
Formal Verification of FIRE: A Case Study

Jae-Young Jang Shaz Qadeer Matt Kaufmann Carl Pixley
Dept. of ECE Dept. of EECS Motorola Inc.

University of Colorado University of California 7600A Capital of Texas Highway
Boulder, CO 80309 Berkeley, CA 94720 Austin, TX 78731
jjang@duke.colorado.edu shaz@eecs.berkeley.edu fmatt kaufmann,carl pixleyg@email.mot.com

Abstract

We present our experiences with the formal verification of an au-
tomotive chip used to control the safety features in a car. We used
a BDD based model checker in our work. We describe our verifi-
cation methodology for verifying a very complicated property on a
relatively large design. We also describe the bugs that were found
and present our views on how to make model checking an effective
integrated part of the design flow for complex hardware systems.

1 Introduction

Verification is increasingly becoming the bottleneck in the design
flow of electronic systems. Simulation of designs is very expensive
in terms of time and exhaustive simulation is virtually impossible.
As a result, designers have turned to formal methods for verifica-
tion. Symbolic model checking is becoming a popular method for
verifying commercial sequential designs.

In this work, we used Verdict, a BDD based CTL (Computational
Tree Logic [1]) model checker under development at Motorola, to
verify the correctness of an automotive chip we will refer to as FIRE.
Verdict has been extensively used to verify commercial designs [2].
In the past few years, as model checkinghas become a popular method
for verifying sequential designs, several case studies of verification
of commercial designs have been published [3, 4, 5]. This work is
intended to be a case study in which several aspects of formal ver-
ification of commercial hardware designs are highlighted. In this
work, close interaction with the designer resulted in the identifica-
tion of a very complex property to be verified on a relatively large
design. A number of important issues came up during the process.
First of all, unclearand imprecise specificationsof the design proved
to be a big hurdle. We have realized now after talking to other peo-
ple in the industry that this is a very common and neglected prob-
lem. Second, the property that the designer wanted us to verify was
so complicated that it was not possible to express it as a CTL for-
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mula on just the interface variables of the design. Intimate knowl-
edge of the design was required and properties had to be formulated
on internal signals. Third, we faced the very well known problem
of state explosion. To overcome this problem, we tried to break the
proof into simpler proof obligations on the modules of the design.
This was done by manually creating an abstraction of the environ-
ment for each module and proving suitable local properties on them
so that the global property that we wanted to verify could be deduced
from the local properties. It is a limitation of current formal verifica-
tion tools that we were dependent on our intuition for verifying the
correctness of the abstractions and for deducing the global property
from the proved local properties.

FIRE is a complex automotive chip used to implement safety fea-
tures in a car. FIRE interfaces with a micro-controller and some ana-
log devicescontrolling the safety features like seat-belts and airbags.
The micro-controller controls these safety analog devices by giv-
ing appropriate instructions to FIRE. The micro-controller gets data
from an electro-mechanical device, an accelerometer for instance,
that detects an impending collision. The internal register file of FIRE
is accessible to the micro-controller to be read and written to. The
micro-controller communicates with FIRE by reading and writing
to its internal registers according to a complicated protocol that will
be described later. If the car crashes, the micro-controller and an-
other module called TzDriver (not a part of FIRE) can act together
to have FIRE assert a signal called crash which is an input to the
safety devices. The safety devices can perform one or more of the
following four actions as a result of the crash signal: pop the driver
or the passenger side airbag or tighten the driver or passenger side
seat-belt.

The micro-controller interacts with FIRE according to a protocol.
To write data to a particular register in FIRE, the controller puts the
address and data on the bus in one write cycle and puts the comple-
mented address and data on the bus in the next write cycle. Only
then does FIRE accept the write as valid and commit the data to the
addressed register. Since address bus and data bus transactions are
multiplexed, each write cycle is composed of two sub-cycles, the
address and the data being put on the bus on successive sub-cycles.
Similarly, for reading data from some register, the controller puts the
address on the bus and FIRE puts the data in the addressed register
on the bus in the first read cycle. In the next cycle, the controller
puts the complemented address and FIRE puts the complemented
data on the bus. Only then does the micro-controller accept the data
as valid.

