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ABSTRACT away) mu_tual coupling terms: 1) Qetermining whigh mutuals are im-
portant without generating and simulating the entire inductance ma-
Extracting the inductance of complex interconnect topologies trix, and 2) maintaining a stable circuit model.
is a formidable task, and simulating the resulting dense partial  The complete partial inductance matrix is positive definite. It has
inductance matrix is even more difficult. Furthermore, itis well  peen shown that simply discarding mutual terms can render this ma-
known that simply discarding smallest terms to sparsify the in- iy indefinite. We will show in this paper that an indefinite L matrix
ductance matrix can render the partial inductance matrix indef-  corresponds to a system that may violate conservation of energy.
inite and result in an unstable circuit model. In this paper, we  Thjs can result in an equivalent circuit model with positive poles. Re-
describe a methodology for incrementally generating a sparse cently, a shifted formulation of magnetic potential vector was pro-
partial inductance matrix based on using moments about s=0t0 posed to generate a provably-stable sparse partial inductance matrix

determine when a sufficient number of mutual inductances have py assuming that the segment currents return at a finite radius instead
been captured. The minimally required mutual inductances are  of jnfinity[3].

extracted for a provably stable model. In this paper, the physical significance and modeling consequenc-

. es of truncating far away mutual inductance are demonstrated. A
1.0 Introduction methodology is described for finding the minimally required mutual
Inductance extraction is difficult because mutual inductance dinductances to accurately approximate the complete partial induc-
pends on the current return path - which is unknown prior to e!@nce matrix over the entire frequency spectrum.
tracting and simulating a circuit model. Rosa introduced the conce
of partial inductances [1][5] to avoid this difficulty by assuming tha2.0 Partial Inductance
each segment has a return current at infinity. Ruehli introduced p. . . . ) -
Since inductance is defined only for closed loops, partial induc-

tial inductance to modern ICs and proposed the PEEC (Parttances can be visualized as the inductance of a conductor segment as
Equivalent Element Circuits) model to handle general three dime. 9

sional interconnects[6][7]. Weeks extended PEEC models to inclu't forms a loop with infinity. That is, the return current path for the
skin effect and proximity effect shortly thereafter[8]. Kamon, et. ainductance is assumed to close at infinity, as shown in Fig.1.
more recently developed algorithms to solve for the effective indu

tance from the partial inductances with the utmost efficiency[2].

While partial inductance extraction methods are general and ¢
be solved with excellent efficiency, the problem size can be ove
whelming. Instead of coupling among all of the loops, there is no Fig. 1: Visualization of partial mutual inductance for 2 conduc-

coupling among all of the wire segments. This corresponds to an ¢ tor segments. Both segment loops are assumed to close at infin-
tremely large, dense, partial inductance matrix. Because it is diffict ;

to invert (factor) a large dense matrix, it is often desirable to spars 1y-

the partial inductance matrix, either to serve as an approximate sc  Partial inductances are best analyzed in terms of the normalized

tion, or as a preconditioner for an iterative matrix equation solver.magnetic vector potential drop along a conductor segment due to cur-
One would expect that not all of the mutual couplings are imporent.In that, or another segment. Consider two conductor segments,

tant for an accurate simulation of the complete system. Howey@"dJ: With @ current;lin segmeny. The partial self inductande;

there are two problems associated with simply discarding small (f2long the segmenis given by
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The magnetic vector potentiaj; is defined as bility due to such a truncation procedure. Fig.2 describes a 3-D four-
conductor system. The conductors are parallel to each other with cir-
M . cular cross section and physical dimensions as shown.
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3.0 Potential Instability S olc
. Fig. 2: An example of Fig. 3: Circuitry for the
3.1 Eigen-Energy four-conductor system four-conductor system.

