
Remembrance of Things Past: Locality and Memory in BDDs �y

Srilatha Mannex Dirk Grunwaldz Fabio Somenzix

x University of Colorado

Dept. of Electrical and Computer Engineering
Boulder, CO 80309

z University of Colorado

Department of Computer Science
Boulder, CO 80309

Abstract

Binary Decision Diagrams (BDDs) are e�cient at manipulat-

ing large sets in a compact manner. BDDs, however, are inef-

�cient at utilizing the memory hierarchy of the computer. Re-
cent work addresses this problem by manipulating the BDDs

in breath-�rst manner (BFS). BFS processing is quite suc-

cessful at reducing the number of page faults when the BDDs
do not �t in the available physical memory. When paging

does not take place, it is much less clear which paradigm

leads to the better performance. In this paper, we perform a
detailed analysis of BFS and DFS packages using simulation

and direct performance monitoring of the memory hierarchy.

We show that there is very little di�erence in TLB and cache
miss rates for DFS and BFS paradigms. We also show that

di�erences in execution time between carefully tuned BFS

and DFS implementations are primarily a function of the
lossless computed table used in BFS implementations, and

not a function of memory locality. Furthermore, we present

implementation changes to the the Cudd package that can
improve execution times by as much as 26% when the prob-

lem �ts in main memory, and a factor of six when paging is

involved.

1 Introduction

Binary Decision Diagrams (BDDs) [4] have found many uses
in CAD applications from logic optimization to combinational

and sequential veri�cation. BDDs provide an e�cient way

to manipulate large boolean functions through recombination
of shared subexpressions. Although BDDs are a compact

memory representation, their access patterns are ine�cient.

BDDs are graphs, where the next element to be accessed
is referenced by a pointer. Most architectures on the other

hand, have a memory hierarchy designed under the assump-

tion of linear temporal and spatial locality in memory ref-
erences [6]. Since BDD packages spend considerable time

executing loads and stores, improving this aspect can signi-

�cantly improve performance.

�This work is supported in part by NSF grant MIP-94-22268 and

SRC contract 95-DJ-560, and in part by NSF grant No. CCR-9404669,

ARPA contract ARMY DABT63-94-C-0029 and a software and hard-
ware grant from Digital Equipment Corporation.

yPermission to make digital/hard copy of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for pro�t or commercial advant-

age, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to re-

distribute to lists, requires prior speci�c permission and/or a fee.
DAC 97, Anaheim, California
c 1997 ACM 0-89791-920-3/97/06 ..$3.50

Improving the e�ciency of memory access can take place

at many levels of the hardware memory hierarchy: cache,
translation look-aside bu�er (TLB), or main memory. Ochi

[8], Ashar [2], and Sanghavi [10] have addressed the prob-

lem of page locality by implementing BDD packages using
Breadth First Search (BFS). With a BFS implementation,

the nodes associated with each variable are accessed all to-

gether. Therefore, by using one or more pages of memory for
each variable, page faults are reduced. The usual depth �rst

search (DFS) implementation accesses nodes across all pages

in a fairly random fashion. Therefore, there is no locality of
access at the page level and the page faults are usually many

more if indeed the application exceeds main memory.

The performance of any BDD package is dependent on
three primary factors: Algorithm, implementation, and ap-

plication. In the context of this paper, algorithm refers to

DFS vs. BFS; implementation refers to how the code is tuned
to best use the memory hierarchy; application refers to the

context in which the BDD package is used such as computing

output BDDs or performing reachability analysis.
In this paper, we present an in-depth analysis of the per-

formance of the memory hierarchy for both BFS and DFS

implementations. In particular, we:

� Present runtime results with and without paging.

� Report results obtained by running extensive hardware

and software analysis programs.

� Analyze the performance of each package in terms of al-
gorithm, implementation, and application.

� Show that the TLB miss rate for the Cudd package [12] is

similar to the CAL package and signi�cantly better then

that of the CMU package [7].

� Show that the page-level miss ratio of the CAL package

is marginally better than that of the Cudd package, and

that both are signi�cantly better than that of the CMU

package.

