Formal Verification of a Superscalar Execution Unit

Kyle L. Nelson Alok Jain Randal E. Bryant

IBM Corporation Department of ECE School of Computer Science
AS/400 Division Carnegie Mellon University Carnegie Mellon University
Rochester, MN 55901 Pittsburgh, PA 15213 Pittsburgh, PA 15213

email: kin@vnet.ibm.com email: alok.jain@ece.cmu.edu email: randy.bryant@cs.cmu.edu

Abstract. Many modern systems are designed as a set of intercosystems’ often radical deviation from the sequential execution
nected reactive subsystems. The subsystem verification task is twodel. This paper focuses on applying our methodology to verify
verify an implementation of the subsystem against the simple detethe fixed point unit of a PowerPC processor. The fixed point unit
ministic high-level specification of the entire system. Our verifica+epresents a subsystem with a complex interface and several of the
tion methodology, based on Symbolic Trajectory Evaluation, is ablperformance enhancing features found in modern day processors.
to bridge the wide gap between the abstract specification and t}Ae
implementation specific details of the subsystem. This paper Prern
sents a detailed description of an industrial application of this methg
odology to the fixed point execution unit of the PowerPC processoy;
We were able to verify a representative instruction under all poss):
ble stall, bypass, pipeline conditions and under all possible timing
for interface to other functional units in the processor.

high level overview of our methodology for subsystem verifica-

n and some of the related work is presented in Section 2.
ection 3 discusses the implementation details of the fixed point
nit. The steps required by our methodology to verify the fixed

oint unit are detailed in Section 4. The results of the verification
re presented in Section 5.

2. Overview of Verification Methodology

1. Introduction

. . o The goal is to develop a methodology with which a designer can
S_om_e modern_ systems W'Fh a simple dt_at(_arm_lnlstlc hlgh-level_ SPECHow that an implementation of the subsystem correctly fulfills an
fication have implementations that exhibit highly nondeterministic, gyt specification of the desired system behavior. The abstract
behaviors. A large class of systems that exhibit such behavior a|

At the hiah-level th : del inh Ny E%ecification describes the high-level behavior of the system inde-
Processors. € high-level the sequencing model INnerent IN prse pjent of any timing or implementation details. As an example,
cessors is the sequential execution model. However, at the lo

. . natural specification of a processor is the instruction set archi-
level, these processors are implemented as a set of interconnec g

reactive subsystems. The subsystems have complex interfaces

use nondeterministic protocols to interact with each other. In add;, process must bridge a wide gap between the detailed sub-
tion, the underlying implementation of subsystems uses features,iom implementation and the abstract specification. In spanning
such as p'F’?"”eS and dispatching multlple instruction per c_ycle 'this gap, the verifier must account for issues such as system clock-
an effort to increase performance. The interaction among instfugag yinelines and interfaces with other subsystems. To bridge this
tions results in increased interlock and resource conflict problen%ap the verification process requires some additional mapping
Wh'Ch. leads to nondeterminism in the subsyst_em. SUCh. subsyst(_ei formation. Themplementation mappingelates the abstract state

contain many subtle features with the potential for serious des'gé'lements in the assertions to signals in the subsystem. The imple-

error. mentation mapping is a nondeterministic mapping defined in terms
A methodology for formal verification of such subsystems presentef state diagrams. State diagrams allow users to create an environ-
a unique set of challenges. The goal is to verify the implementatioment around the subsystem and define complex nondeterministic
of the subsystem against the more natural high-level specificatidnterface protocols. The state diagrams corresponding to the inputs
of the entire system. The verification methodology has to incorpocan be viewed as generators that generate low-level signals required
rate the ability of defining the environment around the subsystenfior the operation of the subsystem. State diagrams corresponding to
The environment defines the set of restrictions and requirementaitputs can be viewed as acceptors that recognize low-level signals
placed on the subsystem by the rest of the system. The restrictioos the outputs of the subsystem. In addition to defining the environ-
and requirements are usually in the form of a set of nondeterminisnent, the mapping also has information about how to stitch instruc-
tic protocols defined on the interface signals. In addition to definingions together to create infinite execution sequences.

