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Abstract This paperintroduces the fifsigh-level (task-level) p

model of hierarchical memories and describes a scheduling and Lo PE

allocation algorithm for system-level synthesis of heterogeneous cache fif:cféljm'l

multiprocessors. Caches are essential for modern RISC embedded Main PE PE

cores to obtain sustained high performance. However, caches have Memory I et e

received limited use in priority-driven preemptive real-time sys- T Data

tems due to the unpredictiity of caches—average-case improve- i cache

ments are of no use in systems with hard deadlines. Program-level

cache models do not take into accopréemptionsbetween mul- Figure 1: An example multiprocessor with memory hierarchy.

tiple tasks running at nitiple rates on embedded cores. Our task-

Ievel_ model of pe_n‘ormance in the presence of memory hierarchiesng cache. But the smaller WCET is not guaranteed in a priority-
provides an efficient means to bound the guaranteed memory perriven preemptive system because the unpredictable preemptions
formance of tasks running inraulti-rate, multi-tasking environ- and interrupts keep changing the cache state and make it hard or
ment. Our system synthesis algorithm uses software-beesste even impossible to predict the cache behavior and the performance
partitioning and reservation techniques to guarantee cache hits gain that a cache can achieve. While a real-time system needs to
for some tasks and therefore improve task schedulability. Experi- meet the hard deadlines, it cannot benefit from the smaller WCET
mental results show that our model significantly improves schedu- estimation if it is not guaranteed.

lability of real-ime tasks and can be evaluated efficiently during  Recent research, such as work by Li, Malik & Wolfe[1], has

system-level synthesis. developed hierarchical memory models for analyzing the perfor-

1 Introduction mance of a single program. While such models provide accurate
This paper describes a netask-level hierarchical mem- estimates of the performance of a single program, they do not take

ory model and a newsystem-level synthesis algorithmfor into account the effects gfreemptions between multiple tasks,

hierarchical-memory systems. The tasks to be scheduled are peand they are much too expensive to be used in system-level syn-
riodic real-time tasks running at rtiple rates. The architecture is  thesis and design exploration. When one task preempts another, it
a multiprocessor system with memory hierarchy. Our algorithm al- May change the state of the cache at a point in a way that com-
locates the tasks to the processing elements (PEs) and constructs Bromises the performance of the originally-executing model. Such
priority-driven preemptive schedule which guarantees that all tasks inte_ractions are critical to evaluate during system-level architecture
meet their deadlines. Our system synthesis algorithm takes advandesign.
tage of the memory hierarchy in the architecture to significantly ~ In @ uniprocessor environment, real-time systems commonly use
improve the schedulability of the task set. Our scheduling and al- one of two scheduling policies to schedule periodic taskstiest-
location algorithm can be used as a building block of hardware- deadline-first (EDF)and rate-monotonic scheduling (RM3).
software co-synthesis, or used directly in real-time system design. Many groups have developed allocation/scheduling algorithms for
With embedded CPU cores becoming increasingly common in distributed real-time systems(Peng & Shin[6]; Burchard,etc[5]; Li
VLS| systems—and with increasing use of multiple embedded & WOoIf[2]). Their algorithms use WCETs as scheduling mea-
cores on a single chip—system designer increasingly need to im-sure and do not consider the effects of memory hierarchies. Some
plement major subsystems using real-time system design tech-fesearch analyzes cache behaviors and their effects on real-time
niques such as multiple, prioritized tasks sharing CPUs. Most Scheduling. Torrellas[4] studied cache performance oftipro-

system-level scheduling algorithms use the estimaterst case grammed workloads. His work aims to improve the overall perfor-
execution time (WCET) of the tasks to constructing a feasible mance and is not suitable in real-time scheduling which requires
schedule or as a measure of whedulability of the tasks. How-  tasks to meet hard deadlines. Kirk and Strosnider[3] developed

ever, a WCET computed with a no-cache assumption is very pes-& SMART cache design that fiiion the cache to provide pre-

simistic for a system with caches. With the presence of caches, adictable cache performance. Their work targets a uniprocessor one-

task can usually achieve a much smaller WCET than when there islevel cache architecture and requires to modify the cache design
in hardware. The algorithm performs complicated program-level
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cessor has its local first-level instruction cache and data cache. The Heuristics to reduce preemptions

system also has shared lower-level memories such as level-2 cache | Cache modeling to increase hits
and main memory. For simplicity, we make the following assump- 3 EDF scheduling with some ‘
tions about the caches: SRRl
1. Tasks are well-behaved in the combination of level-1 and Figure 3: Allocation and scheduling procedure.
level-2 cache. Inputs M : number of processors.
2. Only instruction cache is modeled. Task(C,T): atask with period’ and execution time.