� Demonstrate that the majority of the bene�ts of the CAL
package is not due to data locality, but is primarily a func-

tion of its lossless computed table.

� Demonstrate that reordering is suboptimal in the CAL

package due to algorithmic and implementation di�culties.

� Show that further improvements in memory locality in
DFS packages can provide up to a 26% and 6 X improve-

ment with and without paging, respectively.

Section 2 reviews the memory design of the DEC Alpha. Sec-

tion 3 qualitatively compares the BFS and DFS algorithms.
We present results in Section 4 and improvements to DFS

algorithms in Section 5.

2 Memory Hierarchy

Modern computers typically use a memory hierarchy [11] to
balance the desire for a large memory with the cost of that

memory. In this paper, we used an AlphaServer 2100-4/275

with a DECchip 21064A processor to compare the perform-
ance of the BDD packages. This system had a small 8 KByte

�rst-level data cache with 32-byte cache lines, a 4 MByte

second-level cache and a 512 MByte main memory.
The translation look-aside bu�er (TLB) is one other im-

portant part of the memory hierarchy often ignored when

designing data structures. The TLB provides a cache for the
data structure that maps a processes virtual address space

to the system physical address space. In most systems, the

TLB is accessed in parallel with the cache, and a memory
reference must hit in both the cache and the TLB, because

the TLB is also used to control access to memory for virtual

memory paging. The TLB is itself a cache and su�ers from
misses called TLB misses. On the 2100-4/275 we used, the

TLB has 32 data entries with a miss penalty of � 45 � 50

cycles. Hardware TLBs can map from 32-128 entries, with
sizes of 32-64 being typical. A hardware TLB is usually de-

signed as a fully associative cache, and increasing its size

beyond 64 provides limited bene�ts to most programs and
may compromise the processor cycle time.

3 Decision Diagrams

BDDs naturally lend themselves to depth-�rst manipulation.

Let � be any binary boolean operator. Then, from Boole's
expansion theorem, f � g = x(fx � gx) + x0(f

x
0 � g

x
0), where

hv denotes the cofactor of h with respect to v. Choosing x

as the variable appearing in f or g that is �rst in the variable
order leads to a simple recursive algorithm for �.

A naive implementation of the recursive algorithm just

outlined takes time exponential in the number of variables;
to avoid that, a computed table is used to store the results of

recent computations. The computed table is usually imple-

mented as a direct-mapped or two-way set-associative cache.
The mapping is performed by a hashing function. Of crit-

ical importance is the size of the computed table. A large

computed table decreases the chance of useful data being
overwritten. But a large table also increases memory usage

and the overhead for operations such as garbage collection.

Therefore, the size of the computed table must be carefully
balanced against its associated cost.

BFS manipulation of BDDs proceeds in two phases: Ap-

ply and Reduce. In the former, the operands are traversed
from top to bottom creating as many request lists as there are

variables. In the latter, the request lists are scanned starting

from the bottom, thereby generating the result. Redundant
nodes are created during the Apply phase and removed dur-

ing the Reduce phase. The number of redundant nodes is

usually not very large.
A BFS BDD package uses a specialized memory man-

ager that assigns sets of memory pages to di�erent variables.

This, combined with a breadth-�rst processing of the BDDs,
is intended to reduce the number of page faults through an

increased locality of accesses. Unlike DFS, BFS processing

does not speci�cally require a computed table. The request
lists created during the Apply phase serve as a lossless com-

puted table, which may consume a large amount of memory,
but guarantees that an operation will not be repeated dur-

ing a particular execution of the Apply and Reduce phases.
However, there is no sharing of results between di�erent in-

vocations of Apply and Reduce. Superscalarity and pipelining

provide for inter-operation sharing of computed results, al-
beit at a cost of memory overhead. In Section 4 we address

the question of whether the DFS algorithm with a large com-

puted table will perform as well as the BFS algorithm.
From the point of view of reordering, there are two ma-

jor di�culties for the BFS implementation. On the one hand,

swapping two adjacent variables destroys the separation between
the memory pages dedicated to di�erent variables. Such sep-

aration must be restored. The second di�culty is that the

index of a node may change as a result of swapping. The
CAL package stores the index of the node within the parent

nodes while DFS implementations store the index in the node

itself. Therefore, the CAL package requires that one must
update the index of the node in its parent nodes after the

node is swapped. This makes reordering of variables a two

step operation.