these interfaces, the methodology has to account for complex fe

tures such as instruction pipelines, pipeline interlocks, multiplg,qqq o generate thejectory specificationThe trajectory specifi-

i_nstruction issue, multipl_e_ cygle instructions and specu_la_tive EXEClkation consists of a set whjectory assertionsEach abstract asser-
tion. Though formal verification tools have started gaining accepg;

h . ; - ion gets mapped into a trajectory assertion. The trajectory assertion
tance in the industry[8][9][10][11], they do not provide a rigorous .o res all possible sequences of circuit state that arise due to non-
methodology for subsystem verification.

deterministic interactions of the signals in the environment around
Our verification methodology is able to bridge the wide gapthe subsystem. A modified form of symbolic simulation called
between the abstract specification of the entire system and the suymbolic Trajectory Evaluation (STE)[1] is used to verify the tra-
jectory assertions on the subsystem.

ure. The specification is a setbftract assertiondefining the
ct of each operation on user-visible state elements. The verifica-

Fhe abstract specification and the implementation mapping are

This work partially funded by Semiconductor Research Corporation #96-DC- The reader is referred to [4] for a more detailed description of our
068 verification methodology.

Permission to make digital/hard copy of all or part of this work for personal or 2 1. Related Work
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication andBeatty[2] laid down the foundation for our methodology for formal
its date appear, and notice is given that copying is by permission of ACM, Inc. To copYserification of systems. However his work had one basic limitation.

otherwise, to republish, to post on servers or to redistribute to lists, requires prior spes R .

cific permission and /or a fee. ®The methodology could handle only bounded single behavior
sequences. We have extended the methodology to handle a greater

DAC 97, Anaheim, California level of nondeterministic behavior required for subsystem

(c) 1997 ACM 0-89791-920-3/97/06..$3.50

verification.

. . . . WHEN (ra !=rb dataA ==dataB 1
STE has been used earlier to verify trajectory assertions. Beatty [2] (op is(OR and)(llelA(is ra)and (RBiS,)b yand (RTist) and EZ;
mapped each abstract assertion into a set of symbolic patterns. (Reg[ra] isdataA) and (Reg[rb] isdataB) (3)
STE was used to verify the set of symbolic patterns on the circuit. LEADSTO 4
The set of symbolic patterns corresponded to a single sequence of (Reg[rt] isdataA | dataB) ®)

states in a state diagram. Seger[3] extended STE to perform fixed
point computations to verify a single sequence of states augmente]
with a limited set of loops. We have extended STE to deal with
arbitrary state diagrams.

Figure 1. Abstract assertion for theORinstruction

.) ered available when either it does not currently contain a valid
Our work has some resemblance to the capabilities provided by thenstruction or the instruction in the execute stage is going to be
Symbolic Model Verifier (SMV)[5][6]. SMV requires a closed sys- completed in the current cycle.

tem. The environment is modeled as a set of machines. The stat hen th e st bedi I ired d ilabl
diagrams in our mapping correspond to creating an environment' €N th€ Execute stage begins, all required operands are avaranle,

around the system. However, there is one essential differenceand the current instruction is latched into the execute stage instruc-

Though SMV does provide the capability of describing the envi- tion register. Most instructions will complete the execute stage in a

f : hodol for ri | fini single cycle: Multiply and divide instructions are the exceptions.
ronment, it does not provide a methodology for rigorously defining esult data is provided to the LSU to be stored in the GPR file, and

these machines and stitching them together to reason about infinit nstruction | lete when the LSU ack led the st
execution sequences. The other difference is that the model-check!!€ INstruction 1S compiete when the acknowiedges the store.
his acknowledgment may be delayed, causing the instruction to

ing algorithm in SMV requires the complete next-state relation. It ‘ . - - A : ;
would be impossible to obtain the entire next-state relation for g tall, if there are previous instructions in the instruction stream that
étill have the possibility of causing an interrupt.

