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ABSTRACT

Extracting the inductance of complex interconnect topologies
is a formidable task, and simulating the resulting dense partial
inductance matrix is even more difficult. Furthermore, it is well
known that simply discarding smallest terms to sparsify the in-
ductance matrix can render the partial inductance matrix indef-
inite and result in an unstable circuit model. In this paper, we
describe a methodology for incrementally generating a sparse
partial inductance matrix based on using moments about s=0 to
determine when a sufficient number of mutual inductances have
been captured. The minimally required mutual inductances are
extracted for a provably stable model.

1.0  Introduction
Inductance extraction is difficult because mutual inductance de-

pends on the current return path --- which is unknown prior to ex-
tracting and simulating a circuit model. Rosa introduced the concept
of partial inductances [1][5] to avoid this difficulty by assuming that
each segment has a return current at infinity. Ruehli introduced par-
tial inductance to modern ICs and proposed the PEEC (Partial
Equivalent Element Circuits) model to handle general three dimen-
sional interconnects[6][7]. Weeks extended PEEC models to include
skin effect and proximity effect shortly thereafter[8]. Kamon, et. al.
more recently developed algorithms to solve for the effective induc-
tance from the partial inductances with the utmost efficiency[2].

While partial inductance extraction methods are general and can
be solved with excellent efficiency, the problem size can be over-
whelming. Instead of coupling among all of the loops, there is now
coupling among all of the wire segments. This corresponds to an ex-
tremely large, dense, partial inductance matrix. Because it is difficult
to invert (factor) a large dense matrix, it is often desirable to sparsify
the partial inductance matrix, either to serve as an approximate solu-
tion, or as a preconditioner for an iterative matrix equation solver.

One would expect that not all of the mutual couplings are impor-
tant for an accurate simulation of the complete system. However,
there are two problems associated with simply discarding small (far
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away) mutual coupling terms: 1) determining which mutuals are im-
portant without generating and simulating the entire inductance ma-
trix, and 2) maintaining a stable circuit model.

The complete partial inductance matrix is positive definite. It has
been shown that simply discarding mutual terms can render this ma-
trix indefinite. We will show in this paper that an indefinite L matrix
corresponds to a system that may violate conservation of energy.
This can result in an equivalent circuit model with positive poles. Re-
cently, a shifted formulation of magnetic potential vector was pro-
posed to generate a provably-stable sparse partial inductance matrix
by assuming that the segment currents return at a finite radius instead
of infinity[3].

In this paper, the physical significance and modeling consequenc-
es of truncating far away mutual inductance are demonstrated. A
methodology is described for finding the minimally required mutual
inductances to accurately approximate the complete partial induc-
tance matrix over the entire frequency spectrum.

2.0  Partial Inductance
Since inductance is defined only for closed loops, partial induc-

tances can be visualized as the inductance of a conductor segment as
it forms a loop with infinity. That is, the return current path for the
inductance is assumed to close at infinity, as shown in Fig.1.

Partial inductances are best analyzed in terms of the normalized
magnetic vector potential drop along a conductor segment due to cur-
rent in that, or another segment. Consider two conductor segments,i
and j, with a current Ij in segmentj. The partial self inductanceLjj
along the segmentj is given by

(1)

whereAjj is the magnetic vector potential along segmentj due to the
current Ij in segmentj, which has a cross sectionaj. The partial mu-
tual inductanceMij, which relates the induced voltage drop along
segmenti due to a change in the current along segmentj, is given by
a similar expression

(2)

In (2) Aij  is the magnetic vector potential along segmenti due to the
current Ij in segmentj. Segmenti has a cross sectionai.

Fig. 1: Visualization of partial mutual inductance for 2 conduc-
tor segments. Both segment loops are assumed to close at infin-
ity.

Ljj
1

I jaj
--------- Ajj l jd⋅ ajd

l j

∫
aj

∫=

Mij
1

I jai
--------- Aij l id⋅ aid

l i

∫
ai

∫=



The magnetic vector potentialAij  is defined as

(3)

In this expression, rij  is the geometric distance between two points in
segmenti and segmentj.

