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ABSTRACT outside of the window are ignored in the subsequent calculation of
In this paper we prove that simply discarding conductors be- the capacitances, leading to a significantly smaller potential matrix to
be inverted.

yond a certain spacing during BEM capacitance extraction will
result in a lower bound on the self-capacitance calculations and ~ With windowing,C; j,; may be different fronC; ;, sincei has a

an upper bound on the mutual capacitance calculations that lie different set of conductors in its window than those in the window for
within that spacing. We prove that a potential-shift and truncate  thej,, conductor. This renders the compl€enatrix (for the entire
scheme can yield bounds opposite to those for the truncate only system) asymmetric. In such cases, and since they are bounds (as we
case; namely, an upper bound on the self capacitance and a low-will show below), one may choose the smaller two—terminal mutual

er bound on the mutual capacitance that lies within the chosen and the larger two—terminal self capacitance, to be nearer to the exact
spacing. The ease with which the upper and lower bounds are values.

calculated is shown, and their utility for selection of an optimal _ grounded metal sphere
window size is described. A metal shell is also presented here that wly o Jo Jys o
results in bounds similar to those of shift-truncate. We further _:-':_/ojxlo \ -
propose a new potential—shift function that yields increased ap- ( 0i 0.
proximation accuracy compared to shift-truncate in many cas- o O o dﬁ
es. R
1 Introduction Fig. 1 Windowing
Boundary element methods (BEM) have been used extensive B
for parasitic capacitance extraction [3][6]. Several different tect ’

niques for théocalizationof the extracted capacitance have been de
veloped, such as scanning methods [4][7] which build capacitan
databases of the elementary conductor constellations encountere
the circuit, and windowing techniques. conductor

This paper proves that tsaift—truncate methoftom [1] and the !
windowing methodield opposite bounds for the exact values of ths
mutual and self capacitances. We also introducenital shell2]
featuring the same bounds as shift-truncate antiahegenously
filled shellwhich provides a higher accuracy than shift-truncate [z
in many cases. Furthermore, we propose a methodology that will . Leti be the index of the reference conduct, the set of indices

positive shells
around negative
around reference— > (rO charges on

-

. \
negative shell O

grounded
‘/ conductors
/

(not all positive shells drawn)

Fig. 3 Shift-truncation method

these bounds to determine the optimal size of the window. of all other conductormsidethe window ofi, and {} the set of in-
. . dices of all other conductoesitsideof the window of. It is known,
2 Bounds for C Extraction with BEM if i is assigned a unit potential and all other conductors are grounded,

In this section we will show that theindowing methodjields  then the charge drwill be the (short circuit) self capacitan€g of
lower bounds for the two-terminal self capacitances and uppi, and theqj’s are the mutual (short circuit) capacitan(‘]gs[B]. The
bounds for the two—terminal mutual capacitances, and that the cotlinear system describing this problem is

sponding bounds for thehift—truncation techniquid] are the oppo- o
site. Background information about BEM and the terminology use :
here can be found in section 2 of [1]. S Ol < i element @

. . . 0
2.1 Bounds of the Windowing Technique :

In Fig. 1 the reference conductor is the shaded one. Mutual cap 0
itances are calculated with respect to this conductor. All conductc

where
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the matrix which couples the conductors inside the window witvindow only — are overestimated.

those ogt3|de. ) ) ) 2.2 Bounds for Shift-Truncate
After introducing the window, the charge on the conductjs { . . . .
In many cases, bounds opposite to those gained with the window-

are forced to zero, so their potentiahat fixedanymore. Fixing the . : . ; e .
potential on the conductorfyf which are outside of the window, in ing technique are desired, largely to obtain a pessimistic approxima-
i djon of the self capacitance. As we will show, gtgft—truncate

addition to fixing the charges to zero, would lead to an overdet . : . L h
mined linear sygtem, whicgh might not have a solution. The rows ptendtlal methogbroposed in [1] and depicted in Fig. 3 yields such
Quinds.