4 Quantitative Comparison of DFS and BFS

We used the ATOM [13] software instrumentation system to
instrument the BDD packages and measure the cache and

virtual memory characteristics of those packages. We con-

structed a simulator for a variety of �rst-level caches, ranging
from 8 KByte to 256 KByte direct-mapped caches. We also

simulated the paging behavior of the di�erent BDD packages

based on an 8 KByte page size. This measurement records
the miss rate when a certain number of 8 KByte memory

pages are available and an LRU replacement strategy is used.

We can use this measurement to compare the inuence of
TLB misses on the Alpha, because the TLB miss rate will be

the page miss rate for 32 entries.

Although the software instrumentation produces accurate
results for the references in the program, it does not model

the operating system or e�ects from multiprogrammed sys-

tems. While these e�ects can be signi�cant [1], the memory
simulations provide standard metrics that can be used to

compare the di�erent algorithms. We used the performance

monitoring hardware (accessed via the IPROBE program) of
the DECchip 21064A to gain a better understanding of the

performance implications for TLB misses. We measured the

amount of time spent in PALcode, a special processor state
used to implement a variety of primitives for the operating

system, to measure the percent of the total execution time

spent handling TLB misses. The DECchip 21064A has a

software-managed TLB, and most of the time spent in PAL-

code is servicing TLB misses. The software cache and TLB

measurements are precise and repeatable between runs. The

hardware performance monitors are stochastic, and we report

the mean value of 1 to 50 runs of the program, depending on

the size of the job.
We measured three BDD packages: CMU, CAL, and

Cudd. To enable reasonable comparisons to the results in

[10], the experimental setup and routines reported in [10]

were reproduced for the Cudd package. We kept all exper-

imental parameters the same between the various packages

Cache Sizes

NAME Time Mem(MB) 8K 64K 256K

c1908 1.52 15 8.2 3.9 2.5

c1355 1.50 17 8.4 4.4 2.8
c499 1.11 14 8.2 4.1 2.6

s1423 2.34 23 8.2 4.0 2.8

c880 16.57 61 8.8 6.7 5.6
s4863 13.83 54 8.3 5.1 3.8

s6669 13.08 81 8.3 4.7 3.4

c3540 53.24 126 7.8 5.4 4.5

Table 1: Execution time, memory usage in MBytes, and per-
cent cache miss rates for CAL package.

regardless of the implications this has on the performance of

Cudd . For example, Cudd supports 32-bit pointers, but
we chose to use 64-bit pointers since this is what CAL and

CMU supported. Our goal was to minimize the variables in

the experimental setup so that we could perform a fair com-
parison. The analysis was run mostly on a variety of ISCAS

and MCNC benchmark circuits. Since the instrumentation

routines involve a high overhead in run times, we were only
able to work with small circuits. As we show, the data are

well behaved, and the analysis holds for larger circuits, also.

The experimental data in this paper are presented in two
forms: tabular and graphical. The bar graphs show the min-

imum, maximum, and average of the ratios of CMU or Cudd

with respect to CAL for the examples covered in this section.
Since we report the averages of the ratios, every example has

the same weight, and small test cases have as much inuence

on the average as large ones.

4.1 Measured Performance

Table 1 shows the execution time and memory used by the

CAL package on the Alpha. Execution time is in seconds,

and memory is in MBytes. All examples shown �t into main
memory, and did not require any paging. Figure 1(a) shows

the relative performance of Cudd and CMU packages with

respect to CAL. It is clear that CAL has the best execution
times, CMU has the smallest memory usage, and Cudd is in

the middle for both metrics, and that the implementation of

the DFS package e�ects its performance. The CMU package

was completed in 1993, and memory performance was not

a priority when developing the package. The Cudd pack-

age is newer and some e�ort has gone into optimizing it for
performance.

