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Abstract
In this paper, we present a new statistical technique

for estimating average power dissipation in sequential cir-
cuits. Due to the feedback mechanism, in sequential cir-
cuits power dissipation in consecutive clock cycles are tem-
porally correlated, which violates the basic requirement of
statistical mean inference procedures. We overcome this
problem by using a randomness test and a sequential proce-
dure to select a proper independence interval, which in turn
is used to generate random power samples. A distribution-
independent stopping criterion is applied to analyze the
sample data and terminate the simulation upon achievement
of the accuracy specification. The technique is successfully
applied to a set of benchmark circuits.

I. Introduction
Accurate power analysis poses a great challenge to both

VLSI circuit designers and design automation engineers.
For designers, evaluation of battery life in portable equip-
ment and assessment of several reliability problems rely on
accurate power analysis. For design automation engineers,
accurate and fast power analysis is essential to developing
efficient CAD tools for power optimization. Thus, power
estimation has become the focus of research efforts in re-
cent years.

Depending on the abstraction level, circuit entity for
which power dissipation needs to be analyzed varies. At
gate level, combinational and sequential circuits are the ob-
jects of power estimation. For combinational circuits, aver-
age power can be estimated by a probabilistic or statistical
technique which propagates switching activity statistics at
the primary input terminals through the circuit and moni-
tors the power dissipation. Due to the feedback mechanism,
power estimation in sequential circuits is, however, much
more complicated. A sequential circuit contains both pri-
mary inputs and latch inputs. While the switching charac-
teristics of primary inputs are determined by the operating
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Figure 1: Flowchart of the proposed power estimation ap-
proach.

environment, those of latch inputs also depend on the im-
plemented finite-state machine (FSM), which causes spatial
and temporal correlations among latch input signals. Con-
sidering these effects in power estimation greatly increases
the complexity of the problem.

To tackle this problem, most of the existing approaches
choose to partition a sequential circuit into its combinational
part and the latches and then analyze their contribution sep-
arately. The statistical characteristics of the FSM is first
lumped into the switching activity metrics (signal probabil-
ities and transition densities) of the latch inputs by either a
long-time logic simulation [1] or solving a set of nonlinear
equations [2, 3, 4]. Power dissipation of the combinational
part can then be analyzed as mentioned above using such
information. A major drawback of these approaches is that
spatial and temporal correlations among latch signals are not
considered. As the average power is very sensitive to signal
correlations [5], neglecting such information will yield poor
estimation accuracy.

To overcome this drawback, we propose a new statisti-



cal approach, as depicted in Fig. 1. This approach takes
full account of signal correlations among latches as well
as internal nodes. Statistical techniques require a random
sample, i.e., a sample ofindependent and identically dis-
tributed(iid) power data, for mean estimation. In sequential
circuits, however, power dissipations in consecutive clock
cycles are temporally correlated. To handle this problem,
we propose to use arandomness testto determine a proper
independence intervalover which the circuit should be sim-
ulated between two power sampling cycles. Randomness
test examines the validity of the hypothesis that a power se-
quence is composed of iid’s byacceptingor rejecting the
hypothesisaccording the statistical evidence gathered from
the sequence. At a trial independence interval, if the hy-
pothesis is accepted with a user-specifiedsignificance level,
the sequence can be viewed as a random sample. Other-
wise, the trial interval is incremented and another power se-
quence is collected. The iteration continues until the hy-
pothesis is accepted and the associated independence inter-
val is used hereafter to generate random power samples. A
distribution-independent stopping criterion is then used to
continuously analyze the power sample data and control the
sample size until the desired accuracy is achieved. In ad-
dition to high estimationaccuracy by considering all sig-
nal correlations, the simulation efficiency is also greatly im-
proved by the dynamic selection mechanism of the indepen-
dence interval.

The rest of the paper is organized as follows. In Section
II we formulate the average power dissipation problem as a
mean estimation problem by expressing power as a random
quantity. The difficulties of mean estimation in sequential
circuits are also highlighted. In Section III, we first ex-
plain how to generate a random sample from a sequential
circuit. then we introduce the randomness test as the core of
a sequential procedure to determine a proper independence
interval. A distribution-independent stopping criterion is
selected in Section IV to measure the convergence of the
average power estimate. The proposed technique is imple-
mented and tested on a set of benchmark circuits. Section V
reports and discusses the experimental results, followed by
concluding remarks in Section VI.