The instability caused by discarding partial mutual inductance
terms is most easily explained in terms of the eigenvalues and eigen
vectors of the partial inductance matrix. Given a set of n conduc
segments, the energy stored in the system’s magnetic field is

We calculated the partial inductance matrix and the eigenvalues of
full inductance matrix are all positive. However, discarding the

smallest mutual terms in the matrix, we obtain the truncation only

partial inductance matrix, which has a negative eigenvalue -0.27e-9.

E=i'lolg (4) The corresponding eigenvector is [1 -1 -1 1]

wherei is the vector of currents flowing through the conductor seg- SO, by truncating the smallest terms in the partial inductance ma-

. o . . trix, we create aegativeeigenvalue, which corresponds to a poten-
meqts and. s the _partlal |nductan9e matrix, assuming no sourges negative eigen-energy for approximating ysically stable
are included. According to conservation of energy, we know that

system If we now connect the four-conductor system with exterior
E=0 (5) circuitryasin Fig.3 (Rsand Rlar®1l andQ0 respectively.) such
From (4), it is apparent that in terms of the eigenvectors of the p&pat the eigen-direction corresponding to the negative eigenvalue is

tial inductance matrixt. , the current vector can be represented glimulated, a posmv_e pole 4.3656e10 appears. N
Note that truncation-only does not always cause positive poles --

_ n more on this in Section 6.0.
=33 D/J. (6)
. =10 _ 4.0 Sparse Partial Inductance formulation with
wherev. isthe normalized th eigenvectolof ,and s the co- h
j ] spherical return currents

efficient of the linear expansion. From (6), the energy stored in the

conductors can be expressecigen-energy In [3], a redefinition of the magnetic vector potential was pro-

posed in order to sparsify the inductance matrix while maintaining its
E = 2 B ) positive semi-definite property. Unlike normal partial inductance
B za]. j that assumes that conductor (partial) segment currents return at infin-

In summary, physically speaking, an eigenvalue of the partial iffy (Fi9-1), all incremental currents are assumed to return at a finite
ductance matrit. represents some eigen-energy (stored in the m% d _constant rgdl.u% ‘f“’”? the!r origin. This is a reasonable approx.-
netic field) of the interconnect system for a particular curre ation for realistic circuits, since currents can not really return at in-

assembly. Since the energy must always be non-negative, the ei HHY-
values are always positive real. The definition in (3), which describes the magnetic vector poten-

It is well known that the return current always takes the tighteg’[jll along c_onductor segmeidue to an isolated current in conductor
ri:gment, is replaced by

closed return path at high frequency. This corresponds to the syst%
achieving its lowest energy state, or smallest inductance path. From Mol

the point view of eigen-energy, the tightest closed return path is re- A. =0 cr Ol (8)
lated to the eigen-direction for the smallest possible eigen-energy g 4”|I_ 0ij ' 007

(assembly energy). So, the high frequency behavior is determined b )

the smallest eigenvalues of the partial inductance matrix. where

It is only at low frequency that the return currents may assume ik .
large assembly energy instead of the smallest assembly energy, ai’
which means large eigen-energy is a significant portion of the assem-
bly energy. So the large eigenvalues of the partial inductance matrix = o , r..> o

is a good monitor of low frequency behavior. From the pole and zero d dinTal th herical model of ialind
theory of the linear circuit, it is known that the smallest poles deteS Jemonstrate in [3], t 1 spherical mode] of partial inductance can
hieve significant sparsity. However, one problem remains for de-

mine the low frequency behavior of the circuit. As a result, we cdtfeV h ired radial di ith havi
conclude that the largest eigenvalues of the partial inductance maffigMning the required radial return distamgewithout having to
correspond to the smallest poles of the circuit. This observati@§nerate the entire inductance matrix. In the next section, we present
serves as a good theoretical basis for our methodology of extractigalgorithm to find.

the minimum required mutuals in Section 5.0.
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5.0 Selecting the Return Current Radius