The data above also bring to question the relationship

between memory usage and execution speed. Speci�cally,
the trade-o� between the size of the computed table and the

execution time. We generated the output BDDs for c3540

with varying computed table sizes to determine the e�ect of
increased memory usage on execution time. The results are

shown in Figure 1(b), along with the data points for the CAL

and CMU runs. The graph shows that the Cudd outper-
forms both CAL and CMU for comparable memory usage.

For large examples such as c3540, s6669, c880, and s4863,

Cudd is either better or within 3% of the execution times
produced by CAL. These results suggest that the lossless

computed table in CAL is responsible for the performance

CMU Cudd CAL

Circuit A I A I A I

c1908 3.5 19.0 2.0 11.9 1.1 10.8

c1355 2.8 15.5 1.6 9.1 0.8 8.8
c499 3.0 17.6 2.1 10.5 0.5 6.9

s1423 3.1 15.0 1.7 9.2 0.6 8.2

c880 4.5 17.5 2.6 13.5 4.4 20.7
s4863 4.4 19.3 2.8 14.4 3.0 18.0

s6669 3.9 18.2 2.4 13.4 2.9 14.3

c3540 | 20.7 | 16.3 | 23.5

Table 2: Simulated percent TLB miss rate (A) and measured

TLB cost (I) for 32 entry TLB.

bene�ts of the CAL package.

4.2 The E�ect of Memory Reference

Table 1 also shows the simulated cache miss rate for CAL

for a variety of sizes. There are many possible cache con�g-

urations, and our simulations attempt to give an indication
of the performance for a range of cache sizes. The Alpha

in particular has a 8KByte, direct mapped L1 cache. Nor-

mally, a cache miss rate of 5{10% is considered acceptable
for a small, direct-mapped cache, and most of the miss rates

shown are within that range. Figure 1(c) shows the relative

performance of CMU and Cudd packages with respect to
CAL. The CMU package has a consistently higher miss rate

than either CAL or Cudd. Cudd has a slightly higher miss

rate than CAL for the 8KByte cache, and similar miss rates
for larges caches. Again, this is an issue of implementation,

where the CMU package might not have been optimized for

the cache. For example, individual BDD nodes which span
multiple cache lines contribute to a higher miss rate. To

summarize, although di�erent implementations of the DFS

package have varying cache miss rates, both DFS and BFS
algorithms have similar and reasonable L1 cache miss rates.

Table 2 describes the simulated and measured e�ects of

TLB misses for a 32-entry TLB, which is the size of the data
TLB on the Alpha 21064. The columns labeled A refer to

the miss rate as simulated by ATOM. The columns labeled I

refer to IPROBE measurements of the percent of execution
time spent handling TLB misses. We were unable to com-

plete the simulation experiments for c3540 due to a lack of

time. The data from the hardware performance monitors and
memory simulation disagree slightly. This is expected, be-

cause the hardware performance monitor captures the inter-

actions between processes and the operating system whereas
the simulations do not. For the smaller examples (c1908,

c1355, c499, s1423), CAL is better than either DFS package

both in terms of simulated miss rate and percent execution
time. For the larger examples, though, Cudd outperforms

both CAL and CMU. To gain a better understanding of the

situation, we simulated the page miss ratio as a function of
the number of pages. The data for c880 are presented in

Figure 2. Figure 2 can be used to determine both TLB and

main memory miss rate. For example, the miss rate for 32
pages corresponds to the TLB miss rate for the Alpha. The

miss rate for 2000 pages would indicate the paging rate for a

machine with 16 MBytes of available physical memory. The

150

Exec. Time Mem. Usage

0R
el

. P
er

fo
rm

an
ce

 (
N

or
m

. t
o

10
0)

50

100

200

250

300

350

400

C
U

D
D

C
M

U

C
U

D
D

C
M

U

50

60

70

80

90

100

110

110 115 120 125 130 135

E
xe

cu
tio

n
T

im
e

(s
ec

)
Memory Used (MBytes)

CAL
CMU

CUDD

R
el

. P
er

fo
rm

an
ce

 (
N

or
m

. t
o

10
0)

8K 64K 256K

200

0

50.0

100

150

C
M

U
C

U
D

D

C
M

U
C

U
D

D

C
M

U
C

U
D

D

(a) Average ratio of runtimes (b) Run time as a function of (c) Average ratio of cache

and memory usage. memory usage for c3540. miss rates.