3.0  Potential Instability

3.1  Eigen-Energy
The instability caused by discarding partial mutual inductance

terms is most easily explained in terms of the eigenvalues and eigen-
vectors of the partial inductance matrix. Given a set of n conductor
segments, the energy stored in the system’s magnetic field is

(4)
where  is the vector of currents flowing through the conductor seg-

ments and  is the partial inductance matrix, assuming no sources
are included. According to conservation of energy, we know that

(5)

From (4), it is apparent that in terms of the eigenvectors of the par-
tial inductance matrix , the current vector  can be represented as

(6)

where  is the normalized th eigenvector of , and  is the co-

efficient of the linear expansion. From (6), the energy stored in the
conductors can be expressed aseigen-energy

(7)

In summary, physically speaking, an eigenvalue of the partial in-
ductance matrix  represents some eigen-energy (stored in the mag-
netic field) of the interconnect system for a particular current
assembly. Since the energy must always be non-negative, the eigen-
values are always positive real.

It is well known that the return current always takes the tightest
closed return path at high frequency. This corresponds to the system
achieving its lowest energy state, or smallest inductance path. From
the point view of eigen-energy, the tightest closed return path is re-
lated to the eigen-direction for the smallest possible eigen-energy
(assembly energy). So, the high frequency behavior is determined by
the smallest eigenvalues of the partial inductance matrix.

It is only at low frequency that the return currents may assume
large assembly energy instead of the smallest assembly energy,
which means large eigen-energy is a significant portion of the assem-
bly energy. So the large eigenvalues of the partial inductance matrix
is a good monitor of low frequency behavior. From the pole and zero
theory of the linear circuit, it is known that the smallest poles deter-
mine the low frequency behavior of the circuit. As a result, we can
conclude that the largest eigenvalues of the partial inductance matrix
correspond to the smallest poles of the circuit. This observation
serves as a good theoretical basis for our methodology of extracting
the minimum required mutuals in Section 5.0.

3.2  Potential Instability
In this subsection, we give an example to demonstrate the insta-
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bility due to such a truncation procedure. Fig.2 describes a 3-D four-
conductor system. The conductors are parallel to each other with cir-
cular cross section and physical dimensions as shown.

We calculated the partial inductance matrix and the eigenvalues of
the full inductance matrix are all positive. However, discarding the
smallest mutual terms in the matrix, we obtain the truncation only
partial inductance matrix, which has a negative eigenvalue -0.27e-9.
The corresponding eigenvector is [1 -1 -1 1]T

So, by truncating the smallest terms in the partial inductance ma-
trix, we create anegativeeigenvalue, which corresponds to a poten-
tial negative eigen-energy for approximating aphysically stable
system. If we now connect the four-conductor system with exterior
circuitry as in Fig.3 (Rs and Rl are 1  and 10  respectively.) such
that the eigen-direction corresponding to the negative eigenvalue is
stimulated, a positive pole 4.3656e10 appears.

Note that truncation-only does not always cause positive poles --
more on this in Section 6.0.

4.0  Sparse Partial Inductance formulation with
spherical return currents

In [3], a redefinition of the magnetic vector potential was pro-
posed in order to sparsify the inductance matrix while maintaining its
positive semi-definite property. Unlike normal partial inductance
that assumes that conductor (partial) segment currents return at infin-
ity (Fig.1), all incremental currents are assumed to return at a finite
and constant radiusr0 from their origin. This is a reasonable approx-
imation for realistic circuits, since currents can not really return at in-
finity.

The definition in (3), which describes the magnetic vector poten-
tial along conductor segmenti due to an isolated current in conductor
segmentj, is replaced by

(8)

where

(9)

As demonstrated in [3], the spherical model of partial inductance can
achieve significant sparsity. However, one problem remains for de-
termining the required radial return distancer0, without having to
generate the entire inductance matrix. In the next section, we present
an algorithm to findr0.