complex subsystem. On the other hand, we use STE to evaluate th
next-state function on-the-fly and only for that part of the sub- The complexity resulting from both the interlock logic that
system that is required by the specification. enforces pipeline stalls and the non-deterministic interfaces
Kurshan[7][8] has used the concept of mappings to perform hierar-benél"een the FXU anc_ir;he otfher functional units _af_re common in .
chical verification. Kurshan uses reduction transformations as a04€m zr_ocessors.h de_fsf_e leatl:cris are_f_a signi |c?(nt source o
basis of complexity management and hierarchical verification. €7fOrS and increase the difficulty of the verification task.

Reductions are homomorphic transformations which correspond to ; ; ; s ;

abstraction mappings. Inverse reductions (called refinements) cor-4' Fixed Point Unit Verification

respond to our implementation mappings. However Kurshan doesy 1. Specification

not have the concept of stitching tasks together to create an infinite.) o))
sequence of tasks. Also Kurshan uses language containment akhe initial step in verifying the FXU is to formally document its

opposed to STE as the verification task. specification. The specification can be directly taken from the por-
.) . . tion of the PowerPC'’s instruction set architecture that it imple-
3. Overview of the Fixed Point Unit ments. Each instruction that the FXU executes can be expressed as

' . . e i an abstract assertion. In our methodology, an abstract assertion is
The flx_ed point unit being verlfn_ed is part of a su_perscalar imple- f the form:P LEADSTO Q, whereP serves as the precondition
mentation of the PowerPC architecture[12] used in IBM's AS/400 andQ as the postcondition. The conditidd@ndQ are a conjunc-
Advanced 36 computer[13]. The FXU interfaces with the branch o of clauses where each clause is an assignment to an abstract
processing unit (BPU) and the load store unit (LSU). The FXU is giate element. The precondition expresses some assumed condi-

responsible for executing all fixed point instructions other than (ions gver the system state and the postcondition expresses the
loads and stores. Instructions are received from the BPU. The BPUgndition that should result. The set of all the assertions form the

can dispatch a maximum of two instructions per cycle dependingfnctional unit's specification.
on the number of valid prefetched instructions and the interlock . e . .
conditions set by previously dispatched instructions. All instruc- The abstract system level assertion of a specific instruction, the bit-

tions are pre-decoded and steered to and acknowledged by the coWise ORinstruction, is shown in Figure 1. This instruction com-
rect functional unit. If the unit is busy and can not receive the PUtes the bitwis®Rof two source registers and stores the result in

instruction, then no acknowledgment will be given to the BPU. 2 target register. The assertion is completely implementation inde-

The instruction will stall in the dispatch stage, and the BPU will try Pendent. Lines 2-3 contain the precondition of the assertion. First
to dispatch it again in the following cycle. it specifies that the opcode must be that for @instruction.

. .) Next, by using symbolic variables, it specifies that the two source
The FXU processes instructions in two stages, the decode staggperandsRAandRB, and the target operari@y, can be any regis-
and the execute stage. In the decode stage, the latched instructiog, aqdress. It also specifies the contents of the two source registers
is decoded into the instruction fields. In this stage, requests for ally; pe the symbolic valuedataA and dataB . The assertion’s
required source operands are made, and a target operand, Eﬁostcondition is specified in line 5. It is simply that the contents of
required, is reserved. The required register source operands Wilthe target register will contain the bitwiS&Rof the data in the two
come from one of two places. If the source’s register address issoyrce registers. Line 1 of the assertion is a condition that filters
equivalent to the target's register address of the execute stage’y jllegal input patterns. An illegal pattern would be when the two
instruction, then the source data will be forwarded to the decodegqrce operands refer to the same register address and the data

stage, bypassing the register file. Otherwise, if there is no registeizontained in the two source registers is different.
match or if there is some special circumstance in which the hard-

ware does not support register bypassing, a request for the data i4.2. Implementation Mapping
sent to the LSU, where the general purpose register (GPR) fiIeT

resides. Part of the LSU's function is to manage all the interlocks ¢ 4 y'machinesthe main machine defines the flow of control for
involved in the allocation of register resources. Instructions will