Figure 1: Measured and simulated results.

0

0.01

0.02

0.03

0.04

0.05

0 500 1000 1500 2000P
ag

e
M

is
s

R
at

io
 (

M
is

se
s/

R
ef

er
en

ce
s)

Number of Pages

CAL
CMU

CUDD

Figure 2: Miss ratios as a function of number of pages.

�gure clearly shows the advantage of the CAL package when

dealing with main memory miss rates, but Cudd has a much
better miss rate than CAL for a 32 entry TLB.

Figure 3 shows further data about the three packages.

The �rst set of bars shows that CAL and Cudd execute sim-
ilar numbers of instructions. However, the next two sets show

that CAL performs more memory references, while Cudd

has more function calls. While it is clear that Cudd has
more function calls because many of its functions are imple-

mented recursively, the reasons why CAL accesses memory

more often are still being investigated. These data suggest
that iterative implementation of key recursive functions in

Cudd may narrow the performance gap even when Cudd

uses a small computed table. The �nal set of bars in Fig-

ure 3 shows the ratio of percent execution time spent hand-

ling TLB misses. Although CMU doesn't perform as well as

CAL, Cudd is, on the average, slightly better than CAL.

So far, we have shown that Cudd is only slightly worse

CAL when it comes to TLB miss rate, but that CAL is

superior when it comes to handling page misses. Given that a

page miss may incur a large penalty in the range of 2,800,000

R
el

. P
er

fo
rm

an
ce

 (
N

or
m

. t
o

10
0)

Insts. Refs Func. Calls % Time

0

300

25.0

50.0

75.0

100

125

150

175

200

225

250

275

C
M

U

C
U

D
D

C
M

U

C
U

D
D

C
M

U

C
U

D
D

C
M

U

C
U

D
D

Figure 3: Performance metrics.

R
el

. P
er

fo
rm

an
ce

 (
N

or
m

. t
o

10
0)

BDD Size BDD Size Runtime

120

0

20.0

40.0

60.0

80.0

100

IN
IT

IA
L

F
IN

A
L

T
IM

E

Figure 4: Average ratio of reordering parameters.

CPU Time Elap. Time Page Misses

NAME Cu CAL Cu CAL Cu CAL

c3540 | 164 >10 h 2281 | 114.1

c880 62 49 6120 381 331 19.9
s4863 38 44 85 60 2.5 0.9

s6669 48 43 304 72 3.7 1.4

Table 3: Exec. time (in sec) and page faults (�103) for CAL

and Cudd package when process exceeds main memory.

cycles, a page miss rate of even 0.003% means an average
delay per memory access of 84 cycles due to paging. To

determine the real cost of paging, we ran the largest examples

on a DECstation 3000-300LX using a DECchip 21064, which
only had 64 MBytes of memory. Table 3 shows the elapsed

and CPU time in seconds along with thousands of page faults

for each example. The better memory locality of CAL can
exceed a factor of 20 reduction in run time with respect to

Cudd when paging occurs.

4.3 Dynamic Reordering

Dynamic reordering [5, 9] automatically reorders the BDD to
reduce its size. Although the process of reordering is expens-

ive, it has proven to be invaluable for many applications.

From the point of view of reordering, there are two major
di�culties for the BFS implementation. On the one hand,

swapping two adjacent variables may destroy the separation

between the memory pages dedicated to di�erent variables.
Such separation must be either preserved at some memory

and CPU time cost or restored. The second di�culty is that

the index of a node may change as a result of swapping. The
CAL package stores the index of the node within the parent

nodes while DFS implementations store the index in the node

itself. Therefore, the CAL package requires that one must
update the index of the node in its parent nodes after the

node is swapped. This makes reordering of variables a two

step operation.
We computed the output BDDs for the previous test cases

and then ran dynamic reordering to reduce the size of the

resulting BDDs. Figure 4 shows the relative performance
of Cudd with respect to CAL. Cudd outperforms CAL in

both BDD size reduction, and execution time. Some of the

performance di�erence is due to the algorithmic complex-
ity of implementing reordering in the CAL package. But a

sizeable portion of the performance for Cudd comes from a

good implementation of reordering heuristics. The di�erence
in performance is signi�cant, but a better implementation of

reordering in CAL will reduce the performance gap. (We

could not incorporate a newer release of CAL that has faster
reordering algorithms in our experimental setup in time for

inclusion in the Proceedings.)