II. Problem Formulation
A sequential circuit is composed of a set of latches and a

combinational block. When the latches are triggered, the
values present at the latch inputs are captured and trans-
ferred to their outputs and fed into the circuit. Aninput
pattern is a binary vector received by the primary inputs.
The statistics of input patterns vary with the operating envi-
ronment the circuit is embedded in. Because of its random
nature, the input pattern can be treated as a random variable,
denoted hereafter asV . Along with the input pattern, the
present state vectorof the circuit determines itsnext state
vector. The statistics contained in state vectors depend not
only on the FSM realized by the circuit but also on the statis-
tics of input patterns. Hence, state vector is also a random
quantity denoted asS.

Except for very low voltage technologies, logic state
transitionaccounts for the major power-dissipating event in
a cell (logic gate or memory element). For a circuit withNg

gates, the power dissipation can be expressed as a function
of present input patternV 1, present state vectorS1, next
input patternV 2, and next state vectorS2:

P =
V 2

DD

2T

NgX
i=1

Cini(V 1;S1;V 2;S2); (1)

whereCi is the load capacitance at nodei, ni is the num-
ber of transitions occurred at nodei, T is the clock cy-
cle time, andVDD is the power supply voltage. Depend-
ing on the desired accuracy in the power dissipation model,
Ci can be adjusted to take into account additional contribu-
tions from short circuit current, internal capacitance charg-
ing/discharging, etc.

SinceP is a function of random variablesni, i =
1; � � � ; Ng, it is also a random variable and possesses a distri-
bution function. Thus, the average power of the circuit can
be expressed as the expected value ofP . Compared to the
formulation of combinational circuits [7], however,P is no
longer a function of iid’s. Because of the feedback,S2 is a
function ofV 1 andS1. HenceP1; P2; : : : ; Pn, power dissi-
pations of the circuit inn consecutive clock cycles, are tem-
porally correlated. Thus, this sequence should be viewed
as arealizationof a random processfP jg from j = 1 to
j = n. Since statistical mean estimation procedures require
random samples,P1; P2; : : : ; Pn cannot be directly used.

III. Generation of Random Power Sample
For sequential circuits, a random power sample can

be generated either by analyzing the FSM and conduct
power simulation accordingly, or by processing the ob-
served power data directly. The first approach works as fol-
lows. For sequential circuits, if we know the state transi-
tion graph (STG) of the FSM, we can solve the Chapman-
Kolmogorov equations for the stationary state probabilities
[12]. According to these information, a present state vector
can be randomly generated and, along with a present input
pattern, determines the next state vector. With a random
next input pattern (generatedaccording to the statistics of
input streams), power dissipation can be obtained via cir-
cuit simulation. In this case, power data are random in na-
ture and compose a random sample. Unfortunately, in real
life, a typical sequential circuit usually has a large number
of latches. The FSM can easily become too large to be ex-
tracted because of its exponential complexity with the latch
count. It also takes extra efforts to handle correlations in
input streams. Since the state probabilities are jointly deter-
mined by the statistics of input patterns and the FSM, com-
putationally it could be prohibitively expensive to solve the
Chapman-Kolmogorov equations for these information.

An alternative is to implicitly solve the Chapman-
Kolmogorov equations using a proper warm-up period. The
transition behavior of an FSM is characterized by itsstate



transition matrixP. For an FSM withN states,P is aN�N
matrix with elements0 � pij � 1; i; j = 1; : : : ; N . pij is
the transition probability from stateSi toSj . P is, of course,
unknown and is unlikely to be extracted because of the com-
plexity issues. Given an arbitrary initial probability distribu-
tion vectorp(0), afterk clock cycles thek-step probability
distribution vectorp(k) is

p(k) = p(0)Pk: (2)

Matrix Pk =

k timesz }| {
PP: : :P is thek-step transition matrix. For an

ergodic Markov process, ask gets larger,p(k) will become
increasingly independent ofp(0) and will approachps, the
stationary state probability distribution vector. Therefore,
with a proper warm-up periodk, the probability that an ar-
bitrary state is observed will converge to its stationary state
probability. However, due to the lack of knowledge onP, as-
sumptions need to be made inevitably in order to determine
k. For example, Chou et al. [9] assumed that an FSM has
two nearly-closed sets of states with very small transition
probabilities between them. This is a conservative assump-
tion and may lead to a warm-up period much longer than
necessary for FSM’s with better transition behavior.

