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Abstract This paper introduces the firsthigh-level (task-level)
model of hierarchical memories and describes a scheduling and
allocation algorithm for system-level synthesis of heterogeneous
multiprocessors. Caches are essential for modern RISC embedded
cores to obtain sustained high performance. However, caches have
received limited use in priority-driven preemptive real-time sys-
tems due to the unpredictability of caches—average-case improve-
ments are of no use in systems with hard deadlines. Program-level
cache models do not take into accountpreemptionsbetween mul-
tiple tasks running at multiple rates on embedded cores. Our task-
level model of performance in the presence of memory hierarchies
provides an efficient means to bound the guaranteed memory per-
formance of tasks running in amulti-rate, multi-tasking environ-
ment. Our system synthesis algorithm uses software-basedcache
partitioning and reservation techniques to guarantee cache hits
for some tasks and therefore improve task schedulability. Experi-
mental results show that our model significantly improves schedu-
lability of real-time tasks and can be evaluated efficiently during
system-level synthesis.

1 Introduction
This paper describes a newtask-level hierarchical mem-

ory model and a newsystem-level synthesis algorithmfor
hierarchical-memory systems. The tasks to be scheduled are pe-
riodic real-time tasks running at multiple rates. The architecture is
a multiprocessor system with memory hierarchy. Our algorithm al-
locates the tasks to the processing elements (PEs) and constructs a
priority-driven preemptive schedule which guarantees that all tasks
meet their deadlines. Our system synthesis algorithm takes advan-
tage of the memory hierarchy in the architecture to significantly
improve the schedulability of the task set. Our scheduling and al-
location algorithm can be used as a building block of hardware-
software co-synthesis, or used directly in real-time system design.

With embedded CPU cores becoming increasingly common in
VLSI systems—and with increasing use of multiple embedded
cores on a single chip—system designer increasingly need to im-
plement major subsystems using real-time system design tech-
niques such as multiple, prioritized tasks sharing CPUs. Most
system-level scheduling algorithms use the estimatedworst case
execution time (WCET) of the tasks to constructing a feasible
schedule or as a measure of theschedulability of the tasks. How-
ever, a WCET computed with a no-cache assumption is very pes-
simistic for a system with caches. With the presence of caches, a
task can usually achieve a much smaller WCET than when there is

Design Automation ConferenceR

Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of thepublication and its date appear, and notice is given that copying
is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.
DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

CPU

Instruction
cache

Data
cache

PE_i

PE
m

PE
1

L2
cache

Main
Memory

Figure 1: An example multiprocessor with memory hierarchy.

no cache. But the smaller WCET is not guaranteed in a priority-
driven preemptive system because the unpredictable preemptions
and interrupts keep changing the cache state and make it hard or
even impossible to predict the cache behavior and the performance
gain that a cache can achieve. While a real-time system needs to
meet the hard deadlines, it cannot benefit from the smaller WCET
estimation if it is not guaranteed.

Recent research, such as work by Li, Malik & Wolfe[1], has
developed hierarchical memory models for analyzing the perfor-
mance of a single program. While such models provide accurate
estimates of the performance of a single program, they do not take
into account the effects ofpreemptions between multiple tasks,
and they are much too expensive to be used in system-level syn-
thesis and design exploration. When one task preempts another, it
may change the state of the cache at a point in a way that com-
promises the performance of the originally-executing model. Such
interactions are critical to evaluate during system-level architecture
design.

In a uniprocessor environment, real-time systems commonly use
one of two scheduling policies to schedule periodic tasks:earliest-
deadline-first (EDF)and rate-monotonic scheduling (RMS)[7].
Many groups have developed allocation/scheduling algorithms for
distributed real-time systems(Peng & Shin[6]; Burchard,etc[5]; Li
& Wolf[2]). Their algorithms use WCETs as scheduling mea-
sure and do not consider the effects of memory hierarchies. Some
research analyzes cache behaviors and their effects on real-time
scheduling. Torrellas[4] studied cache performance of multipro-
grammed workloads. His work aims to improve the overall perfor-
mance and is not suitable in real-time scheduling which requires
tasks to meet hard deadlines. Kirk and Strosnider[3] developed
a SMART cache design that partition the cache to provide pre-
dictable cache performance. Their work targets a uniprocessor one-
level cache architecture and requires to modify the cache design
in hardware. The algorithm performs complicated program-level
analysis, while our algorithm works at the task-level and does not
look at the internal structural of the tasks while scheduling.