A schematic diagram of FIRE is given in Figure 1. The principal
components of FIRE are a set of temporary registers (ADD, ˜ADD,
DATA), a register file (R0-R7), a De-multiplexer (ST-DEMUX), and
two modules called Watchdog and TzTest. It has 64 I/O pins and 172
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Figure 1: Schematic of FIRE.

latches. A feature of FIRE is that it can interface with either one of
two micro-controllers – HC11 or HC12. It can automatically detect
which micro-controller is in the environment. Two different clocks
that are not synchronizedwith each other are used to drive the differ-
ent componentsof FIRE. EXTAL clocks the micro-controller (4MHz
for HC11 and 2MHz for HC12) and a slower clock S clk (100KHz)
drives the Watchdog and TzTest modules. The micro-controller gen-
erates signals AS and E which are inputs to FIRE. E is the clock
signal for FIRE. The temporary registers ADD, ˜ADD and DATA
are used by FIRE to implement the protocol described above. The
micro-controller can also ask FIRE to perform some special control
tasks by writing appropriate values to distinguished registers S and
T. The De-multiplexer logic deciphers these values and generates
the correct signals to perform the desired tasks. The RST signal is
the reset which if assertedresets both the micro-controller and FIRE.
The module Watchdog is a safety feature built into the design for
detecting a malfunctioning micro-controller. It has a counter and its
function is to assert RST if the counterexpires. Therefore, the micro-
controller periodically asks FIRE to assert Rst Watchdog which has
the effect of resetting the counter in Watchdog.

It is expected of safety devices that they come into operation only
when the need arises. Otherwise, they may cause a lot of irritation
and might even result in an accident. Consider the case of airbags
in cars. If the safety device malfunctions and the airbag pops out
while the car is on a freeway, it might very well cause an accident.
A module like Watchdog and the complicated protocol for reading
and writing data were put in place for exactly this reason. There-
fore, a very important property that we would like to verify is that
the FIRE chip gives the crash signal to the analog device if and only
if the micro-controller has given it the appropriate instructions. In
the next section, we present our method for proving this property on
the design.

This paper is structured as follows. In Section 2, we describe the

verification problem and our methodology. We also discuss some
of the important issues that cropped up during our work. We hope
that this discussion will motivate further research in computer-aided
formal verification. In Section 3, we describe the results of our ex-
periments. In Section 4, we describe the bugs we found. In Sec-
tion 5, we conclude by presenting an overview of the difficulties we
faced and some directions for future work needed to make verifica-
tion more integrated in the design flow.

2 Methodology

We started with the Verilog model of FIRE and its specification doc-
ument. The property that concerned the designer of the chip most
was that an airbag should be popped only when the correct firing
sequence is observed by FIRE. But the precise definition of the “cor-
rect firing sequence” in terms of actual signals in the Verilog model
was not clear at all from the specificationdocument. To get a precise
CTL property on the signals in the chip we were forced to study the
Verilog model in detail. We finally realized that the correct opera-
tion of FIRE depended on recognizing a complex sequence of oper-
ations. Only after this sequence of operations had been performed
should FIRE assert the crash signal to the analog device. In order
to recognize the complex sequence of actions which should lead to
the assertion of the crash signal, the correct operation of the regis-
ter file and the S-T DEMUX is essential. The S-T DEMUX is a com-
plex piece of logic which detects consecutive writes to registers S
and T and performs some appropriate controlling function depend-
ing on what was written in the two registers. We found the “correct
firing sequence” to be as follows. First, the micro-controller has to
activate FIRE by setting a register QRS(The third bit of R3) inside
FIRE to 1. It does this by writing appropriate values to S and T in
consecutive write cycles. If a crash is detected, TzDriver (not a part



of FIRE) asserts the signal tz which is an input to TzTest. A small
finite state machine inside TzTest detects this, enables a counter and
asserts a signal crash maskwhich remains high for the duration of
the counter. The micro-controller should write appropriate data val-
ues to registers R5 and R6 in that duration. Only some bits of the
registersR5 andR6 are relevant. Denoting these bits by i, the signal
crash is given byQRS^crash mask^R5i^R6i. The property to
be verified is that crash is asserted if and only if the above described
sequence of events happen. Since the property to be verified was so
complex and involved all the components of FIRE, we decided to
break it into a set of local properties such that if these properties are
satisfied by the model then the original property is also satisfied by
the model. Although we did not formally prove that the local prop-
erties suffice, our method was validated by enabling us to discover
three bugs (see Section 4).