Assumption 1 would not be reasonable in a general-purpose SYS-Global functions: curr(m): returns current PE for class.
tem, but it is plausible for many high-performance embedded SYS- 1, ¢y, proc(): returnsindex of an empty processor.
tems. The kernels of time-critical operations are frequently small jocate(Task(c, 1))

enough to fitinto a modest-sized cache. Deep submicron chips are; ., — | af(1ogo(T) = [log2(T)])] + 1

large enough to include large level-2 cache. The techniqueswe will 5 (106dennr(my + C/T < 1— In2/M) then

present (Section 3) such as cachetifian/reservation angdache 3, 106deyrn(m) = 106denrr(my + C/T
state modeling can be implemented at level-1 caches as well as;  eseif(o/7 < 106deynn(rmy) then
lower level caches or the combination liple levels in the mem- 5, curr(m) = newproc()
ory hierarchy. 6. 106deu rr(my = CIT

As shown in Fig.2, the tasks are a set of periodic tasks with each;  ¢jge
task runs independently at a different rate. Each task is character X = newproc()
ized by the following parameters: o, load, = CIT

e Task period. We assume that the deadlines of a task is the 10, endif
same as its period.

¢ Task size the code size of the task’s program.

¢ Worst case execution times (WCETsin several situations:

— WCET without caches estimated assuming the ) ) .
caches are turned off. Many allocation algorithms for real-time tasks treat the proces-

— WCET with caches estimated with the cache, assum- SOrs as bins and use a bin-packing approach. The decision whether
ing that the instruction cache is big enough to accom- @ processor is full is determined by some schedulabititydition
modate the whole program for a tasks and therefore that is usually based on theorkload utilizations(defined as a
only compulsory misses happen. task'sWC ET divided by its period) of the tasks packed into the

— WCET with perfect caches estimated assuming the ~ Processor. Our algorithm allocates as well as optimizes for cache
whole program resides in the cache and there is no miss partition to meet the workload utilizatioronditions. The heuristic
in any instruction memory access. algorithms for Single-ConStraint bin-packing can not be apphed di-

rectly to our problem with double-constraints. We used a two-step

Figure 4: On line task allocation algorithm by Burchard, etc.

3.1 Task Allocation

If we need to use multiple levels afaches WCET with h
i scheme:
cachesandWCET with perfect cacheshould be extended to 1. Allocate tasks to PEs to meet th#lization constraints

Thinclu\(/iveCsEV_\r/CETs V:;fh ;:iiflfere_nt Ievlelf of cha_lches. 2. For each PE, ptition and reservesaches to meet the local
ese S have the foflowing refationship: cache pdition constraints (Section 3.2).
WCETY/o-cacke 5 o ET*he 5 WCETPe fect-cacke (1) For the first step, we used the study from Burchard,etc[5]. They

developed a tighter schedulabilitpredition and a linear allocation

3 Scheduling and Allocation Algorithm with algorithm (see Fig.4). Tasks are divided into M classes. Each pro-
cessoris assigned tasks from only one class. The class membership

_HlerarChlcal Memory Model ) of a task is determined (Line 1) by:
Fig.3 shows the two-phase procedures of our algorithm.
1. Allocating the tasks to the PEs taking into account the work- m = | M(logz(T) — |log2(T)])| + 1 )
load balance and schedulability across the PEs. If a new tasktask, from classm is added to the task set, the al-

2. Constructing &chedulefor each PE. The scheduling algo-  4ithm first attempts to accommodais k., to the current proces-
rithm uses adeadline-basegpriority-driven preemptive ap- g for classn (Line 2-3). If the attempt failstask is assigned to
DVO?CBéVgggéﬂg E?alilrc')[}lt\i”c)nn%rgggp\/sgtci:gtt[)o r'g] urgg%;gg‘#t&i ons  @nempty processor. If the load sk, is sufficiently small (Line

because they cause unpredictable cache flushing and4)’ the processor to V‘.’h'cm“’k“ is assigned becomes Fhe current
processor of class: (Line 5). If the load factor ofask, is large,

reloading. . . : ¢ .
o Use the combination oftatic allocationand dynamic no other task_ will be assigned to this processor. This procedure is
repeated until all tasks are allocated.