2 Problem Specification and Task Model
The problem specification includes two components: an archi-

tecture and a set of tasks. The algorithm needs to allocate the
tasks to the PEs in the architecture and construct a feasible sched-
ule which guarantees all tasks meet their deadlines. Fig.1 shows an
example architecture. It is a multiprocessor system witheach pro-
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Figure 2: A set of multi-rate tasks.

cessor has its local first-level instruction cache and data cache. The
system also has shared lower-level memories such as level-2 cache
and main memory. For simplicity, we make the following assump-
tions about the caches:

1. Tasks are well-behaved in the combination of level-1 and
level-2 cache.

2. Only instruction cache is modeled.
Assumption 1 would not be reasonable in a general-purpose sys-
tem, but it is plausible for many high-performance embedded sys-
tems. The kernels of time-critical operations are frequently small
enough to fit into a modest-sized cache. Deep submicron chips are
large enough to include large level-2 cache. The techniques we will
present (Section 3) such as cache partition/reservation andcache
state modeling can be implemented at level-1 caches as well as
lower level caches or the combination multiple levels in the mem-
ory hierarchy.

As shown in Fig.2, the tasks are a set of periodic tasks with each
task runs independently at a different rate. Each task is character-
ized by the following parameters:

� Task period. We assume that the deadlines of a task is the
same as its period.

� Task size: the code size of the task’s program.
� Worst case execution times (WCETs)in several situations:

– WCET without caches: estimated assuming the
caches are turned off.

– WCET with caches: estimated with the cache, assum-
ing that the instruction cache is big enough to accom-
modate the whole program for a tasks and therefore
only compulsory misses happen.

– WCET with perfect caches: estimated assuming the
whole program resides in the cache and there is no miss
in any instruction memory access.

If we need to use multiple levels ofcaches,WCET with
cachesandWCET with perfect cachesshould be extended to
includes WCETs with different levels of caches.

These WCETs have the following relationship:

WCETw=o cache � WCET cache > WCET perfect cache (1)

3 Scheduling and Allocation Algorithm with
Hierarchical Memory Model

Fig.3 shows the two-phase procedures of our algorithm.
1. Allocating the tasks to the PEs taking into account the work-

load balance and schedulability across the PEs.
2. Constructing aschedulefor each PE. The scheduling algo-

rithm uses adeadline-basedpriority-driven preemptive ap-
proach, with the following heuristics to improve results:

� Usecache partition/reservationto reduce preemptions
because they cause unpredictable cache flushing and
reloading.

� Use the combination ofstatic allocationanddynamic
allocation: a task with a cache reservation on a certain
PE is statically allocated to that PE; otherwise the algo-
rithm allows it reallocated from instance to instance to
maximize the utilization of PEs.

� Use cache state modelto increase reuse of the cache
contents and increase hits.
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   re-allocations
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Figure 3: Allocation and scheduling procedure.
Inputs M : number of processors.

Task(C;T ): a task with periodT and execution timeC.

Global functions: curr(m): returns current PE for classm.

newproc(): returns index of an empty processor.

Allocate( Task(C, T) )

1. m = bM(log2(T ) � blog2 (T )c)c + 1

2. if (loadcurr(m) + C=T � 1� ln2=M) then

3. loadcurr(m) = loadcurr(m) + C=T

4. else if(C=T < loadcurr(m) ) then

5. curr(m) = newproc()

6. loadcurr(m) = C/T

7. else

8. x = newproc()

9. loadx = C/T

10. endif

Figure 4: On line task allocation algorithm by Burchard, etc.

3.1 Task Allocation
Many allocation algorithms for real-time tasks treat the proces-

sors as bins and use a bin-packing approach. The decision whether
a processor is full is determined by some schedulability condition
that is usually based on theworkload utilizations(defined as a
task’sWCET divided by its period) of the tasks packed into the
processor. Our algorithm allocates as well as optimizes for cache
partition to meet the workload utilization conditions. The heuristic
algorithms for single-constraint bin-packing can not be applied di-
rectly to our problem with double-constraints. We used a two-step
scheme:

1. Allocate tasks to PEs to meet theutilization constraints.
2. For each PE, partition and reservecaches to meet the local

cache partition constraints (Section 3.2).
For the first step, we used the study from Burchard,etc[5]. They

developed a tighter schedulability condition and a linear allocation
algorithm (see Fig.4). Tasks are divided into M classes. Each pro-
cessor is assigned tasks from only one class. The class membership
of a task is determined (Line 1) by:

m = bM(log2(T )� blog2(T )c)c+ 1 (2)

If a new tasktaska from classm is added to the task set, the al-
gorithm first attempts to accommodatetaska to the current proces-
sor for classm (Line 2-3). If the attempt fails,taska is assigned to
an empty processor. If the load oftaska is sufficiently small (Line
4), the processor to whichtaska is assigned becomes the current
processor of classm (Line 5). If the load factor oftaska is large,
no other task will be assigned to this processor. This procedure is
repeated until all tasks are allocated.
3.2 Cache Partitioning

After the tasks are allocated to the PEs, the algorithm looks at
each individual PE and the tasks allocated to it to construct a feasi-
ble schedule. To maximize the schedulability of the PE, the algo-
rithm needs to find a partition of thecache associated with the PE
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Figure 5: Cache partition and reservation.

that can maximumly decrease the total utilization of all the tasks
allocated to the PE. Fig.5 shows how a partition looks like.