The second approach is to “extract” a random sample
directly from the observed correlated power sequence in-
stead of starting from the STG. A random sample can be
viewed as a sample generated from an iid random process
[15]. Thus, our task is equivalent to extracting an iid se-
quence from the original time series. In order to do this,
we assume thatfP jg is �-mixing [16] and stationary with
finite variance. Both assumptions have already been made
in the first approach. Simply put,�-mixing refers to the
property that the distant future behavior offP jg becomes
increasingly independent of its past as they get further apart
in time. Given an observed power sequenceP1; P2; : : : ; Pn
from fP jg, by stationarity eachPk; k = 1; : : : ; n has the
same distribution functionF (p). If there exists an interval
of m clock cycles such thatPk andPk+m are independent,
thenP1; P1+m; P1+2m; : : : will be an iid sequence, again
by stationarity. By the�-mixing assumption offP jg, the
existence ofm is guaranteed. In other words, if we can
somehow findm, the independence interval, a random sam-
ple can be constructed simply by recording the power dissi-
pation in the circuit once for everym clock cycles. In the
following, we propose to use a randomness test to examine
the statistical independence of the data in a power sequence.
Based on the test, we develop a sequential procedure to dy-
namically choose a proper independence interval, which is
then used to generate a random sample.

A. Hypothesis Test for Randomness

Randomness test [13] belongs to the category of non-
parametric hypothesis test which verifies the validity of a
statistical hypothesis on the distribution or certain property
of a random variable. As the name indicates, randomness

test is used to examine the randomness of a data sequence.
In this paper, theordinary runs testis adopted among others.
The ordinary runs test handles an ordered sequence of data
in two symbol types. In one such sequence, arun is defined
as a succession of one or more identical symbols, which are
followed and preceded by the other symbol or no symbol at
all. The hypothesis of the test is that the sequence is ran-
domly generated. If the hypothesis is true, the number of
runs has a normal distribution. Nonrandomness is reflected
in a sequence by either a tendency to cluster the elements of
the same symbol or a tendency to mix elements of the two
symbols.

Suppose that an ordered sequence containsm first type
symbols andn second type symbols. The total number of
elements ism+n = N . LetU be the total number of runs in
the sequence. If the hypothesis is true, thenU has an asymp-
totic normal distribution. The mean ofU is1+2mn=N and
the standard deviation is

p
2mn(2mn� N )=N2(N � 1):

Pr(
U � 1� 2mn=Nq

2mn(2mn�N)

N2(N�1)

� z) = Pr(Z � z)

= N (z) =
1p
2�

Z z

�1

e�
y2

2 dy (3)

For finite sequence size, a continuity correction term 0.5 is
introduced to adjust thez statistics as [13]

z =

8>>><
>>>:

�U+0:5�1�2mn=Nq
2mn(2mn�N)

N2(N�1)

; if U < 1 + 2mn=N

U�0:5�1�2mn=Nq
2mn(2mn�N)

N2(N�1)

: if U > 1 + 2mn=N

(4)
Intuitively,U has a normal distribution because every ar-

rangement of the two symbols is equally likely to be ob-
served in a random sequence. Its number of runs is mostly
likely not too many nor too few. Therefore, if a test se-
quence has an intermediate value ofU , the hypothesis is
supported. Otherwise, the hypothesis tends to be rejected
because of the small likelihood of such event in a random
sequence. To state formally, in a randomness test we would
like to test the following hypothesis and alternative:

H : Sequence is random
A : Sequence is not random (5)

A small z in absolute value indicates that the hypothesis is
true, while a largez in absolute value would cast doubts on
the validity of the hypothesis. Suppose we choose a value
c > 0 and acceptH if jzj � c, the probability of rejecting
H when it is true is:

Pr(RejectHjH is true)

= Pr(Z > cjH is true) + Pr(Z < �cjH is true)
= 2(1� N (c)): (6)
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Figure 2: Iteration procedure for selecting a proper indepen-
dence interval.

Equation (6) holds becauseN (z) is symmetric. Usually,c is
chosen such that (6) has a small value�. With � specified,
the correspondingc can be found by

c = N�1(1� �

2
) (7)

� is called thesignificance level. Thus, the randomness
test proceeds as follows. Given an ordered sequence of two
symbols, count the value ofU ,m, n, and calculate the value
of z. Accept the randomness hypothesis with� significance
level if jzj � c. Reject the hypothesis andaccept the alter-
native if jzj > c.

B. Selection of Independence Interval

Since the original runs test only handles sequences of two
symbol types, it cannot be directly applied to test the ran-
domness of a power sequence. Given one such sequence,
a dichotomizing criterion is to find its median, assign (con-
ceptually) symbol A to all values smaller than the median,
and symbol B to the other values. The values ofm,n,U and
z can be calculated accordingly to determine the test result
with � specified.