allocation a task with a cache reservation on a certain A
PE is statically allocated to that PE; otherwise the algo- 3-2 Cache Partitioning
rithm allows it reallocated from instance to instance to After the tasks are allocated to the PEs, the algorithm looks at

maximize the utilization of PEs. each individual PE and the tasks allocated to it to construct a feasi-
e Use cache state modeb increase reuse of the cache ble schedule. To maximize the schedulability of the PE, the algo-
contents and increase hits. rithm needs to find a partition of ttmache associated with the PE
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T T Task_a Scheduler
. 1. whenever_task_finish (task_i, PE_j) {
1/2 cache maar);:?f;lnm Task_b 2. if there are pending ready tasks on PE_j
size P Size <— Unused 3. I* earliest-deadline first *
Task ¢ 4, schedule ready task w/ earliest deadline on PE_j
4*7 _L Task_d 5. else {
6. [* try to find a ready task from other PEs and
7. re-allocate it to the otherwise idled PE_j */
1/2 cache RIEES 8. re_allocate_task = NULL
h without Lo
size partition 9. max_allocate_priority = 0 .
10. for each ready task_a w/o cache reservation on
other PEs {
11. ap = RAP (task_a, PE_j)
12. if (ap > max_allocate_priority) {
Figure 5: Cache partition and reservation. 13. re_allocated_task = task_a
14. max_allocate_priority = ap
15. }
that can maximumly decrease the total utilization of all the tasks 16 } )
allocated to the PE. Fig.5 shows how a partitionks like. 17 Wrealocatetask s not NULL
. . X | ]
Let Abe the set of tasks allocated to the PEthe period otask 19, else
i, size; the program size absk | andB a possible partition - a set  20. PE_j idle }

of tasks with reserved partitions on the PE &he= {S|S € A}. } . . )
To allow tasks that are not allocated a cachdifiam and interrupts 21. whenever_task_arrive (task i, PE j) {

+ ; : ; 22. task_r = running task on PE_j
to run efficiently, we put the following constraints on the maximum 55 (task i has an earlier deadine than task r)

partitionedcache size: it cannot exceed half of the cache size and 34, and (preemption is necessary)
the unpatitioned portion ould be large enough to accommodate 25 preempt task_r, insert it to ready queue of PE_j
the largest task that does not have a patrtition: 26.  else if (task_r is re-allocated to PE_j from PE_p)
27. preempt task_r ]
Actual_partition_size = E :sizei 3) ;g e|secaII whenever_task_arrive (task_r, PE_p)
i€B 30. insert task_i to the ready task queue of PE_j }
Maz partition_size = min(1/2 X Cache_size, Figure 6: The scheduler invoked when a task arrives or finishes.

Cache_size — maz;c s—p(stze;)) (4)
aftertask;. However, if all these tasks executed aftesk; have

Actual_partition_size < Maz_partition_size (5) their own cache reservation or map to different locations in cache
Given these constraints, the goal of cachdifian is to find a par- from task;, task;'s program is still present icache ¢ache state
tition B such that the total utilization decrease is maximized: =1). Therefore, by keepintpsk; on the same PE and executing

it before its cache state is flushed, we can use a tighter bound of
£ WCETWCET with perfect cachéor this instance ofask;.

i€B The decision of whether to re-allocate a task and where it is re-

Optimized B can be found using linear programming techniques. allocated to is made krg-allocation-priority (RAP)

For computation simplicity, we uses a heuristic approach. Intu- . eppe
itively, thg performange ggin by reserving a partitic?npfor a task is RAP(Task;, PE;) = —a x A(4,7)+ 8 x Diff(i,5)  (8)
the utilization decrease, at the cost of reserving the partition of . w/o-cache w/o-cache
size(task), therefore, we define sk partition priority (TPP)as A(4,5) = WCET, ;44 o4 PE_for_task; — WCET | ©)
the priority measure of choosing tasks to reserve cachiipas.

maz B(Z(WCETi — WCETPerfect-cachey Ty (6)

] (WCET,, _ WCETiperfect_cache) 1 lef(l,]) = cache_state(i, ]) X
TPP(task_z) = T, X Size; () (WCET:IJ-/O_CGC}LE _ WCETi;,);rfect_cache) (10)
Tasks are assigned partitioascording to theil PPsuntil all the The RAP for a taskTask; on a PEPE; is decides by 2 terms.