5.0  Selecting the Return Current Radius
Consider the circuit behavior for a full partial inductance matrix
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which corresponds to the return current shell at infinity. When we de-
creaser0, the possible return current is constrained within the radius
of r0. At high frequency, when the inductance dominates the imped-
ance, the current will always take the tightest return path correspond-
ing to the least inductance path and the restriction of the return path
within r0 will not affect the circuit simulation results.

At low frequency, resistance dominates the total impedance and
the current will take the least resistance return path. If the least resis-
tance return path is outside the constrained return current shell and
the mutuals outsider0 are significant, the behavior of the approxi-
mated circuit model will deviate dramatically from that of the full
partial inductance model. Therefore, matching the low frequency be-
havior is the challenging problem for any sparse approximation over
the frequency spectrum of interest.

The low frequency behavior of linear circuits is governed by the
dominant poles i.e. the smallest poles, of circuit. Moments of the im-
pulse response for an expansion about s=0 are known to be excellent
indicators of the dominant pole value. Namely, the ratio of two suc-
cessive moments, (mj /mj+1), is known to quickly converge to the
value of dominant pole with increasingj[4]. Moreover, we know that
the dominant poles of the circuit will stop changing with increasing
r0 as the added mutual inductances no longer affect the lowest fre-
quency poles. So we will use the moment ratio as a convergence cri-
terion for the sparse approximation. Fortunately, moments about s=0
are trivial to obtain for this problem.

Usually for inductance problems, mesh formulation is preferred
because it requires a smaller number of unknowns compared to other
types of formulation. However, for simplicity, we will explain mo-
ment computation using MNA formulation. For a linear circuit con-
taining resistors and inductors, the Laplace-domain MNA
formulation is

(10)

wherex contains the nodal voltages and the inductor currents, andb
represents the sources. The matrix G contains the conductances and
the connectivity information, and the matrixC(r0) includes the par-
tial inductance matrix as a block submatrix that isr0 dependent. The
first moment vector is given by

(11)

To compute the first moment vector, the matrix G is LU factored.
The matrix G is very sparse and can be factored very efficiently(it is
nearly tri-diagonal for most packaging problems.). The higher order
moment vectors are computed recursively as

(12)

Since the matrixG has already been factored, for the higher order
moment vectors, only forward and back substitutions are required.
C(r0) does not have to be factored. For each higher order moment,
we multiply C(r0) with a vector to obtain the right hand side vector
in (12). Now, suppose that the output of interest is a linear combina-
tion of x,

(13)
Then, the moments of output are obtained as,

(14)

The order of moments used here depends on level of accuracy. Usu-
ally, the higher order moments we utilized, the higher accuracy we
obtained. However, for indirect coupling problems, the lower order
moments are zero, while the higher order moments are non-zero. In
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such cases, we have to use higher order moment ratio to monitor low
frequency behavior. Note thatG is only factored once. So we contin-
ue increasing the value ofr0until the moment ratio converges, which
means sufficient mutuals have been captured. A brief description of
our extraction algorithm is given as follows:

SPIE
{

read in the input file and the initial guess ofr0
0;

compute sparse formulation of partial inductance matrixL0;
use MNA to build the circuit equations in matrix form and

calculateG-1;
calculate the moments to the order specified or such that

mj+1
0 is not zero;

ratio0=mj
0 /mj+1;

0

metric0 =1;
k=0;

while(metrick >error)
{

increaser0
k to r0

k+1 and compute the partial inductance

matrixLk+1;

update theC(r0) matrix and calculatemj
k+1 andmj+1

k+1

usingG-1 andC(r0), thenratiok+1;

metrick+1 =(ratiok-ratiok+1)/ratiok+1;
k++;

}
output the required information;

}

To demonstrate the efficacy of this approach, we consider the 2cm
by 2 cm ground plane circuit in Fig.4.The plane is meshed into 20

segments both in the x and y directions of the plane. One 1.8cm long
signal line runs 0.03mm above the plane and returns along the
ground plane.