(1) corresponding to the potentials on the outside conductors are
no longer necessary, so that the lower row of (2) falls away. Since theReferring to Fig. 3, the reference conductor is again the shaded
charges on the conductoiigHare zero in the altered system, (1) canconductor. With the shift—truncate approach, instead of a window,
now be written as each charge on the conductors is assumed to posess an oppositely
charged shell of radiug 50 that the chargdoes notinteract with

q G other charges further away thagpn Assuming all of the conductors
P = g = HP} [P )ﬂ q{jx} (3) are small (panels of BEM), their shells are also approximgtely spher-
g{jx} gLs ical. The shell of the reference conductor is negative (solid), all other
q{J'y} shells are positive (dashedjoneof the conductors is ignored, but

) all potential matrix entries between conductors farther away ghan r
whereg represents the charges on the conductors in the altered gy§—ero, making their charges zero as in windowing. But unlike win-
tem (after forcing the charge on the outside conductors to zero) ateiving, thereby all outside conductor chargesaterally (contin-

q specifies the charges in the original, exact system. The indices ga!s potential function at=r ) zeroed by the potential function.

defined as above with reference to Fig. 1. From the above we knoWus there is no “windowder se For this reason it is imperative that

that g = 0 . Defining the shift-truncate scheme must produce a positive definite potential
{iv} ' matrix. This can be assured by using shells that are physically based

[1].

The boundary conditions (unit potential on the reference conduc-
tor i and all {,} and {j,} conductors connected to ground) are the
me for theexact system(P;d) and theshift—truncate system

BG = 90 KO (i {ig. (i} (4)

as the charge change on the conductors after introducing the wind

eg. (3) can be written as (P:g) :
q; Pg=Pg=7% (8)
P 1 =P_Q0,., = Op [qk[I (5)
SLQ{]J Hm kD;iy} . Sy‘co'”m” k <0 Using (4) and the definition
The sum on the right side represents the superposition of the po- Psh = B-P ©)

tentials caused on the surfaced ahd {,} by the chargesq{jy}

: i (8) can be transformed into
Equation (5) can be also written as

PAQ = _Pshq (10)
Ag N
Py b+ % HPSV‘ 0(-a,) H =0 (6) SinceP s positive definite [1Het[ } >0 and the solutian
Mgy | kO column k of (10) exists and is unique. Equation (10) can be also written as
PAQ = —P_q-P AQ (11)

The linear system described in (6) represents a set of conductors

{i, {J}ﬁ_} which are connected to ground (right side is identical zgg jts solution must exist and be unique (equivalence with (10)). To
ro), while the conductorsj carry chargesppositeto those they  consider the effect of the introduction of the shells in an incremental
had in the original system. Now we look at the similar systems:  ashion, we create an iterative representatioapf by using the re-

AOI(k) cursive definition
i P O(-q) =0 ; OkO{j 7 @ _
s (k) * sy‘columnk ( qk) {Jy} Y PAQ - _Pshq (12)
Aq{jx} (v) (v-1)
V) _ v-1) | .
Equation (7) is the same as (6), except that in each of the rows in PAG™ = —PgAQ P DvO{L23..} (13)

(7) only one of the conductors fromj} carries the opposite of its ) _ W) o - )
normal charge, while all other conductors frojg} {do not exist. ~Equation (13) properly defines all3”" . Sinkes positive defi-
Since this is a system with sevegabundedconductors and one Nite, the solutions of all equations in (12) and (13) exist and are
charged conductor, and it is known thats negativeok 0 {j} ,we Unique.