- . . individual system operations. The map machines define a mapping
stall in the decode stage until all of the source operands are availg - e state elements in the assertion. Each state element is associ-
able and the execute stage is available. The execute stage is cons@)fed with a single map machine. The main machine and the map

he implementation mapping consists ahain machinend a set

start dsp/to_dcd __dcd_to_exe done FXU

. BPU
D) D D Dispatch Stage
successful instruction dispatcl
Figure 2. Main machine determine if bypassing is aIIowe@»—
Decode Stage
machines are nondeterministic machines that are modeltamhas obtain the source operand datg— T
trol graphs. @ntrol graphs are state diagrams with the capability reserve the target register LSU
of synchronl_zatlon at specific time points. A control graph has two execute stage available
sets of vertices: 1) State vertices that represent some non-zero =
duration of time and 2) Event vertices that represent instantaneous xecute Stage
time points. A control graph hassaurce an event vertex with no store the target data

incoming edges, and sink an event vertex with no outgoing
edges. Nondeterminism is modeled as multiple outgoing edges

from a vertex. Figure 3. Instruction flow and interactions through the FXU

The main machine is a control graph with a cutset of event vertices
that denotes the nominal end of the current operation and start o
the successive operation. The main machine for the FXU is show
in Figure 2. The vertices labelleidp , dcd andexe are state ver-
tices that represent the three pipeline stages in the FXU. The sel i) .)
loops on each state vertex represent that an instruction can stall id he implementation mapping for each clause in the abstract asser-
each pipe stage for a nondeterministic period of time. The rest oftion will take into account one of more of these details. The focus
the vertices in the figure are event vertices. The cutsetOf the discussion here will be on the mappings for@ifasser-
dsp_to_dcd represents the fact that the successive instruction tion’s clauses Reg[ra] is dataA) and Reg[rf] is

can be started at this point thus overlapping the decode stage of thdataA|dataB).

current instruction with the dispatch stage of the successiveThe A operand data is received during the decode stage and will
Instruction. originate from one of two sources: either from the LSU, where the
Once the main machine is defined, then a map machine for eacfiegister file is located, or from the FXU's execute stage instruction.
state element is defined. The map machine is a control graph withThe signals that are involved in this transaction are shown in
node formulas and synchronization points. Node formulas are onFigure 4. If the data originates from the LSU, the FXU will assert
the state vertices and refer to assignments to actual nodes or sigx_a_req and sefx_a_sel tora, the register address. When
nals in the circuit. Node formulas can eitheramecedent node the register data is available, the LSU will aséera_valid
formulasor consequent node formulagntecedent node formulas andls_a_data . If instead, the data originates from the FXU’s
define the stimuli and current state for the circuit. Consequent nodeexecute stage, the data will be received when the execute stage
formulas define the desired response and state transitions. Bot§ompletes its computation. The execute stage will assert
types of node formulas can be associated with a single state vertexeX_trgt_valid and the target data that is to be forwarded will
Synchronization is on the event vertices and synchronizes evenbe inex_trgt_data . After the decode stage is complete, the
vertices in the map and main machines. instruction moves into the execute stage. When the target data is

. i . _computed, it will attempt to store the data into the target register.
The map machine can be used to define the protocols on the interrpq P execute stagpe will assertex_trgt valio? 9

face signals of the FXL}. A sjngle clquse in the assertion iS.Oﬁenex_trgt_data , andex_trgt_sel until the LSU completes
expanded to protocols involving the interface signals of the inter- the handshake witls_trgt_ack

acting functional units. In the case of the FXU and@ifasser- i ST T))
tion, the op is OR clause is mapped into a protocol involving This transaction is captured in the map machine for the clause
interface signals between the BPU and the FXU. This protocol is (Reg[ra] is dataA) , shown at the top of Figure 5. The proto-
carried out during the instruction dispatch stage. Similarly, the col is defined by associating antecedent and consequent node for-
clause Reg[ra] is dataA) is mapped into a protoco| between mulas with each state in the control graph. The antecedent node
the LSU and the FXU. Here the FXU must request the register data
from the LSU since the LSU manages the allocation of registers.