Using the randomness test, we develop a sequential pro-
cedure to efficiently select a proper independence interval,
as depicted in Fig. 2. Initially, the trial interval is set to zero
and a power sequence is collected by sampling power dissi-
pation in every clock cycle. The significance of the hypoth-
esis is then evaluated by the test statistic (4) and compared
with the user-specified level to determine the test outcome.
If the hypothesis isaccepted, the power sequence is deemed
sufficiently random and an independence interval of zero
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Figure 3: z-statistic values as a function of independence
inteval length of circuits1494. Power sequence sequence is
10000.

is returned. Otherwise, the trial interval is incremented by
one clock cycle to reduce the temporal correlation. A new
power sequence is generated such that every two adjacent
power data in the sequence are separated by the trial inter-
val, and is tested again. The iteration continues until the
hypothesis isaccepted. Typically, temporal correlation dis-
sipates fairly fast with increasing trial interval length. As
an example, Fig. 3 plots the variation of thez-statistic value
with the trial interval length for a power sequence of length
10,000 for circuits1494. A small z value indicates higher
randomness. It shows that an independence interval of sev-
eral clock cycles is sufficiently long to generate a random
power sample. This observation agrees with the�-mixing
property we assumed previously.

IV. Estimation of Average Power

The independence interval determined by Fig. 2 is of
proper length and can be used to generate a random power
sample which is in turn analyzed to estimate average power
(please refer to Fig. 1). For the sake of simulation efficiency,
a two-phase approach is adopted in random sample gener-
ation. During the independence interval, circuit simulation
is simply used to reduce the temporal correlation and no
power sampling takes place. Thus zero-delay simulation of
the next-state logic of the FSM [3] is sufficient. At the end
of the independence interval, the observed state vectors and
associated input patterns are fed into a general-delay circuit
simulator to calculate the power consumption. With a ran-
dom power sample, a stopping criterion is invoked to mea-
sure the convergence and control the sample size. Depend-
ing on the desired robustness, one can choose a parametric
criterion based on the central-limit theorem [1], or nonpara-
metric ones based on Kolmogorov-Smirnov statistic [6] and
order statistics [7], respectively. In this paper, we choose
[7] because it provides agood tradeoff between simulation



Circuit SIM I:I: �
p

Sample CPU Time
Name (mW) (mW) Size (sec)
s208 0.276 2 0.276 4928 138.8
s298 0.430 2 0.429 2816 73.6
s344 0.751 1 0.751 960 14.6
s349 0.785 2 0.785 1088 21.8
s382 0.433 2 0.433 2176 75.6
s386 0.519 1 0.518 1728 35.4
s400 0.418 2 0.420 2272 52.7
s420 0.353 2 0.354 4576 195.0
s444 0.427 3 0.427 2400 69.9
s510 1.175 1 1.175 3168 114.7
s526 0.443 1 0.434 2176 53.1
s641 0.786 1 0.787 1088 26.1
s713 0.804 1 0.804 1088 26.2
s820 0.957 1 0.957 1952 58.2
s832 0.941 3 0.941 2080 75.1
s838 0.443 3 0.443 2272 149.4
s1196 3.080 1 3.079 608 26.7
s1238 3.009 0 3.010 576 24.4
s1423 2.773 1 2.774 2368 275.0
s1488 1.844 2 1.844 4000 293.0
s1494 1.735 5 1.735 3936 392.5
s5378 6.667 2 6.659 352 51.9
s9234 2.008 1 2.008 704 79.6
s15850 5.939 1 5.938 896 462.8

Table 1: Power estimation results.

accuracy and efficiency [10]. Interested readers are referred
to [7] for details of derivation.

V. Experimental Results and Discussion
The proposed technique has been implemented into

our distribution-independent power estimation tool (DIPE).
DIPE represents a general power estimation framework. It
can be adopted in conjunction with any circuit simulator,
depending on the desired simulation accuracy. DIPE has
been applied to a set of ISCAS89 sequential benchmark cir-
cuits on a SPARC 20 workstation with 244 MB memory.
All circuits are assumed to operate at a clock frequency of
20MHz with 5V power supply. The significance level of
the randomness test is set to 0.20 while the maximum er-
ror allowed was specified as 5% with 0.99 confidence. The
signals at primary inputs are assumed to be mutually inde-
pendent and have probabilities of 0.5. However, correlated
input streams can also be handled without any extra work as
DIPE does not make assumptions on input pattern statistics.
The power sequence length for the randomness test should
be carefully selected. It should not be too long because sim-
ulation efficiency may be degraded by the search loop for a
proper independence interval. Neither can it be too short be-
cause statistical fluctuations in hypothesis test results reduce
with the test sample size. In the following experiments, the
power sequence length is chosen to be 320 because the gain
in statistical stability of the test results is marginal if it is any
longer.