With the external connectivity and the partial inductance matrix
for the inductances, the moment ratio for the current flowing through
the signal line is easily calculated and the results are plotted in Fig.5.
If we assume that the moment ratio reaches convergence (meaning

Fig. 4:  Ground plane example.
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Fig. 5: The convergence of the
moment ratio with respect to
r0 for the ground plane exam-
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Fig. 6: Eigenvalues for the
partial inductance matrix of
the ground plane.
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the dominant pole no longer is changing as we add more mutuals) at
r0=4mm, we have a matrix sparsity of 95.02%. Because of the large
size of the full dense partial inductance matrix, we are unable to com-
pare the approximation result with the exact solution. However, we
will assert correctness of our result in terms of eigen-value pattern of
the partial inductance matrix in Fig.6.

Fig.6 gives the eigenvalue distributions for the full matrix and the
sparsified matrix. One interesting observation is that the eigenvalues
of the sparsified matrix agree very well with those of the full matrix
for all but the few largest eigenvalues. Noting that these large eigen-
values ofL correspond to the low frequency current assemblies, and
since we are accurately approximating the dominant pole, we can as-
sume that these eigenvalues correspond to impossible or negligible
current assemblies given the connectivity of this circuit. We would
further postulate that by matching the eigenvalues corresponding to
the high frequency energies, we are providing an accurate approxi-
mation over all frequencies of interest.

Next, we consider two 30-conductor packaging examples in Fig.7.
The length of the lines is 0.5cm and the spacing between the lines is
0.2cm. Both circuits have the same horizontal topology but different
connectivity. In order to consider the edge effect, we also model the
vertical inductance effect in our extracted circuits. Referring to cir-
cuit Fig.7 (a), each signal line has its return path nearby. Ther0 for
this circuit when moment ratio reaches convergence is 0.6cm, which
translates to 84% sparsity for horizontal partial inductance matrix,
and 90% sparsity for vertical partial inductance matrix. However, in
circuit Fig.7 (b), all of the signal lines share one return path and the
r0 at moment ratio convergence is 1.2cm. The sparsity for horizontal
partial inductance matrix and vertical partial inductance matrix are
50% and 65% respectively. Our methodology agrees with our under-
standing of good packaging design practice, namely, the circuit in
Fig.7 (a) is a superior design.

6.0  Discussion and Alternative Potential
Functions

For the original partial inductance concept, the return current is
assumed at infinity. However, this introduces a full matrix, which is
a formidable task for simulation. A simple solution is to truncate the
smallest terms in the partial inductance matrix to achieve sparsity,
but this can cause an unstable circuit model, as shown in Section 3.0.

Fig. 7: Two circuits with identical partial inductance matrices
(in the horizontal direction), but with different connectivity
among the elements in circuits (a) and (b).
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Fig. 8: Moment ratio conver-
gence for circuit in Fig.7 (a).
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However, if the block diagonality is carefully preserved, that is, no
indirect coupling between two uncoupled lines through a third line
exists, the partial inductance matrix for truncation-only is still posi-
tive definite. The shift and truncation formulation of partial induc-
tance assumes the return current is within a certain radius and is
provably stable in any situation. For short lines, it works fine. But for
long straight lines, we have to increaser0 large enough to capture the
forward coupling, or else the total loop inductance will be underesti-
mated. A better model for long straight lines would be to use a tubu-
lar shell as plotted in Fig.10. The shell is infinitely long in the
horizontal direction. The tubular shell may lead to unsymmetrical
partial inductance matrix when the wires are routed in arbitrary di-
rection. However, when wires are restricted in orthogonal directions,
the partial inductance matrix remains symmetric.

7.0  Conclusions
In this paper, we studied the physical significance and modeling

consequences of discarding far away mutual terms in the partial in-
ductance matrix. A moment ratio convergence criterion was pro-
posed to create a methodology for determining the minimally
required mutual inductance. For more complex interconnect struc-
ture where capacitance effect is considered, we expect to use a slight-
ly different criterion. We also introduce alternative potential
functions that may be useful for addressing the on-chip inductance
problem.
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Fig. 10: Long straight conductor segment with current i and a
cut away view of the tubular shell of return current-i at a
radius r0.
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