Etage, the target data is calculated and stored in the register file.
"The execute stage completes when the LSU acknowledges this
Ftore.

The implementation mapping must also consider the flow of the - FXU
instruction through the particular functional unit. This often Dispatch Stags
exposes some of the functional unit’s internal states. Figure 3
shows the high level flow of an instruction through the three pipe- Decode Stag fx_a req, fx_a_sel
line stages. First, the BPU must successfully dispatch the instruc- Is_a_valid, Is_a_data
tion to the FXU. In the dispatch stage, the instruction is pre- ex_trgt_valid, ex_trgt_data
decoded and it is determined whether the source operand data will Is._trgt_ack LSU
bypass the register file. This determination is based on the dispatch =7
stage’s pre-decode, the current decode stage instruction, and Execute Stage
instruction dispatch information from the LSU. In the decode
stage, data for the source operands is obtained. If bypassing was ex_trgt_sel
determined to occur, this data comes from the execute stage; other-
wise it comes from the LSU. Also, the target register is reserved
during the decode stage. Additionally, the instruction will stall in
the decode stage until the execute stage is available. In the execute
Figure 4. A operand data and target data interface signals

formulas are shown in the upper half of the shadowed boxes andion and that the bottom leg is only taken when the execute stage
consequent node formulas are shown in the lower half. The controldoes have a valid instruction. The next synchronization line guar-
graph forReg[ra] is synchronized with the decode stage of the antees that the A operand data is received on the first cycle that
main machine as indicated by the dashed lines at the controlex_trgt_valid is asserted. The final synchronization line
graph’s source and sink.The control graph has two legs, the top legnsures that wheex_trgt_valid is de-assertedkx_valid

maps the case where the data comes from the LSU, and the bottoris also de-asserted because the execute stage instruction has com-
leg maps the bypass case. The consequent node formulas of theleted.

first two states, sl and s2, of the top leg indicate that the FXU is

. : : . X The last graph of Figure 5 is the mapping for the target data clause
requesting the data from registar. Potentially the instruction can grap 9 bping 9

! ndefini iod of i in th 1 bef (Reg[rt] is dataA | dataB). This control graph is synchro-
:/va|t anlldln ennite pet”g . Oth tlmte . In 2:[eThstate St detorg nized to the execute stage of the main machine. Its node formulas
S_a_vall IS asserted In the state sz. Ihe register dala IS o 5ta to FXU output signals, therefore they are consequent node

received fr°”.‘ the LSU in state s2. Once the data is rece_i\{ed, th%rmulas. Two other output signals of the execute stage must also
FXU latches it up for use in the execute stage. After receiving the be mapped during the execute stage. These signais aralid

data, the instruction may remain in the decode stage while othery,j ey ot valid . These signals have been discussed with

;nl%spect to the decode stage where they were considered as inputs.
this period, the FXU drops its request to the LSU since the data isthe execute stage mapping of these signals was automatically
being internally stored. derived from its decode stage map machines. Additionally, ante-
The bottom leg, the bypass case, of the graph has exactly the sanmedent node formulas have become consequent node formulas. In
flow, only the node expressions are different. On this path, effect, the execute stage control graph dgrvalid becomes
fx_a_req is never asserted because the data is not originatingjust the bottom leg of its decode stage mapping. This is because the
from the LSU. Instead, the data will be supplied by the signal instruction being verified is in the execute stage, so clearly the exe-
ex_trgt_data in state s4. cute stage contains a valid instruction.