partitionablecache has been assigned. This can be implemented atthe A-term considers the speed(C ET) difference oftask; on
multiple levels of the memory hierarchy. In order for the tasks to its old PE andPEj_ The Diff-term considers the effect of cache
map to their assigned cache fi&ns, the compilerisould use the  state. o andg are preset constants within the range of [0,1] and
partition result and make sure that the tasks map to the addressegey decide how much the re-allocation and cache state model-
that are reserved for them. For tasks with cachditimars on a ing will affect the schedule. A positivRAPindicates that the re-
same cache, their addresses should not overlap. On a same cachgjjocation is favorable. When a PE becomes idle, the scheduler will
addresses of tasks without pions may overlapeach other, but  try to re-allocate tasks from other PEs by choosing a task with a
they should not overlap the addresses of the reserveitiqrzs. maximum positiveRAP.
3.3 Task Scheduling Fig.6 shows the pseudo code of a scheduler. The scheduler is
After the cache pdition, our algorithm uses a deadline-based invoked whenever a task arrives or finishes. When a task finishes
priority-driven preemptive approach to construct a schedule for on a PE (Line 1-20), the scheduler either starts the next ready task
each PE. Unlike other algorithms that i&tatic allocation our al- in the queue of that PE, or as shown from Line 5-18, it compute
gorithm gives freedom of re-allocation for those tasks that do not RAPs and the scheduler decides whether it should re-allocate a task
have a reserved cache pgon on a PE. Re-allocation to anidle PE  and which task to re-allocate. When a new task arrives, if it has
can increase the utilization of that PE and improve schedulability. an earlier deadline that executing task and preemption is checked
A simplified cache state modé introduced to encourage cache to benecessaryit preempts the executing task instantly (Line 23-
reuse. A cache state is a binary value that models whether the pro-25). If the executing task is re-allocated from other PE, it has the
gram for a task is located in a cache. For a tasik; without lowest priority on its new PE and will be preempted and sent back
cache pdition, its program is loaded into theache during an ex-  its old PE - it is either inserted into ready queue or preempts that
ecution and maybe flushed ogtthe state = Pby tasks executed  task running on that PE (Line 26-28).
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Figure 7: Utilization comparison: our algorithm vs. EDF/RMS
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Table 2: Scheduling results of the randomly generated experiments.

Gaussian distributions with estimated parameters based on experi-
mental results from Li,etc.[1]. Table 2 summarizes the results and
Fig.7 shows the comparison of workload utilizations for the 50 ex-
periments by using our algorithm and EDF/RMS. Our algorithm
achieved a lower utilization and increased schedulability. For all
the tasks that EDF and RMS can schedule so can our algorithm; for
some tasks that EDF and RMS failed to schedule, our algorithm can
find schedules; our algorithm does fail on some cases, because ei-
ther the tasks have no feasible schedules at all (such as experiment

50) or in some cases (such as experiment 16), the tasks with very

Figure 8: Which WCET to use in scheduling.

Experiments
Randomly generated 50 task sets
number of tasks: 2-10 uniform
task period: 1-10,000 e
Tasks task size: 1/2 - 4k distribution

X WCET w/o cache: 5-90% of task period

y WCET w/ cache: 25-100% of x Gaussian

z WCET w/ perfect cache: 60-100% of y distribution
Architecture | 1, 2and 4 processors with private L1 cachesand shared L2 caches.

Table 1: Randomly generated experiments.

high utilizations have feasible schedules, but our algorithm, which
is based on heuristics, is not guaranteed to find them.

5 Conclusions

Our algorithm uses a hierarchical memory model for system

synthesis and targets the scheduling of multi-rate tasks on multi-
processors. It achieves predictable caching and guaranteed hits for
some tasks by cache piion andcache state modeling, therefore
can use a tighter WCET for these tasks and greatly improves the
schedulability of the tasks over existing algorithms. The task-level
algorithm does not require detailed program analysis at run time, it

is computationally efficient and can be used as a building block in
Another important issue in scheduling is which WCET to use hardware-software co-synthesis for design space exploration. Our
at different points of the task executions in order to have a tight @lgorithm can be used not only in making choice of the number and

and accurate estimation of the task execution time. As shown in types of PEs, but also the choice of cache structure.
Future work may include: theoretically studying the bound of

Fig.8, for tasks with reserved cachetitions, the decision is quite
simple: for the first instance, us& C ET****-°*<"¢  otherwise
WC ETv th-perfectcache  pqr g task without cache reservation,

the schedulable workload utilization and the robustness of the al-
gorithm in case of sporadic incoming tasks; and using our analysis

the WCET used for the task may change in the course of schedul-Procedure in the inner loop of a co-synthesis system.
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