Notice from the description above that satisfaction of the property is
contingent on the correct implementation of the protocol for writing
the register file, the S-T DEMUX logic and the FSM inside the mod-
ule TzTest. Therefore, we focused the verification effort on these
three components. First, we verified the protocol for writing the reg-
ister file of FIRE. We verified the property that a register is updated
if and only if the micro-controller puts the correct sequence of ad-
dress and data on the address/data bus, i.e., correct address, correct
data, complement address and complement data appear on consecu-
tive cycles on the bus. Second, we verified the operation of the S-T
DEMUX logic. Specifically, we verified the operation of the finite
state machine which detects consecutive writes to S andT . We also
verified the control behavior of the De-multiplexer relevant in the
case of a crash. Third, we verified the finite state machine inside
TzTest module which controls the signal crash mask.

We discuss below some of the important issues that came up during
our work.

2.1 Environment for the micro-controller

FIRE’s interface with the micro-controller consistsof the signalsAS
(address strobe), E, CS (chip select) and the address/data bus. To
transfer data from the micro-controller to FIRE chip, two write cy-
cle are needed and FIRE has to be selected by assertingCS in both
of them. Note that other transactions could be performed on the bus
between the two write cycles in which FIRE is selected, i.e. there
could be an arbitrary number of clock cycles in which CS is not
asserted between two write cycles. If we let the interface signals
vary nondeterministically, we could write a CTL property that says
wheneverwrite cycle1 is followed bywrite cycle2 with FIRE be-
ing selected in both cycles, then in the very next cycle the regis-
ter gets updated. The property, using the Weak Until1 operator Uw ,
would look something like the following.

AG((CS ^write cycle1)
) AX(A [:CS Uw (CS^
((write cycle2^ AX(reg updated))_
(:write cycle2^ AX(:reg updated))))]));

The properties write cycle1 and write cycle2 have been used as
macros in the above property. They would be complicated proper-
ties themselves, and would somehow have to state that the addresses
and data bits in the two cycles were complementary. Clearly, this ap-
proach would make the property to be verified very long and compli-
cated. Notice that this approach would result in complicated proper-
ties for any other part of the design, S-T DEMUX logic for instance,

1A [p Uw q] �: E [:q U (:p ^ :q)]. A state s satisfies A [p Uw q] if on all
paths from s either p is always true or p is true until q becomes true.

whose correct behavior is contingent on receiving the correct writ-
ing sequence from the micro-controller.

In our approach, we modeled the micro-controller environment as
a nondeterministic finite state machine. Assertion of CS to select
FIRE and generation of a read or a write operation is done nonde-
terministically in each cycle. We implemented a monitor inside the
environment and it asserts a particular variable monitor valid when-
ever the micro-controller issues a correct writing sequence. Hav-
ing such a variable makes CTL properties very easy to express. Of
course, the trade off is that the state space of the design increases.
But we have observed that a complicated property with a lot of nested
sub-formulae can sometimes be much more efficiently model checked
by creating a simple monitor and simplifying the property, even though
the state space increases. We verified the correctness of the environ-
ment and the monitor by checking CTL properties on them without
considering the FIRE module. This was easy to do because the en-
vironment and monitor were small and relatively uncomplicated.

2.2 Multiple Clocks

Currently, model checkers can work only on designs with a single
global clock. If multiple clocks are present, the design can be veri-
fied by model checking only if they are synchronized. In this case,
the fastest clock is made the global clock and the other clocks are
derived from it. It is a limitation of the model (Kripke structure [1]),
i.e., state transition graph of global states, on which the modelcheck-
ing algorithms work, that asynchronous clocks cannot be handled
more directly. In this model, the design is visualized as being in
some global state which changes at every clock tick according to
the state transition graph. In the case of FIRE, there are two asyn-
chronous clocks in the system. Therefore, we do not have a global
clock which controls transitions between states. The interface be-
tween the micro-controller and FIRE is controlled by signalE driven
by the faster clock called EXTAL. The other clock S clk which is
40 times slower than EXTAL is used only inside the Watchdog and
TzTest modules. Of course, we could just forget about asynchrony
and synchronize the two clocks. This reduces the behavior in the
system and could actually lead to erroneous results. In this case, we
actually discussed the problem with the designer of FIRE and syn-
chronized the clocks on his suggestion2.