5 Improvements to DFS

The analysis and results presented in the last section show
that there is room for improvement in the DFS implementa-

tion of the BDD package in the area of memory management.

As previous results show, TLB miss rate in the Cudd pack-
age is comparable to that of the CAL package for small TLB

sizes. But as the size of the TLB increases or when the pro-

No Sorting With Sorting

NAME Time % TLB Time % TLB

elevator 16.5 13.6 16.2 12.1

clma 165.8 17.6 130.7 7.0
sbc 158.4 18.5 157.2 15.6

key 1833.8 21.0 1851.9 15.5

simple 8144.0 27.3 6084.2 4.8
rcnum 24414.4 27.4 22269.2 25.6

Table 4: VIS execution time (in sec) and percent time spent

handling TLB misses with and without sorting.

gram pages out, the CAL package outperforms both DFS

implementations. Our next goal was to reduce the amount
of TLB and page misses in the Cudd package with small

implementation changes.

The Cudd package contains its own garbage collection
mechanism for allocating and freeing BDD nodes. When a

node is freed, which only happens during garbage collection,

it is placed on top of a free list. If a new node is needed,
the package initially tries to procure the node from the free

list. If the free list is empty, a new block of BDD nodes

is allocated from memory and attached to the free list. In
the implementation of the Cudd package used for the ex-

periments, nodes were inserted in the free list in the order

in which they were collected, which is essentially random.
Therefore, the next time a BDD structure was created, the

nodes used in the structure were also in a random order.

We modi�ed the garbage collection procedure to sort the
free list by pages. Complete sorting of the free list is ex-

pensive, and may not be necessary, since cache locality was

shown to be in an acceptable range. Table 4 shows the res-
ults for running reachability analysis and model checking in

VIS [3] with a variety of examples. All examples �t in main

memory. Some of the results don't show much improvement
in execution time, but others show an improvement of over

26%. This can be explained as follows: One incurs a cost for

sorting the free list in the hope that further, repeated use of
the sorted BDD reduces the overall cost of the operation. If

the sorted BDD is not accessed frequently, then the bene�t

is minimal.
To verify our hypothesis that sorting of the free list be-

ne�ts memory locality, we repeated the simulation and hard-
ware measurements on the VIS [3] package. The simulation

experiments are computationally expensive, so we were only

able to complete a small example. Figure 5 shows the simu-
lation results for miss rate as a function of number of pages.

Even for a small example, it is obvious that the page miss

rate visibly drops when the free list is sorted. Table 4 also
shows IPROBE measurements of the percent of total execu-

tion time spent handling TLB misses. For the two test cases

clma and simple bdlc, the e�ect of TLB misses on execu-
tion time is 2 to 6 times larger for the implementation without

sorting. For examples such as key and sbc, the di�erence is

just enough to compensate for the cost of sorting.

Finally, one last test is to see the e�ect of sorting on

programs which exceed main memory size. We again used a

DECStation 3000-300LX 64 MBytes of main memory. Due

0

0.01

0.02

0.03

0.04

0 100 200 300 400 500 600P
ag

e
M

is
s

R
at

io
 (

M
is

se
s/

R
ef

er
en

ce
s)

Number of Pages

NO SORT
SORT

Figure 5: Page miss rate vs. number of pages for elevator.

CPU Time Elap. Time Page Faults

NAME NS S NS S NS S

bigkey 365 317 1705 573 41 9.8

clma 651 516 1997 1710 61 59

gcd16 315 317 1369 995 33 22
mult32b >447 378 >12 h 7108 >2797 377

Table 5: Exec time (in sec) and pages faults (�103) for VIS

when program exceeds main memory.

to time constraints, we were only able to run small test cases.