Circuit IImin IImax IIavg Savg Davg Err(%)
s208 0 5 1.60 5015 0.87 0.0
s298 1 2 1.60 2650 1.13 0.0
s344 1 3 1.45 964 0.99 0.0
s349 1 3 1.40 959 1.03 0.0
s382 0 3 1.65 2247 1.14 0.0
s386 1 2 1.20 1788 1.03 0.0
s400 1 4 1.85 2291 1.08 0.0
s420 0 6 1.39 4265 1.25 0.9
s510 0 5 1.20 3141 0.99 0.0
s526 1 3 1.20 2230 1.12 0.0
s641 0 3 0.85 1077 0.96 0.0
s713 0 2 0.70 1098 1.01 0.0
s820 0 2 1.20 1951 1.04 0.0
s832 0 3 1.30 2044 1.03 0.0
s838 1 3 1.40 2833 1.79 1.4
s1196 0 3 0.85 586 0.97 0.0
s1238 0 1 0.40 567 1.00 0.0
s1423 1 3 1.60 2416 1.07 0.0
s1488 1 4 2.20 4012 1.27 0.1
s1494 1 5 2.60 4009 1.14 0.0
s5378 1 10 2.40 352 1.40 0.7
s9234 1 6 1.95 894 0.91 0.0
s15850 1 3 1.20 900 1.15 0.0

Table 2: Large number simulation summary.

Table 1 shows the power estimation results for the test
circuits. In Table 1, SIM is the sample average power ob-
tained from taking the average of power dissipation in 1 mil-
lion consecutive clock cycles. It is deemed a sufficiently ac-
curate estimate of the real average power, and is used as the
reference for all experiments.I:I: is the independence inter-
val determined by the randomness test. The average power
estimate�p is obtained by taking the average of the sam-
ple whose size is listed in column Sample Size. CPU time
usage is reported in the last column. From Table 1, sev-
eral observations can be made. 1) For all test circuits, DIPE
produces accurate average power estimates with reasonable
amount of CPU time. 2) Usually, an independence interval
of a few clock cycles is sufficient for the randomness hy-
pothesis to be accepted with the specified significance level.
This observation agrees with [4] on that a small unrolling
factor of a FSM is generally enough foraccurate power es-
timation. 3) The duration of the independence interval is
determined dynamically and varies with the target circuit.
Hence simulation efficiency is greatly improved by not as-
signing a pessimistic warm-up perioda priori [9].

To understand the average performance of the proposed
technique, we conducted 1,000 simulation runs for every
circuit and summarized the results in Table 2. In this table,
I:I:min, I:I:max andI:I:avg are the minimum, maximum
and average independence interval, respectively.Savg is the
average sample size andDavg is the average percentage de-
viation of the estimation results from the reference value. In
order to consider the deviation in both polarities,Davg is



estimated by

Davg =
1

N

NX
i=1

jPexact � Pestimatej
Pexact

� 100%; (8)

whereN is the number of simulation runs. In this table,
the independence interval varies somewhat because the ran-
domness test provides statistical rather than deterministic
conclusion on whether or not the power sequence is “ran-
dom enough”. Thus, for a circuit we would not obtain a
fixed independence interval. Nevertheless, Table 2 shows
that the estimation results indeed meet the accuracy speci-
fication with very low average deviation. The accuracy and
robustness of the technique are therefore demonstrated.

VI. Conclusion
We have proposed a new statistical technique for average

power estimation in sequential circuits. Power estimation
problem in sequential circuits is more complicated than in
combinational circuits because of the feedback mechanism.
Power dissipation data in consecutive clock cycles are tem-
porally correlated, violating the basic assumption of all sta-
tistical mean inference procedures. Lack of knowledge on
the stationary state probabilities of a FSM also makes it dif-
ficult to generate meaningful state vectors for power simula-
tion. We overcome these problems by proposing a sequen-
tial procedure to dynamically determine a proper indepen-
dence interval separated by which two power data can be
viewed as mutually independent. Random samples can be
generated and analyzed by a distribution-independent stop-
ping criterion for user-specified accuracy requirement. The
technique has been successfully applied to a set of bench-
mark circuits with high accuracy and efficiency.
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