The implementation mapping needs to expose some of the internalThe execute stage mappingeo{_trgt_valid is in effect just
signals in the FXU. The mapping for the bypass case of the Astate s3. This is because Rinstruction being considered here
operand data clause is dependent upon two execute stage relatedquires a single cycle to compute its target. As a result,
signals,ex_valid andex_trgt_valid . Their map machines ex_trgt_valid will be asserted in the first cycle of the execute
are shown in Figure 5. The sigred_valid is asserted when the stage.

execute stage contains a valid instruction, exdrgt_valid

: d when th h leted th . The signals_trgt_ack is an input to both the decode and exe-
Is asserted when the execute stage has completed the computalilye srages. Its execute stage mapping is automatically derived

pf the target data. These sig_nals represent the state of the precedlqpom the decode stage map machine. The control graph in the exe-
instruction and can be considered inputs into the decode stage. AS te stage is the leg of the decode stage’s mapping in which the

a result, their node formulas are antecedent node formulas, and thg, -, 1e stage has a valid instruction. Because this signal is an input
control graph is synchronized to the decode stage. Later in the dISIrom the LSU in both the decode and the execute stages, its node

cussion _of the mapping for the target data clause_, thes_e signals wil ormulas are antecedent node formulas.

be considered as outputs of the execute stage, in which case their

control graphs will be synchronized to the execute stage of the5 Results

main machine and the antecedent node formulas will become con- _ _ - _
sequent node formulas. In general, state elements that are confhe implementation mapping was specified for the FXU. It defines
tained in both the precondition and the postcondition are always24 control graphs representing inputs, outputs and internal states of
mapped by the same control graph, only the role of the antecedenthe FXU. Only five of these control graphs have been shown here.
node formulas and the consequent node formulas are reversed. The remaining control graphs map the other interactions outlined
. . in Figure 3. The abstract assertion for Rinstruction and the

As shown in Figure 5, the top leg of the control graph for implementation mapping were used to automatically generate the

ex_valid is the case where the execute stage does not have Fraiectory assertion. STE was used {o verify ©R trajector
valid instruction. In state s2 on the bottom leg, the execute stage is ! Y) ¢ ey y

valid. It is possible that the execute stage instruction completes?Zflg:gg ?)? agaé(;ﬂ? vce clnnggl ao f trloeXiI;nXaltJélTh2e88gge-lr§:ﬁil_irnepdte i
while the current instruction is still stalling in the decode stage. pp y P

This explains the path from state s2 to state s1. A key point of this9ates and over 1000 latches.
graph is the synchronization line between itself andrtbg{ra] 5.1. Trajectory Generation
graph. Synchronizing the bottom legs of these two machines guar-

antee that if the A operand data is being forwarded by the executérhe trajectory assertion corresponds to the composition of the 24

stage, then the execute stage must contain a valid instruction. map machines defined in the implementation mapping for the bit-
wise ORassertion. Composition amounts to taking the cross-prod-

Similarly, the mapping forReg[ra] is dataA) is dependent (ct of these aligned map machines under restrictions placed by the
uponex_trgt_valid . The top leg of this control graph is the synchronization function. Figure 6 shows the trajectory assertion
case where the execute stage does not contain a valid instruction agat was generated for tf@R assertion. The trajectory assertion
indicated by the antecedent node formula. On the bottom leg, thecorresponds to all possible cases that can arise due to interactions
antecedent node formula for state s2 indicates that the target data igetween the map machines. The trajectory assertion has 488 verti-
not yet valid. In state s3 the execute stage has completed its comces, 34 loops and 28,602 paths. Each path represents a unique

putation, and the data is valid. This signal will remain asserted ordering of events for a particular set of inputs and current states.

until the LSU acknowledges receiving the target data for the exe- . .~
g 9 9 While it is not feasible to go into details about the composition of

cute instruction by asserting _trgt_ack . Once the acknowl- . : -
edgment is received, then the execute stage completes. As showfach state in the trajectory assertion, we are able to make some
in the mapping folls_trgt_ack this acknowledgment from Intuitive sense out of it. First notice the two horizontal cutsets in

