there is little regularity that even an optimizing com-
piler can exploit (no looping, etc.). We are currently
exploring ways of modeling interaction between nodes
due to caches, multiple functional units, and pipelines,
in order to model complex processors more accurately.

In the POLIS system, code cost (size in bytes and time in
clock cycles) is computed by analyzing the structure of each
S-graph node, for example:

� the number of children of a TEST node (a di�erent
timing cost is associated with each child),

� the type of tested expression. For example, a test for
event presence must include the RTOS overhead for
event handling, and reading an external value must in-
clude the execution time of the driver routine.

A set of cost parameters is associated with every such as-
pect, and is used to estimate the total cost of each node.
These costs are then used by the co-simulation environment
to accumulate clock cycles, and hence to synchronize the
execution of software CFSMs with each other and with the
rest of the system (hardware CFSMs and the environment).
In this way, neither estimation nor co-simulation require the
designer to have access to any sort of model (RTL, instruc-
tion set, user's manual) for a processor whose performance
is to be evaluated for a given application. Only the values

of the set of parameters are necessary. These are part of
a library distributed with POLIS for a growing number of
micro-controllers.
The parameters can be derived either automatically, or by

hand (e.g., by inspecting the assembly code after synthesis
and compilation for the target processor). In the former
case, the processor library maintainer needs to compile a set
of benchmarks and analyze their size and timing by using a
pro�ler for the target system.
Clearly a more accurate analysis technique, for example

based on a cycle-accurate model of the processor ([Row94,
KL96]), is needed to validate the �nal implementation. But
the architecture exploration phase can be carried out much
faster, as long as the precision of estimation (currently
within 20%) is acceptable for the task at hand.
CFSMs implemented in hardware are currently synthe-

sized assuming that each transition requires exactly one
clock cycle, by using classical RTL and logic synthesis tech-
niques.
Note that there are some aspects of the �nal system which

are ignored by using this scheme:

� the overhead due to the scheduling mechanism, which
may depend on the number of tasks (e.g., for priority-
based schemes the choice of a task is generally logarith-
mic in the number of tasks in the worst case),

� the cost of inter{processor or hardware/software com-
munication

We claim that such levels of detail may not be necessary in
the initial phases of system architecture de�nition, and that
their lack is well compensated by the increased
exibility
and speed of the approach. We are also planning to look at
lifting those limitations as part of our future development
work.

2.2 The simulation

We use as our simulation engine the tool Ptolemy
([BHLM90]), which is a complete design environment for
simulation and synthesis of mixed hardware/software data-
dominated embedded systems. In particular, we used the
Discrete Event (DE) domain of Ptolemy to implement
the event-driven communication mechanism among CFSMs.
The formal speci�cation of the system to be modeled is �rst
translated by POLIS into a network of CFSMs, and then
synthesized as timing-annotated C code as described above.
The C code is used in Ptolemy as a model for both hardware
and software components. The scheduler in the DE domain
�res components as if they were executed concurrently, so
it does not provide a way to directly simulate CFSMs im-
plemented in software, and running on a limited amount of
computational resources. We therefore changed its behavior
without modifying its code, by adding a procedure on top
of it (see [PLS+97]), and letting Ptolemy see a world of con-
current components, while the software ones see the POLIS
scheduling policy.
Di�erent scheduling policies, corresponding to those im-

plemented by the POLIS RTOS, can be provided, which
enable the designer to experiment several solutions and �nd
the one which gives the best results. However, all the policies
should have the following common features:

� Software components which run on the same micropro-
cessor should be executed in a mutual exclusion fash-
ion, since they share the same computational resource.

Therefore we need a way to hold the execution of a
process until the CPU is free.

� Hardware components should be executed as concur-
rent processes, which terminate in one clock cycle.

The various schedulers will di�er on how the software task
which should be executed is chosen among all the enabled
ones. Some of them can also implement priorities, and pro-
vide a way to suspend a running task and resume it at a
later time, thus implementing a preemptive scheme.

All the software models of the blocks representing the sys-
tem are compiled on the host workstation, and the scheduler
is used to invoke each process when necessary. Based on the
implementation choice and the running time estimations, the
simulator can determine how many clock cycles are required
to execute a component and the availability of the computa-
tional resources, so the scheduler can e�ectively implement
concurrent and mutually exclusive behaviours.

Since our representation is event driven, we chose to use a
Discrete Event simulator. Aiming our co-simulation tool at
reactive real time control-dominated systems, a static sched-
ule cannot be computed. Processes are queued and sched-
uled according to the communication event ordering in time
and the selected policy. Tasks are executed atomically, and
only their outputs are delayed to the proper time-stamp,
thus sensibly reducing the number of scheduling operations
to be performed. In this way we do not have to reschedule
the same task for every single statement in the C code, thus
saving simulation time.