2.3 Modular Verification and Abstraction

State space explosion is a well-known problem. In hardware de-
signs, it manifests itself in an exponential growth of the state space
with the number of latches in the design. Since model checking al-
gorithms are based on state space exploration, their efficacy is also
limited by this phenomenon. The introduction of BDDs [6] as a sym-
bolic representation of a set of states increased the number of states
that could be handled[7]. But, even BDDs have their limit and can-
not handle designs with a lot of state holding elements.

We faced the state explosion problem in the case of FIRE. Our tool
synthesized more than 200 latches from the Verilog description of
FIRE and our model of its environment. Consequently, the tool was
taking a lot of time to check the properties and could not even finish
on some of them. To get around this problem, we tried to partition
the design into more or less independent components. Most indus-
trial designs are done in a modular fashion and FIRE is no excep-
tion. The register file, the S-T DEMUX logic and the TzTest module
formed more or less independent pieces of logic with some inter-
facing signals. We realized that the properties we wanted to check

2The designer felt that synchronizing the two clocks is a safe assumption.



were mostly local in nature. As an example, consider the local prop-
erty of the register file that a register is updated correctly if and only
if the correct writing sequence (according to the protocol) is output
by the micro-controller, which does not depend at all on the other
parts of the circuit. To check this property, we can create abstract
models of the other pieces in the design and compose the model for
the register file with these abstract pieces to get an abstract model
of the whole design. Generally, this can reduce the state space in
the abstract design dramatically. The verification task is thus broken
down into two hopefully simpler tasks – verifying the properties on
the abstract design and proving that if the abstract design satisfies
a property the actual design will satisfy it too. In the case of veri-
fying a property on the register file, the most natural abstraction for
all pieces interacting with it is a nondeterministic FSM with a single
state and a self loop. In other words, we let the inputs to the register
file from the other modules in FIRE vary nondeterministically.

For verifying some properties, detailed models of more than one sub-
circuit had to be put togetherbecauseof complex interactions among
them. In such cases, verification was taking a lot of time. We used
abstraction in a number of cases to simplify the problem. In the reg-
ister file, there were 64 latches (8 registers each containing 8 bits).
A very natural abstraction is to neglect the other registers while ver-
ifying that any particular register is updated correctly. In this case,
the correctness of the abstraction is justified by the observation that
the operation of a register does not depend on any other register. In
the TzTest module, there was a 12-bit counter. The purpose of this
counter is to keep some signal asserted for some duration. The crash
signal is asserted if the micro-controller accesses the S-T DEMUX
correctly in this duration. We believe that the actual duration of the
counter does not matter as long as it is much longer than the time it
takes for the micro-controller to write S andT . We made use of this
observation to abstract away some of the bits of the counter thereby
reducing the state space. Reducing the length of the counter was
very useful in reducing the number of reachability steps3. Related
work can be found in [8]. Note that in making this abstraction, inti-
mate knowledge of the design was required. We will come back to
this point in Section 5.

We observe here that getting the properties to go through the model
checker required a lot of manual abstraction and that we had to rely
on our intuition for the correctness of these abstractions. Our expe-
riences described above have led us to believe that there is an ur-
gent need for a higher degree of automation of compositional ver-
ification and abstraction in current verification tools. Researchers
have been looking at compositional proof techniques for a number
of years but we have yet to see a practical implementation of these
ideas. Recently, an attempt at automating a limited kind of abstrac-
tion methodology using the model checker in VIS [9] as a decision
procedure has been made in [10].

3 Verification

In this section, we describe in more detail specific examples of im-
portant properties that we model checked on the design. We verified
a total of 76 CTL properties dealing with the different pieces of the
design. Note that a lot of effort was spent in the formulation of a cor-
rect set of CTL formulae that expressed the properties we wanted.

In our experiments, we found two features of Verdict especially use-
ful. First, the property-dependentscaling option to the modelchecker
automatically reduces the state space to only those variables that in-
fluence the model checking property under consideration. This sig-
nificantly reduces the time spent in model checking the property.

3If the counter is initialized, the number of reachability steps is at least 2l, where l
is the length of the counter.

Second, the dynamic variable reordering was very useful in reduc-
ing the intermediate BDD sizes which again reflected in a reduction
in the time for doing model checking.

We now describe some examples of properties on different parts of
the design.

3.1 Data Path

The data path is constructed with read and write operation from the
micro-controller to the register file in the FIRE chip. Data transfer
is valid if the following sequence of operations is done in order.