, the graph. These correspond to the nodss to_dcd and
cd_to_exe shown in the main machine, Figure 2. The differ-

gnce is that the state verticdsp, anddcd have been expanded,

the LSU is received in the last occurrencexftrgt_valid S
state s3. The first two synchronization lines ensure that the top le
is taken only when the execute stage does not have a valid instru

dsp_to_dcd dcd_to_exe dcd_to_exe done

Main Machine e]
| \)
|
\
\
|

o
(=]
Q)

o

(Is_a_validis 0)
(fx_a_reqis 0)

o8
o

) (Is_a_datas dataA) 1
(Reglra] is dataA) - O (Is_a_validis 1) |
(fx_a_reqjs 1) (fx_a_selisra)
(fx_a_selisra)

|
|
|
|
(Is_a_validis 0) (fx_a_redqis 1)
|
|
|

|

|
(ex_trgt_datas dataA) ‘
(Is_a_validis 0) ‘
|

|

|

(Is_a_validis 0)

(fx_a_redqis 0) (fx_a_redqis 0)
. I
‘ Y
e @ (ex_validis 1)
: : (ex_validis 1) B L
(ex_valid) | }
|)

.

(ex_trgt_validis 0)

(ex_trgt_validis 1)

|

|

|

|

|

|

: o

|
: | (ex_validis 0) i i :
‘]

|

|

|

|

|

|

|

|

(ex_trgt_validis 0)

(ex_trgt_validis 1)

(Is_trgt_ackis 0)

'S :

(Is_trgt_ackis 0)

‘ (/Is_trgt_ackjs 1)
|
U E

(Is_trgt_ackis 1) (Reg[rt]is dataA|dataB |
(ex_trgt_sels rt) ‘

(Reg[rt]is dataA|dataB) b—@—t

Figure 5. A source operand data mapping and target data mapping

|

|

|

|
P
h

|

|

|

|

|

|

|

|

|

|

|

(Is_trgt_ackis 0)

|
|
f S—
|
|
|
|
|
|
(ex_trgt_valid) *~—
\
\
\
\
|
|
|

(Is_trgt_ack)

showing all possible interactions that can occur. Also, the decodgetely independent. Path 3, the path where both operands are being
stage of the graph is significantly more complex than the other twbypassed, is the simplest path. On this path the arrival of the A and
pipeline stages. The dispatch and execute stages require only Broperands coincide with the sigred_trgt_valid

not stall in the dispatch stage because a condition for bypassing to
Also, in the dispatch stage the graph fans out into four paths. Pathotcur is that the two instructions involved must be dispatched in
and path 4 correspond to the case where one of the source operaocdssecutive cycles.

is being bypassed. Path 2, the path where neither operand is bej . . .

bypassed, is the most complex path. This is because all trigz Symbolic Trajectory Evaluation

resources that need to be obtained in the decode stage are corhe trajectory assertion in Figure 6 is very complex and has in

Dispatch

(1]

il |

— iI;N!

(2]

Execute

(3]

Figure 6. Trajectory assertion for theORinstruction [4]
excess of 28000 paths in the corresponding acyclic component
graph. It would be computationally infeasible to enumerate all the [5)
paths and use STE separately on each path. Instead the paths were
encoded using 456 path variables and each of the states needs to be
simulated only once. STE was used to verify the entire trajectory
assertion in a single verification run. Cycles in the trajectory asser-
tion were dealt by recursively identifying the strongly connected
components in the graph and performing a greatest fixed point
computation to deal with the strongly connected components[4].
The verification of the OR assertion took nearly 50 hours of CPU
time and 185 MBytes of memory on an IBM RS/600 43P Model
140. This may seem to be a considerable amount of time and mem- (8l
ory, but taking into account the enormous number of paths that are
being simulated makes the required amount of resources appear
more reasonable. In fact, on average the simulator is able to verify
10 paths a second. Verification of the complete trajectory assertion
would most likely be run as regression tests. During the develop-
ment of the assertions, implementation mapping, and the actual [10]
design, the simulator can be run interactively to debug each of
these components by focusing the verification on problematic
paths.