The only problem with this mechanism is that if an inter-
rupt occurs, the computed delays are no longer valid, and
must be updated , while they are still in the event queue,
based on the time taken by the interrupt service routine.
We rely on the fact that in our model and in the �nal im-
plementation the input values of each task cannot change
once it has been started. The runtime RTOS ensures that
a consistent snapshot of the system status is provided to
each CFSM, thus implementing the synchronous layer of the
GALS model. With this technique we can handle multiple
priority levels, nested and maskable interrupts at the same
time, with very little overhead.

We can therefore have a very fast simulation, sometimes
even faster than the target system, for purely reactive sys-
tems with low frequency inputs, like many embedded control
applications. In this case the co-simulation acts more as a
virtual prototyping tool, with all the
exibility of an entirely
software simulation.

Changing implementation or target microprocessor is just
a matter of using the corresponding estimations while count-
ing the cycles, and does not require one to change the model
or to recompile the entire system. The timing estimations
for all the target processors are embedded in the C code, and
can be selected at run{time by simply changing a simulation
parameter. This also allows us to simulate the behaviour of
tasks running on a multiprocessor system, where the pro-
cessors can be either of the same kind, or di�er among each
other. However, this feature is not yet implemented in the
current version of our tool. Therefore the software model
simply captures the behaviour for hardware components,
and one clock cycle running time is assumed, and describe
both behaviour and timing information for software compo-
nents.

2.3 Performance

We wanted to obtain both a high speed during the simula-
tion, and a high speed during the interaction with the user.
The former enables us to simulate a larger number of input
patterns, providing a more extensive test of the algorithm
for di�erent operating conditions. The latter lets the de-
signer easily select various architectures and compare their
performance and costs. Both these goals were achieved in
our implementation:

Execution speed : the simulation is fast for the following
reasons:

� hardware components use a cycle-based C model
derived directly from their CFSM representation,
which is the fastest known method of simulating
them ([MMS+95, AM95]),

� software components are compiled on the host
workstation and thus can run faster than in the
target micro-controller, which is often less power-
ful.

Interactivity : the user can change several parameters, in
order to explore the design space without recompiling
the model, but just running a new simulation. These
parameters include, for example:

� the implementation (and CPU assignment in case
of software) of each single block,

� the type of each CPU and its clock frequency,

� the scheduling policy.

The accuracy of this method of performing co-simulation
strongly depends on the precision of the running time esti-
mations of the generated code. Obviously precision beyond
the cycle level is not within the scope of this technique, which
should be used as a high level tool to evaluate trade-o�s
among di�erent architectures of the same system.
The co-simulator can produce useful information, in order

to help the designer in comparing di�erent implementations
of the same system. Some of the possible applications are:

� Functional debugging to check the correctness of the
algorithm used. In this case, modules are executed con-
currently without any timing information.

� Missed deadlines, which can be
agged to the user
whenever an event is overwritten in the input queue of
a block. This can happen when communication is done
by using �nite-length queues. This information permits
to identify the critical components in the system.

� Processor utilization and task scheduling charts, in-
cluding interrupt exceptions, that clearly identify which
task is running on which processor. They are useful to
determine the speed of the processor and the scheduling
mechanism which best �ts the timing constraints.

� Cost of the implementation, both for hardware (area),
and for software (memory size for code and data, esti-
mated execution time).

All this information can greatly help driving the correct se-
lection of an architecture at an early stage of the design, re-
ducing the number of iterations of the design process, and de-
creasing the time to market. Moreover, high level languages
add
exibility, and the design can be easily re-targeted if
new hardware becomes available.

3 An application example

We consider an application from the automotive domain: a
dashboard controller. We will evaluate di�erent implemen-
tation choices, under various possible operating conditions.

The system receives inputs from:

1. a magnetic sensor located near the wheel, producing a
pulse every 4th of a revolution,

2. a magnetic sensor located on the engine, producing a
pulse every revolution,

3. a potentiometer measuring the fuel level,

4. a thermistor measuring the water temperature,

5. a belt sensor, producing a pulse when the seat belt is
fastened,

It provides as outputs:

1. four Pulse Width-Modulated signals, directly driving a
pair of gauges (vehicle and engine speed),

2. two 16-bit numbers controlling the odometer display
(total and partial kilometers),

3. three
ag bits controlling respectively the alarms for
the fuel level, the water temperature and the seat belt.