X Y . . .
can conclude, that the elementsmqf(& " re¢gative or zeror _ Summlng over all c_)f the equations in (12), (13) and exploiting the
all k. Superposing all systems represented by the equations in (7),pgarity of P andPs, yields
get back to (6), and can conclude, that the charge changes on the con- 2w
ductors inside the window due to ignoring the outside conductors are P ZOAQ = =Psnd=Psp ZOAq
alwaysless or equal zero Ve v

(=)

V) (14)

Since this property is independent of the choice of the referen\évgere (11) and (14) are similar linear systems. Therefore,

conductorall of the el_ements of thehort circuitcapacitance matrix s Aq(v) converges (existence) and
are less or equal their exact values. Therefore — due to their defl\r): 0
tions [8] — thetwo terminalself capacitance is underestimated while

the two terminal mutual capacitances — between conductors in the



2q@9 50 1)

5 aq™ =aq (uniqueness) (15) (v-1)

v=0 Now assume thang were known to be non-negative.
(ﬁquation (13) determines the char V) which have to be on the
surfaces of the conductors when all of the conductorgratended

and each conduci(‘gris )surrounded by a shell with radilb%n_dl)con-
taining charge-Aq, (uniformly distributed). Sinog is
non—negativepnly negative chargegre causing the negative back-
ground potential. Because a negative point charge in a system of
wherei is the reference conductor. Using (16) we will show in thgrounded conductors causes only positive or zero charge on each
following paragraphs thatP_, ¢  isr@on-negativevector, thereby conductor (negative background potential) and the shells may be
égwed as a superposition of negative point gharges, the total charge
neachconductor must be positive or zeray nan—negative

) ) ) With (21) and induction, it follows that this is the case for all
If v, <rq. then (-P,,a) — withk being the index of a conduc- , 7 {0;1;2...} .

Now it is known that in the exact system the total amount
charge must be positive [8]:
N
S 9,>0 with g;>0 and qj¢i50 (16)
k=1

indicating that (12) describes the system of conductors with a ne
tive background potential.

. N shVy . L
for_satsfy '”%qﬁ‘jtoc"”dl'(“o” — s, due to the definitions of -\, (15) it can be finally shown, thaty  fi@n—negativeThis
" sh’ o< is independent of the choice of the reference conductor;atho$
g g S E o T Mj=To E> 17 the elements of thehort circuitcapacitance matrix are greater than
4T[£ro+j§im with 1= Arg i Ng>fo 0 o A7 or equal to their exact values. The two—terminal self capacitance is

thereforeoverestimatedand the two—terminal mutual capacitances
Here isr, >0 , but of the order of the size of a boundary elemertreunderestimatedsing a shift-truncate scheme.

so that we still can consider the conductors to be pointlike. Here we

are making the assumption that the BEMbiact 2.3 Metal shell method

Since allg, ,; are negative or zero from (16), the sum in (17) be- A grounded metal sphere with a radius @&nd centered in the
comessmallérwhen we replace under the sum withy. Factoring  center of the reference conductor is added to the original system (see
1/4rerg out of the new sum, using (16) and the fact that we have Upig. 1). This method yields bounds similar to those of the shift—trun-

derestimated the exact expression, leads to cate method. The proof [2] does not require the conductors to be
(-Pg@) 20 for ry <r, (18)  pointlike as shift-truncate does. The metal shell method will there-
fore yield bounds even in cases for which the BEM has not con-
Forr, >r, the elementg-P_, ) are equal to verged suf_ﬁciently yet. S_ince the shell _potential near the referen_ce
k ) conductor is more negative on average in this case than for the shift—
9, g _ Ofoff ki Sy O trun(_:ate method, the accuracy of the metal shell method will not be
Trer,, +j;m with r = Erkj if "> "o Bzro (19)  as high.

Replacing in the sum withr, . decreases its value, since al| 3 PhySICa"y Realizable New Shell Potentials

; - : Numerical results show that the shift—truncate method results in
are negative or zero (16) ang < by definition. The underestimat- ) ;
g (16) n‘g ' y upper bounds for the self capacitance (see Fig. 5) and lower bounds

ed sum is - ; . ;
N for the mutual capacitance, as predicted in section 2. The accuracy of
5 4 (20) the mutual capacitances, however, is low at times. Referring to
| £ 4TEr Fig. 4, the reason for this behaviour becomes clearer. The potential

¢

This expression is known to be zero, sikcan only be a ground- R\
ed conductorr, >r, ), and (20) exactlythe potential on the sur-
face ofk. Since (20) underestimates the value((-:»1=>shcq)k , We can
conclude that(—Pshq)kzo for, >r, . Together with (18) it follows
that the potential vecto(-R,,) — which is the right hand side of

(12) — isnon—negative

homogenously filled shell
Or)—(L/r-r?12ro3-1/2rg) for r<rq
_2q

original 1/r potential
@—+q

potential function to that of the shift—truncate shell was necessary to
show the non-negativity of-F,,9) . Therefore this proof cannot be &
extended to the new shell potentials which will be investigated in
section 3.