(6]
(7]

E)

[11]

Additionally, it is not necessary to have a one-to-one relationship
between instructions and assertions. Instead, a single assertion
could be used to specify a class of instructions with the same [12]
instruction format. This would significantly reduce the number of
assertions to be verified while not significantly increasing the
amount of symbolic manipulation or CPU time. [13]
6. Conclusion

We have shown the application of our methodology for the verifi-

cation of the fixed point unit of a PowerPC processor. The specifi-
cation was kept abstract at the level of the instruction set
architecture. A separate implementation mapping provided the
complex implementation specific details for the FXU. STE was
used to verify that the FXU subsystem correctly fulfilled the
abstract specification of the processor. In some sense, the mapping
merely served as hints to guide the verification task.

At first glance the mapping might seem to be too complex. How-
ever, note the fact that most of the complexity in the mapping is in
defining the environment around the FXU. And the reality is, mod-
ern systems are designed as a set of reactive subsystems with com-
plex interfaces and protocols. Therefore any technique for formal
verification of subsystems would have to deal with the same level
of complexity. The ultimate aim of this project is the verification of
the entire system i.e., the PowerPC processor. However the current
set of methodology and tools cannot deal with the level of com-
plexity of an entire processor. Our initial focus is to verify each
subsystem i.e., each functional unit (FXU, LSU, BPU) separately
and then reason about the interactions amongst the subsystems. We
feel that our work on the FXU is a significant step in that direction.

References

R. E. Bryant, D. L. Beatty and C. J. H. Seger, “Formal
Hardware Verification by Symbolic Ternary Trajectory
Evaluation,”28th Design Automation Conferenpp. 397-
402, June 1991.

D. L. Beatty and Randal E. Bryant, “Formally Verifying a
Microprocessor Using a Simulation Methodolog$1st
Design Automation Conferengep. 596-602, June 1994.

C. J. H Seger and R. E. Bryant, “Formal Verification by
Symbolic Evaluation of Partially-Ordered Trajectories,”
Formal Methods in System Designp@. 147-189, 1994.

A. Jain, K. Nelson and R. E. Bryant, "Verifying Nondeter-
ministic Implementations of Deterministic Systen=t-

mal Methods in CAPNovember 1996.

J. R. Burch, E. M. Clarke, K. L. McMillan and D. L. Dill,
“Sequential Circuit Verification Using Symbolic Model
Checking,”27th Design Automation Conferenqsp. 46-
51, June 1990.

K. L. McMillan, “Symbolic Model Checking,"’Kluwer
Academic Publisher4993.

R. P. Kurshan, “Analysis of Discrete Event Coordination,”
Lecture Notes in Computer Science A®p. 414-453,
1990.

R. P. Kurshan, “Computer-Aided Verification of Coordi-
nating Processes: The Automata-Theoretic Approach,”
Princeton University Presq994.

|. Beer, S. Ben David, C. Eisner and A. Landver, “Rule-
Base: an industry oriented formal verification to@3th
Design Automation Conferengep. 655-660, June 1996.

E. M. Clarke and R. P. Kurshan, “Computer-aided verifica-
tion,” IEEE Spectrumpp. 61-67, June 1996.

B. Plessier and C. Pixley, “Formal verification of a com-
mercial serial bus interfacel4th Annual International
Phoenix Conference on Computers and Communications
pp. 378-382, March 1995.

C. May, E. Silha, R. Simpson and H. Warren, “The Pow-
erPC Architecture: A Specification for a New Family of
RISC Processors,” Morgan Kaufmann Publishers, 1994.
F. G. Soltis, “Inside the AS/400,” Duke Press, 1996.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