Let A be the set of tasks allocated to the PE,Ti the period oftask
i, sizei the program size oftask i, andB a possible partition - a set
of tasks with reserved partitions on the PE andB = fSjS 2 Ag.
To allow tasks that are not allocated a cache partition and interrupts
to run efficiently, we put the following constraints on the maximum
partitionedcache size: it cannot exceed half of the cache size and
the unpartitioned portion should be large enough to accommodate
the largest task that does not have a partition:

Actual partition size =
X

i2B

sizei (3)

Max partition size = min(1=2� Cache size;

Cache size �maxi2A�B(sizei)) (4)

Actual partition size �Max partition size (5)

Given these constraints, the goal of cache partition is to find a par-
tition B such that the total utilization decrease is maximized:

maxB(
X

i2B

(WCETi �WCET
perfect cache
i

)=Ti) (6)

Optimized B can be found using linear programming techniques.
For computation simplicity, we uses a heuristic approach. Intu-
itively, the performance gain by reserving a partition for a task is
the utilization decrease, at the cost of reserving the partition of
size(task), therefore, we define atask partition priority (TPP)as
the priority measure of choosing tasks to reserve cache partitions.

TPP (task i) =
(WCETi �WCET

perfect cache
i )

Ti
�

1

Sizei
(7)

Tasks are assigned partitionsaccording to theirTPPsuntil all the
partitionablecache has been assigned. This can be implemented at
multiple levels of the memory hierarchy. In order for the tasks to
map to their assigned cache partitions, the compiler should use the
partition result and make sure that the tasks map to the addresses
that are reserved for them. For tasks with cache partitions on a
same cache, their addresses should not overlap. On a same cache,
addresses of tasks without partitions may overlapeach other, but
they should not overlap the addresses of the reserved partitions.
3.3 Task Scheduling

After the cache partition, our algorithm uses a deadline-based
priority-driven preemptive approach to construct a schedule for
each PE. Unlike other algorithms that usestatic allocation, our al-
gorithm gives freedom of re-allocation for those tasks that do not
have a reserved cache partition on a PE. Re-allocation to an idle PE
can increase the utilization of that PE and improve schedulability.

A simplifiedcache state modelis introduced to encourage cache
reuse. A cache state is a binary value that models whether the pro-
gram for a task is located in a cache. For a tasktaski without
cache partition, its program is loaded into thecache during an ex-
ecution and maybe flushed out (cache state = 0) by tasks executed

Scheduler
1. whenever_task_finish (task_i, PE_j) {
2. if there are pending ready tasks on PE_j
3. /* earliest-deadline first */
4. schedule ready task w/ earliest deadline on PE_j
5. else {
6. /* try to find a ready task from other PEs and
7. re-allocate it to the otherwise idled PE_j */
8. re_allocate_task = NULL
9. max_allocate_priority = 0
10. for each ready task_a w/o cache reservation on

other PEs {
11. ap = RAP (task_a, PE_j)
12. if (ap > max_allocate_priority) {
13. re_allocated_task = task_a
14. max_allocate_priority = ap
15. }
16. }
17. if re_allocate_task is not NULL
18. schedule re_allocate_task on PE_j
19. else
20. PE_j idle }

}
21. whenever_task_arrive (task_i, PE_j) {
22. task_r = running task on PE_j
23. if (task_i has an earlier deadline than task_r)
24. and (preemption is necessary)
25. preempt task_r, insert it to ready queue of PE_j
26. else if (task_r is re-allocated to PE_j from PE_p)
27. preempt task_r
28. call whenever_task_arrive (task_r, PE_p)
29. else
30. insert task_i to the ready task queue of PE_j }

Figure 6: The scheduler invoked when a task arrives or finishes.

after taski. However, if all these tasks executed aftertaski have
their own cache reservation or map to different locations in cache
from taski, taski’s program is still present incache (cache state
= 1). Therefore, by keepingtaski on the same PE and executing
it before its cache state is flushed, we can use a tighter bound of
WCET(WCET with perfect cache) for this instance oftaski.