Equation (12) can be interpreted as describing a system of con-
ductors withall conductors grounded while rion—positiveback- Fig. 4 Potentialg(r) of a point charge for different shells
ground potential — caused by shell charggs) —is present. If the , . . . .
background potential were zero, the charge on the grounded condgf€ated by a unit valued point charg®iser for allr > 0 (including
tors would be trivially zero. Adding the background potential causéd< o) for the shift-truncate case compared with the exact case.
by the shell chargeshile leaving the charge on the conductors unShift-truncatethrows awaysome of the capability of the electrical
changedwill cause the surface potential of the conductors to becon§Barges to create electrical potential. This is, of course, desirable for
negative. To re—establish the ground potential on the surfaces of {ig regioroutsideof ro, but obviously the region within is also af-
conductors, one must connect therpasitivevoltage sources. This fected. This effect increases with the seperation distance between the

is equiv Bent to adding positive charges to the surface of the condgg2unded conductor and the reference conductor (within the “win-
tors.Aq'’ — the solution of (12) — is therefore alEm—negative  90W')-

We point out that in the previous paragraphs the restriction of the g +fq )

shift & truncate (1/r-1/rg) for r<rg




To improve the accuracy it is desirabledecrease the potential the potential of specific boundary element forms (rectangular, trian-
thrown awayby moving the potential curve nearer to the exdct gle) derived wittMathematica

curve withinrg, while keeping the potential function continuousp@at o the windowing technigue the originat potential function is
and zero outside afy to prevent the energy content of the shell;seq put all panels which are further away thgnom the reference
charge distribution to be comparable to that of the original surfaggnqyctor areleletedirom the set of conductors for the time of the
charge, which could lead to unstable capacitance matrice$10Fhe ¢a\cylation of this row of the capacitance matrix. This results in a

mogenously filled shefiotential shown in Fig. 4 has the potentialsma)|, dense matrix which must be inverted instead of a large sparse
function (1/r-/2ry>-1/21) for r<ry and has the desired properties. one.

__Itisimportant to usphysically realizablehells to ensure the pos-  The value of the shell potential functiorra® without the i* con-

itive definiteness of the entire resulting capacitance matrix [1]. TRgpytion of the original point charge is crucial for the bounding prop-
appropriate charge distributions for the considered potential fungrties, since decreasing the ability of the charges on the reference
tions are also depicted in Fig. 4. If only the bounding properties akgnquctor to create potential increases the amount of charges neces-
desired — as in the scheme described in section 4— methods such4§ 1o keep the reference conductor at unit potential. The shift—trun-

the windowing technique, which does not generally yield positivgate shell potential value at the origin-is4rer , which is provably
definite matrices, may be used. negative enough. 0

4 Selecting p — Window size 6 Conclusion

We will see in section 5 that solving for both the windowing and |t has heen shown that the results of shift—truncation and window-
shift—truncate case is quite straightforward. Given a limit for the €fng combined bound the exact capacitance values of a given conduc-

ror of the self and mutual capacitances, one may start calculating {§e system. This can be exploited to automatically determine the
short circuit capacitance matrix wittsmallvalue forr. In this case,  appropriate window radius, for this particular system.

windowing and the shell potential methods will be very efficient, . . . o . .
since only a few elements of the potential matrix will remain nonze- !n addl_tlon to th's.' further_ Investigation of various — possibly
ro. If the accuracy is not sufficiemt, may be increased gradually to 2MSOIropic — potential functions and their properties with respect to
include more distant conductors. To find a new valuegawe can SParsification for capacitance extraction is necessary.