The timing constraints, which in this case are relatively
soft, derive mainly from the need not to miss any incom-
ing pulse. For the engine this means up to 200 pulses per
second, while for the wheel this means up to 250 pulses per
second. Outputs must be produced at a rate of at least
100 Hz and with a maximum jitter of 100 microseconds to
drive the gauge coils. In this case, we �rst assumed to use
a Motorola 68HC11, because the timing estimate available
from synthesis (e.g., 379 clock cycles at most for one of the
time-critical tasks, the engine pulse recorder) showed that
we could hope to satisfy the requirements with a 1 MHz
processor.

The system was modeled using several CFSMs, each spec-
i�ed in ESTEREL (see Figure 1). Their interconnection was
described graphically with the Ptolemy user interface, as il-
lustrated in Figure 2. Some of the components in the design
are software models for hardware resources commonly found
in micro-controller, such as the timer unit. Three blocks
are devoted to input conversion from level to pulse, three
blocks derive timing events from the base time reference,
two blocks �lter and normalize the data, one block converts
potentiometer readings to fuel level (taking into account the
shape of the tank), one reads the thermistor and another one
checks the seat belt. The remaining two blocks perform the
PWM conversion. The two critical tasks are counting the
pulses coming from the wheel and the engine, therefore the
highest priority level was assigned to the CFSMs that had
to handle input events, and corresponds, in practical terms,
to interrupt-driven I/O without interrupt nesting.

Table 1 reports the number of missed deadlines every
1,000,000 clock cycles, under several operating conditions.
They can be used as a guidance when deciding the imple-
mentation of each block and the processor choice. We sim-
ulated in all cases the same amount of real time (1 second),
independent of the processor speed. We chose to use a Mo-
torola 68HC11 (with clock speed ranging between 1 and 4
MHz) for the mixed hardware/software implementation, and
a Motorola 68332 (with clock speed ranging between 20 and
40 MHz) for the all-software implementation. Partition 1 im-
plements in hardware the timing generators, pulse counters

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

DEBOUNCE

e_RESET

e_SENS_IN

e_OC1_END

e_EVENT_ON

e_EVENT_OFF

DEBOUNCE

e_RESET

e_SENS_IN

e_OC1_END

e_EVENT_ON

e_EVENT_OFF

DEBOUNCE

e_RESET

e_SENS_IN

e_OC1_END

e_EVENT_ON

e_EVENT_OFF

ODO_COUNT_PULSES

e_PARTIAL_RESET

e_WHEEL_PULSE

e_PARTIAL_TENTH_KM_RUN

e_TOTAL_TENTH_KM_RUN

ALARM_COMPARE

e_RESET

e_LEVEL

ALARM_COMPARE

e_RESET

e_LEVEL

LATCH_HW

LATCH_HW

LATCH_HW

��
��

belt_control

RESET

KEY_ON

TCLK

BELT_ON

KEY_OFF

��
��

engine_speed

IC2_START

RESET

TCLK

PWMCLK

ENGINE_COIL_0

ENGINE_COIL_1

��
��

wheel_speed

TCLK

WHEEL_PULSE

RESET

PWMCLK

SPEED_COIL_2

SPEED_COIL_3

frc

oc_self

e_RESET

e_TCLK

ic

e_IC_START

e_TCLK

pwmfrc

Figure 2: The dashboard controller netlist

% count wheel pulses in a time frame (1/10 sec)
module SPEED_COUNT_PULSES:
input RESET, WHEEL_PULSE(integer), OC3_END;
output OC3_START(integer), WHEEL_PULSES(integer);
constant CONST_TIME_UP_WHEEL_PULSE: integer;
var counter: integer
in loop

do loop
counter := 0;
% start the 1/10 sec watchdog timer
emit OC3_START(CONST_TIME_UP_WHEEL_PULSE);
do loop

await WHEEL_PULSE;
counter := counter + 1;

end;
% stop counting when watchdog occurs

watching OC3_END;
emit WHEEL_PULSES (counter);

end;
watching RESET;

end;
end.

Figure 1: ESTEREL code for a module of dashboard

and PWM generators. Partition 2 implements in hardware
the timing generators and pulse counters. Partition 3 imple-
ments everything in software. Clock speed is given in MHz,
engine speed is given in RPM, wheel speed in Km/H.

The only acceptable solutions, from a performance stand-
point, are a 4 MHz 68HC11 with hardware support (versions
of the 68HC11 with on-board counters and PWM generators
are currently available) and a 40 MHz 68332 without hard-
ware support (in that case, the missed deadlines were due
to a slow update in the PWM duty cycle, and hence were
considered quite acceptable in practice). Both the 68HC11
and the 68332 were utilized at about 50%, which meant that
simple static priority-based scheduling techniques could be
used to guarantee deadline satisfaction. The solution with
the 68HC11 will most likely be chosen in the �nal system,
due to cost reasons, but the analysis shows that a prototype
board using a 68332 can be used for functional debugging
in the �eld, with the added convenience of a software-only
debugging style.