The decision of whether to re-allocate a task and where it is re-
allocated to is made byre-allocation-priority (RAP):

RAP (Taski; PEj) = ����(i; j) + � �Diff(i; j) (8)

�(i; j) = WCET
w=o cache

taski;old PE for taski
�WCET

w=o cache

i;j (9)

Diff(i; j) = cache state(i; j)�

(WCET
w=o cache

i;j
�WCET

perfect cache
i;j

) (10)

TheRAP for a taskTaski on a PEPEj is decides by 2 terms.
The�-term considers the speed (WCET ) difference oftaski on
its old PE andPEj. TheDiff-term considers the effect of cache
state. � and� are preset constants within the range of [0,1] and
they decide how much the re-allocation and cache state model-
ing will affect the schedule. A positiveRAP indicates that the re-
allocation is favorable. When a PE becomes idle, the scheduler will
try to re-allocate tasks from other PEs by choosing a task with a
maximum positiveRAP.

Fig.6 shows the pseudo code of a scheduler. The scheduler is
invoked whenever a task arrives or finishes. When a task finishes
on a PE (Line 1-20), the scheduler either starts the next ready task
in the queue of that PE, or as shown from Line 5-18, it compute
RAPs and the scheduler decides whether it should re-allocate a task
and which task to re-allocate. When a new task arrives, if it has
an earlier deadline that executing task and preemption is checked
to benecessary, it preempts the executing task instantly (Line 23-
25). If the executing task is re-allocated from other PE, it has the
lowest priority on its new PE and will be preempted and sent back
its old PE - it is either inserted into ready queue or preempts that
task running on that PE (Line 26-28).
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Figure 7: Utilization comparison: our algorithm vs. EDF/RMS
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Figure 8: Which WCET to use in scheduling.

Experiments

 Randomly generated 50 task sets

 1, 2 and 4  processors with private L1 caches and  shared L2 caches. 

Tasks

Architecture

number of tasks:  
task period: 
task size:  
x  WCET w/o cache: 
y  WCET w/ cache:  
z  WCET w/ perfect cache: 

uniform
distribution

Gaussian
distribution

2-10
1-10,000 
1/2 - 4k
5-90% of task period
25-100% of x 
60-100% of y

Table 1: Randomly generated experiments.

Another important issue in scheduling is which WCET to use
at different points of the task executions in order to have a tight
and accurate estimation of the task execution time. As shown in
Fig.8, for tasks with reserved cache partitions, the decision is quite
simple: for the first instance, useWCETwith cache, otherwise
WCETwith perfect cache. For a task without cache reservation,
the WCET used for the task may change in the course of schedul-
ing. Both its preemption history and the cache state on its allocated
PE are needed to make the decision.

4 Experimental Results
We have run a number of experiments on some examples and

obtain promising results. One example is the MPEG-1 encoding
algorithms. MPEG encoding involves both video and audio encod-
ing that run at different rates (video: 30 frames per second, audio:
sampling rate of 48 kHz). Our algorithm successfully schedules
both audio and video on 4PEs. In comparison, EDF or RMS with-
out cache modeling require at least 6 PEs.

To test the algorithm’s performance in general, we randomly
generated some task sets with some random parameters (see Ta-
ble 1), then we try to schedule them onto 1,2 or 16 PEs with lo-
cal level-1 caches and shared level-2 cache. For each task set, the
number of tasks and their periods, size andWCETare generated
by uniform distributions.WCET with cacheandWCET with per-
fect cacheare computed usingWCETas a base value and modi-
fying it by some percentages. The percentages are generated by

  38%Schedule
successful  rate

RMAEDF Our algorithm

40% 86% with static allocation
90% with partly dynamic allocation

Table 2: Scheduling results of the randomly generated experiments.

Gaussian distributions with estimated parameters based on experi-
mental results from Li,etc.[1]. Table 2 summarizes the results and
Fig.7 shows the comparison of workload utilizations for the 50 ex-
periments by using our algorithm and EDF/RMS. Our algorithm
achieved a lower utilization and increased schedulability. For all
the tasks that EDF and RMS can schedule so can our algorithm; for
some tasks that EDF and RMS failed to schedule, our algorithm can
find schedules; our algorithm does fail on some cases, because ei-
ther the tasks have no feasible schedules at all (such as experiment
50) or in some cases (such as experiment 16), the tasks with very
high utilizations have feasible schedules, but our algorithm, which
is based on heuristics, is not guaranteed to find them.

5 Conclusions
Our algorithm uses a hierarchical memory model for system

synthesis and targets the scheduling of multi-rate tasks on multi-
processors. It achieves predictable caching and guaranteed hits for
some tasks by cache partition andcache state modeling, therefore
can use a tighter WCET for these tasks and greatly improves the
schedulability of the tasks over existing algorithms. The task-level
algorithm does not require detailed program analysis at run time, it
is computationally efficient and can be used as a building block in
hardware-software co-synthesis for design space exploration. Our
algorithm can be used not only in making choice of the number and
types of PEs, but also the choice of cache structure.

Future work may include: theoretically studying the bound of
the schedulable workload utilization and the robustness of the al-
gorithm in case of sporadic incoming tasks; and using our analysis
procedure in the inner loop of a co-synthesis system.
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