OriginalAddress(OA) ! OriginalData(OD) !
ComplementedAddress(CA)! ComplementedData(CD)

Because some instructions for other chips may be issued between
these operations (when CS is not asserted), this valid data transfer
protocol is not easily written in CTL. As explained before, we used
a monitor in the environment of FIRE to detect the correct writing
sequence. The monitor sets a latch called monitor valid whenever it
sees the correct writing sequence. Then the CTL properties for data
transfer are very simple.

AG(monitor valid! register is updated);
AG(:monitor valid! :register is updated);

3.2 FSM behavior

FSM_S
WROTE_NOT_T

FSM_IDLE

NEXT CLOCK

WROTE_T

WROTE_S

FSM_T

NOT_WROTE

NOT_WROTE_S

Figure 2: An example of a verified FSM

We had to verify properties on critical state transitions of a number
of FSMs. Figure 2 is the one example that we verified. This FSM is
part of the module called S-T DEMUX. The De-multiplexer in this
module is enabled only in the state FSM T and performs the proper
action based on the values of registers S and T . We used the Weak
Until operator to come up with the following property.

AG(FSM IDLE! A[(:WROTE S^

FSM IDLE) Uw(WROTE S^ AX (FSM S))]);

A second property we checked on this FSM was false. This prop-
erty is described in Section 4. Analogous properties were checked
for other FSMs too.

4 Bugs

We found two bugs of which the first one is critical.



1. A register in the register file should be updated only by a valid
writing sequence as earlier. But the temporary registers of FIRE
which are used to maintain the history of the data transfer proto-
col were not initialized properly. As a result, data could be writ-
ten to a register at the beginning of the complement write cycle.
This bug could cause unexpected firing of safety devices. The
property that yielded the debug trace is the following.

AG(:monitor valid! :reg is updated);

2. If a valid write to register S is immediately followed by a valid
write to registerT , the De-multiplexer in S-T DEMUX is enabled.
On the other hand, if another write operation is issued between
these two write operations, the De-multiplexer should be disabled.
This turned out to be false and a debug trace was generated by the
model checker on the following property.

AG(FSM S ! A[(:WROTE ^ FSM S)
Uw((WROTE T^ AX(FSM T ))_
(WROTE ^ :WROTE T^ AX (FSM IDLE)))]);

5 Conclusion

In this study, we tried to verify the correctness of a design where the
criterion for correctness was very complicated. In the process, we
found two bugs of which one was critical. The case study illustrated
a lot of problems that are faced while verifying commercial hard-
ware designs using model checking. We think that these problems
provide pointers to areas that need more work to make model check-
ing, and more generally formal verification tools, an integrated part
of a more effective design process.

We mentioned that a very big hurdle we faced was a lack of clear
specifications on signals in the design. We actually had to study the
details of the design to figure out the specification. This approach
has the inherent danger of writing an incorrect specification because
of a bug in the design. Nevertheless, we feel that since designers
have the best knowledge of the design they should write specifica-
tions themselves. Thus, writing specifications should be made as
integrated a part of hardware design as documentation is a part of
software design.

The study also illustrates an effective use of the concept of moni-
tors. By building an appropriate environment and monitor for the
design, we can simplify the construction of CTL properties to ex-
press specifications and thereby reduce the chance of an incorrect
specification. This strategy can sometimes reduce the actual model
checking time in the case when the property without the monitor is
very complicated.

In view of the large number of states in current hardware designs, it
is important that verification tools should provide support for tech-
niques like compositionalverification and abstraction. Multiple asyn-
chronous clocks are very common in hardware design. The model
of a global state transition graph which is used in current model check-
ers cannotmodel such designs. Other models which can do this should
be investigated.

We believe that model checking is an effective way of verifying se-
quential designs. The level of expertise neededto use a model check-
ing tool is not very high because it is highly automated. But, to use
the tool effectively the user should have some knowledge of BDD
representations and the notion of variable reordering. We found that
dyanamicvariable reordering was very helpful in reducing the model

checking time. We believe that the most effective users of model
checking are the designers themselves. We have seen that a thor-
ough knowledge of the design may be needed to check properties
even with the state-of-the-art in model checking. The design can-
not always be viewed as a black box by the verifier. Therefore, the
designer himself is often in the best position to verify his design.
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