Figure 3 shows the priority level as a function of time

CPU Clock Part. Wheel. sp. Eng. sp. Missed
68HC11 4 1 50 3000 0
68HC11 4 1 180 6000 0
68HC11 4 1 260 8000 0
68HC11 1 1 50 3000 0
68HC11 1 1 180 6000 900
68HC11 4 2 50 3000 5000
68332 20 3 50 3000 30
68332 40 3 50 3000 0
68332 40 3 180 6000 6
68332 40 3 260 8000 20

Table 1: Missed deadlines for various types of system archi-
tectures

in this second case2. An interrupt can be recognized when
a low priority task is suspended to execute a higher prior-
ity one. The Ptolemy parameter speci�cation mechanism is
used to allow the designer to change all the architectural pa-
rameters without re-compilation. Currently supported pa-
rameters are:

� CPU type, clock speed, scheduler type for the whole
system,

� implementation (hardware or software) and priority
(used only for software stars) for each star or hierar-
chical star group (galaxy).

The performance of the simulator is very high, especially
if there is no component which is active at every clock cycle,
because in that case we can exploit the inactivity of the
system; in this case, we could achieve a speed of 300,000
clock cycles per second on a SparcStation 10 (90% of the time
is spent executing the Ptolemy scheduler code that keeps the
time-sorted event queue).

2A value of -1 means that the processor is idle, 1 is the highest
level, and each vertical bar represents a context switch.

Figure 3: Task scheduling chart with priority levels

4 Conclusions and future work

In this paper we have shown that fast co-simulation can be
done at the early stages of a design, for partition evalua-
tion and functional veri�cation purposes. The methodology
relies on the use of constrained software synthesis, that per-
mits easy run time estimation for a target processor, and of
an event-based co-simulation environment. We intend it to
be a mechanism to evaluate trade-o�s during the high level
phase of a system design, by providing fast design space ex-
ploration and performance measures.
Currently simulation of multiprocessor systems is not yet

implemented, but we are planning to add it soon. In the fu-
ture we would like also to improve our estimation technology,
and to be able to handle communication costs, caches and
pipelined architectures, which limit the current estimation
accuracy.

References

[AM95] P. Ashar and S. Malik. Fast functional simula-
tion using branching programs. In Proceedings
of the International Conference on Computer-
Aided Design, November 1995.

[Ber96] G�erard Berry, 1996. See
http://cma.cma.fr/Esterel.

[BHLM90] J. Buck, S. Ha, E.A. Lee, and D.G. Masser-
schmitt. Ptolemy: a framework for simulating
and prototyping heterogeneous systems. Intern-
tional Journal of Computer Simulation, special
issue on Simulation Software Development, Jan-
uary 1990.

[CGH+94] M. Chiodo, P. Giusto, H. Hsieh, A. Jurec-
ska, L. Lavagno, and A. Sangiovanni-Vincentelli.
Hardware/software codesign of embedded sys-
tems. IEEE Micro, 14(4):26{36, August 1994.

[CGH+95] M. Chiodo, P. Giusto, H. Hsieh, A. Jurec-
ska, L. Lavagno, and A. Sangiovanni-Vincentelli.
Synthesis of software programs from CFSM

speci�cations. In Proceedings of the Design Au-
tomation Conference, June 1995.

[hp] The POLIS home page.
http://www-cad.eecs.berkeley.edu/Respep/

Research/hsc/abstract.html.

[KL96] R. Klein and S. Leef. New technology links hard-
ware and software simulators. Electronic Engi-
neering Times, June 1996.

[MMS+95] P. McGeer, K. McMillan, A. Saldanha,
A. Sangiovanni-Vincentelli, and P. Scaglia. Fast
discrete function evaluation using decision dia-
grams. In Proceedings of the International Con-
ference on Computer-Aided Design, November
1995.

[PLS+97] C. Passerone, L. Lavagno, C. Sanso�e, M. Chiodo,
and A. Sangiovanni-Vincentelli. Trade-o� eval-
uation in embedded system design via co-
simulation. In Proceedings of ASP-DAC, pages
291{297, 1997.

[Row94] J. Rowson. Hardware/software co-simulation. In
Proceedings of the Design Automation Confer-
ence, pages 439{440, 1994.

[SSV96] K. Suzuki and A. Sangiovanni-Vincentelli. Ef-
�cient software performance estimation meth-
ods for hardware/software codesign. In Pro-
ceedings of the Design Automation Conference,
pages 605{610, 1996.

[ZM96] V. Zivojnovic and H Meyr. Compiled HW/SW
co-simulation. In Proceedings of the Design Au-
tomation Conference, 1996.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