3.2 Potential Instability ] - ) o .
. . . . Consider the circuit behavior for a full partial inductance matrix
In this subsection, we give an example to demonstrate the insta-



which corresponds to the return current shell at infinity. When we dsuch cases, we have to use higher order moment ratio to monitor low
crease, the possible return current is constrained within the radidsequency behavior. Note th@tis only factored once. So we contin-

of ro. At high frequency, when the inductance dominates the impede increasing the value Qfuntil the moment ratio converges, which
ance, the current will always take the tightest return path correspomgeans sufficient mutuals have been captured. A brief description of
ing to the least inductance path and the restriction of the return p&t extraction algorithm is given as follows:

within rq will not affect the circuit simulation results. SPIE

At low frequency, resistance dominates the total impedance apd
the current will take the least resistance return path. If the least resis-
tance return path is outside the constrained return current shell and
the mutuals OUtSidEb are Signiﬁcant, the behavior of the apprOXi- Compute sparse formulation of partial inductance mafhx
partial inductance model. Therefore, matching the low frequency be- lculateG--

havior is the challenging problem for any sparse approximation over &
the frequency spectrum of interest. calculate the moments to the order specified or such that

ead in the input file and the initial guessr@ﬂ',

The low frequency behavior of linear circuits is governed by the rr],,l0 is not zerg
dominant poles i.e. the smallest poles, of circuit. Moments of the im- " . o 0
pulse response for an expansion about s=0 are known to be excelledl0 =" /M1,
indicators of the dominant pole value. Namely, the ratio of two suc- metrid =1:
cessive momentsyr{ /m,4), is known to quickly converge to the K=0:
value of dominant pole with increasijid]. Moreover, we know that _' .
the dominant poles of the circuit will stop changing with increasing while(metric >error)
ro as the added mutual inductances no longer affect the lowest fre{
qguency poles. So we will use the moment ratio as a convergence cri- increase‘ok to r0k+l and compute the partial inductance
terion for the sparse approximation. Fortunately, moments about s=0 )
are trivial to obtain for this problem. matrix

Usually for inductance problems, mesh formulation is preferred — update the(rg) matrix and calculaten
because it requires a smaller number of unknowns compared to other K+1.
types of formulation. However, for simplicity, we will explain mo- ’
ment computation using MNA formulation. For a linear circuit con- metric*1 =(ratio*-ratiok*1)/ratiok*1;
taining resistors and inductors, the Laplace-domain MNA ...
formulation is '

Lk+l.
k+1 andn§+1k+l

usingGtandC(rg), thenratio

(G+sC(rg)) k=D (10) output the required information;
wherex contains the nodal voltages and the inductor currents) and
represents the sources. The ma@igontains the conductances and

the connectivity information, and the mat@Xro) includes the par- 7o demonstrate the efficacy of this approach, we consider the 2cm
tial inductance matrix as a block submatrix thapidependent. The by 2 cm ground plane circuit in Fig.4.The plane is meshed into 20
first moment vector is given by Rs Rl

GX, = b 1) qS”—V 1

s
To compute the first moment vector, the matéxs LU factored.
The matrixG is very sparse and can be factored very efficiently(it is

nearly tri-diagonal for most packaging problems.). The higher order F_'g' 4. Ground plang example.
moment vectors are computed recursively as segments both in the x and y directions of the plane. One 1.8cm long

_ signal line runs 0.03mm above the plane and returns along the
Glx = —C(rg) X, _q >0 (12)  ground plane.

Since the matrxG has already been factored, for the higher order .o 0.0e+0f . 10°® _
moment vectors, only forward and back substitutions are required. & 0e+05 %, :fr%u:mmx
C(rg) does not have to be factored. For each higher order moment,‘g ' I > 10°
we multiply C(ro) with a vector to obtain the right hand side vector g -2.0e+0g g
. . . . . o - 104
in (12). Now, suppose that the output of interest is a linear combina- N o 10
ti0|(1 o?x PP P E -3.0e+Q55—100 200300 2
. ro (mm) 105 2b0400 60080000
H(s) =1 [x (13) Fig. 5: The convergence of the ) eigenvalue #
Then, the moments of output are obtained as, moment ratio with respectto  Fig. 6: Eigenvalues for the

ro for the ground plane exam- partial inductance matrix of
T 0
m. = | D(i (14) ple. the ground plane.