Table 5 shows the results for 4 examples. The most dramatic
example is mult32b which shows at least a sixfold di�erence

in run times and a sevenfold di�erence in page faults between

executions with and without sorting of the free list.
To summarize, we have shown that a di�erent implement-

ation of the DFS algorithm can produce improvements of

over 26% when the problem �ts in main memory, and up to a
factor of six when the program is memory limited. Again, the

implementation is closely related to the application in which

the program is run, since only applications which allocate
and release large numbers of BDD nodes and which reuse

existing structures show a signi�cant bene�t from the sort-

ing of the free list. Fortunately, construction and destruction
of BDD structures is common practice in most applications,

and is even more prevalent when dynamic reordering is used.

6 Conclusions

In this paper we have applied detailed quantitative analysis to
determine the factors that inuence the performance of di�er-

ent BDD paradigms. This is the �rst step in understanding

and improving the performance of the packages. When pos-
sible, we have di�erentiated the bene�ts stemming from al-

gorithms, implementations, and applications. We have shown

that carefully tuned implementations of DFS and BFS al-

gorithms have similar cache and TLB statistics. The per-

formance di�erences that we have observed can be ascribed

to memory/CPU time trade-o�s and possibly to di�erent

instruction mixes. The DFS approach is preferable when

variable reordering is a major concern; the BFS approach

is preferable when the size of both programs exceeds main
memory by a limited factor (beyond which not even BFS

processing helps). However, it may be the case that a DFS

package may avoid paging altogether by using less memory.

Based on our observations and analysis, we have shown
that changes in the implementation of the DFS algorithm can

substantially improve performance. In the future, we hope to
explore memory locality issues during dynamic reordering,

which is an important part of any BDD package, and the

impact of instruction mixes.

Acknowledgments

We want to thank Rajeev Ranjan and Jagesh Sanghavi for
the CAL package and for answering our many questions,

and Jean-Christophe Madre for many fruitful discussions.

We would also like to thank Artur Klauser for his graphics
package.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance

of operating system and multiprocessing workloads. ACM Trans-

actions on Computer Systems, 6(4):393{431, November 1988.

[2] P. Ashar and M. Cheong. E�cient breadth-�rst manipulation

of binary decision diagrams. In Proceedings of the Interna-

tional Conference on Computer-Aided Design, pages 622{627,

San Jose, CA, November 1994.

[3] R. K. Brayton et al. VIS: A system for veri�cation and synthesis.

Technical Report UCB/ERLM95/104, Electronics Research Lab,

Univ. of California, December 1995.

[4] R. E. Bryant. Graph-based algorithms for boolean function ma-

nipulation. IEEE Transactions on Computers, C-35(8):677{691,

August 1986.

[5] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering

of binary decision diagrams for the application of multi-level logic

synthesis. In Proceedings of the European Conference on Design

Automation, pages 50{54, Amsterdam, February 1991.

[6] J. H. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, San Francisco, CA,

second edition, 1996.

[7] D. E. Long. Robdd package, 1993.

[8] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-�rst manipulation

of very large binary-decision diagrams. In Proceedings of the In-

ternational Conference on Computer-Aided Design, pages 48{

55, Santa Clara, CA, November 1993.

[9] R. Rudell. Dynamic variable ordering for ordered binary decision

diagrams. In Proceedings of the International Conference on

Computer-Aided Design, pages 42{47, Santa Clara, CA, Novem-

ber 1993.

[10] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and

A. Sangiovanni-Vincentelli. High performance BDD package

based on exploiting memory hierarchy. In Proceedings of the

Design Automation Conference, Las Vegas, NV, June 1996. To

appear.

[11] A. J. Smith. Cache memories. ACM Computing Surveys,

14(3):473{530, September 1982.

[12] F. Somenzi. CUDD: CU Decision Diagram Package.

ftp://vlsi.colorado.edu/pub/.

[13] A. Srivastava and A. Eustace. ATOM: A system for building

customized program analysis tools. In Proceedings of the ACM

SIGPLAN '94 Conference on Programming Language Design

and Implementation. ACM, 1994.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