exploit the fact that the shift-truncate capacitance valuescoary Results from using shell potentials can be used as preconditioners
tinuouslywith ro and estimate their derivatives at the currgniA  for fast multipole method based capacitance extraction programs [5].
modified version of the Newton—-Raphson root—finding algorithm itegration of fast multipole methods into the calculation of the shell
then applied to determine the optintgl The desired accuracy is potentials could help further reducing the time necessary for calcu-
reached when the differences of the upper and lower bounds for taéng and inverting the potential matrix.

self and mutual capacitances fall below a given threshold.rghat

nal FEpresents the distance above which the capacitive influence Rreferences

tween conductors is negligible. A design flaw preventing thEl] B. Krauter, Y. Xia, A. Dengi, L. Pileggi, “A Sparse Image
capacitive effects to remain localized is indicated by the resulting Method for BEM Capacitance Extraction33th Design
r'o.final D€ING too large after this procedure or exceeding a predefined ~ Automation Conference Proceedingg. 357-362, 1996.
maximum. This method may therefore generate design rules for lif2] M. Beattie, M.S. Thesis, Carnegie Mellon University (Pitts-

iting capacitance. burgh, USA), May 1997.
R | FN ical C . [3] N. P. van der Meijs, A. J. van Genderen, “An Efficient Finite
5 Results of Numerical Computations Element Method for Submicron IC Capacitance Extraction”,

To visualize the bounds for the shift-truncate method and to test ~ 26th ACM/IEEE Design Automation Conference Proceed-
the homogenously filled shell function, the capacitances of several  ings pp. 678-681, 1989.

simple but frequently appearing structures were calculated for a) dify N. P. van der Meijs, “Accurate and Efficient Layout Extraction”,

ferent values ofy, b) different shell types and c) different panelsizes Doctoral dissertation, Technische Universiteit Delft (Nether-
(different accuracy of the BEM). lands), 1992.
0.7 Fig. 5 Self capacitance err@Cy; for [5] K. Nabors, J. White, “FastCap: A Multipole Accelerated 3-D
T @ system below calculated with win- Capacitance Extraction ProgramlEEE Transactions on
= dowing (1), shift-truncate (2), Computer-Aided Desigmwol. 10, No. 11, November 1991.
%) @) homogenously filled shell (3) [6] C. Wei, R. F. Harrington, J. Mautz, T. Sarkar, “Multiconductor
0.6 M . — 10— 7] Transmission Lines in Multilayered Dielectric MedisEEE
1 -1 111, Transactions on Microwave Theory and Techniquek, 32,
AN . i | No. 4, April 1984.
0.5 =55 ( )6 5570 % | %'Zfrﬁ' [7] N. Arora, K. Raol, R. Schumann, L. Richardson, “Modeling and
r05[um] L1 o o Extraction of Interconnect Capacitances for Multilayer VLSI
We used a zeroth order Galerkin—type BEM and the conjugate  Circuits”, IEEE Transactions on Computer-Aided Design
gradient squared method for the matrix inversion. During the calcy- _ Vol- 15, No. 1, Ja_mlilary 1996. L
lation of the double integrals for the Galerkin—type potential matrix8] D- Ling, A. Ruehli, “Interconnection Modeling”, irCircuit
the original Green’s function/aner s replaced by the alternative Analysis, Simulation and Design — Advances in CAD for

version for the particular shell potential. These are given in Fig. 4  VLSI Vol. 3, Part li(Chapter 11), Elsevier Science Publish-
(without the constant factarare ) for the shells used here. Sincethe  €rs B.V. (North-Holland), 1987.

Green’s function can be implemented as a seperate function, which

is called whenever the potential of a point charge is needed, changing

the potential function only demands changing the formula in this one

function and is therefore very easy to do. The accuracy of the self ca-

pacitance calculation is increased by using analytical formulas for
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