The order of moments used here depends on level of accuracy. Usuwith the external connectivity and the partial inductance matrix
ally, the higher order moments we utilized, the higher accuracy Vier the inductances, the moment ratio for the current flowing through
obtained. However, for indirect coupling problems, the lower ordehe signal line is easily calculated and the results are plotted in Fig.5.
moments are zero, while the higher order moments are non-zerolflive assume that the moment ratio reaches convergence (meaning



the dominant pole no longer is changing as we add more mutualsHatwever, if the block diagonality is carefully preserved, that is, no
ro=4mm, we have a matrix sparsity of 95.02%. Because of the largelirect coupling between two uncoupled lines through a third line
size of the full dense partial inductance matrix, we are unable to coftxists, the partial inductance matrix for truncation-only is still posi-
pare the approximation result with the exact solution. However, vi&e definite. The shift and truncation formulation of partial induc-
will assert correctness of our result in terms of eigen-value patterntgfice assumes the return current is within a certain radius and is
the partial inductance matrix in Fig.6. provably stable in any situation. For short lines, it works fine. But for
Fig.6 gives the eigenvalue distributions for the full matrix and thI ng straight lines, we have to increagéarge enough to capture the

sparsified matrix. One interesting observation is that the eigenvald@§vard coupling, or else the total loop inductance will be underesti-
of the sparsified matrix agree very well with those of the full matrif’ated. A better model for long straight lines would be to use a tubu-
for all but the few largest eigenvaiues. Noting that these large eigddt Shell as plotted in Fig.10. The shell is infinitely long in the
values ofL correspond to the low frequency current assemblies, aft@rizontal direction. The tubular shell may lead to unsymmetrical
since we are accurately approximating the dominant pole, we can B&tial inductance matrix when the wires are routed in arbitrary di-
sume that these eigenvalues correspond to impossible or negligi'iﬁé“on- However, when wires are restricted in orthogonal directions,
current assemblies given the connectivity of this circuit. We wouldhe partial inductance matrix remains symmetric.

further postulate that by matching the eigenvalues corresponding ggturn currents non-uniformly long straight conductor

the high frequency energies, we are providing an accurate approdistributed on tubular shell segment carries curreint
mation over all frequencies of interest. .
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Fig. 10: Long straight conductor segment with current and a
cut away view of the tubular shell of return current-i at a

Rs #29 Rs #29 RI radius r,

, @ ) , 7.0 Conclusions
Fig. 7: Two circuits with identical partial inductance matrices
(in the horizontal direction), but with different connectivity
among the elements in circuits (a) and (b).

In this paper, we studied the physical significance and modeling
consequences of discarding far away mutual terms in the partial in-
ductance matrix. A moment ratio convergence criterion was pro-

Next, we consider two 30-conductor packaging examples in Figgosed to create a methodology for determining the minimally
The length of the lines is 0.5¢cm and the spacing between the linesgquired mutual inductance. For more complex interconnect struc-
0.2cm. Both circuits have the same horizontal topology but differetiire where capacitance effect is considered, we expect to use a slight-
connectivity. In order to consider the edge effect, we also model thye different criterion. We also introduce alternative potential
vertical inductance effect in our extracted circuits. Referring to cifunctions that may be useful for addressing the on-chip inductance
cuit Fig.7 (a), each signal line has its return path nearbyrgifoe  problem.
this circuit when moment ratio reaches convergence is 0.6cm, which
translates to 84% sparsity for horizontal partial inductance matrix, References
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