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ABSTRACT
In this paper we prove that simply discarding conductors be-

yond a certain spacing during BEM capacitance extraction will
result in a lower bound on the self-capacitance calculations and
an upper bound on the mutual capacitance calculations that lie
within that spacing. We prove that a potential-shift and truncate
scheme can yield bounds opposite to those for the truncate only
case; namely, an upper bound on the self capacitance and a low-
er bound on the mutual capacitance that lies within the chosen
spacing. The ease with which the upper and lower bounds are
calculated is shown, and their utility for selection of an optimal
window size is described. A metal shell is also presented here that
results in bounds similar to those of shift–truncate. We further
propose a new potential–shift function that yields increased ap-
proximation accuracy compared to shift–truncate in many cas-
es.

1 Introduction
Boundary element methods (BEM) have been used extensively

for parasitic capacitance extraction [3][6]. Several different tech-
niques for thelocalization of the extracted capacitance have been de-
veloped, such as scanning methods [4][7] which build capacitance
databases of the elementary conductor constellations encountered in
the circuit, and windowing techniques.

This paper proves that theshift–truncate method from [1] and the
windowing method yield opposite bounds for the exact values of the
mutual and self capacitances. We also introduce themetal shell[2]
featuring the same bounds as shift–truncate and thehomogenously
filled shell which provides a higher accuracy than shift–truncate [2]
in many cases. Furthermore, we propose a methodology that will use
these bounds to determine the optimal size of the window.

2 Bounds for C Extraction with BEM
In this section we will show that thewindowing method yields

lower bounds for the two–terminal self capacitances and upper
bounds for the two–terminal mutual capacitances, and that the corre-
sponding bounds for theshift–truncation technique[1] are the oppo-
site. Background information about BEM and the terminology used
here can be found in section 2 of [1].

2.1  Bounds of the Windowing Technique
In Fig. 1 the reference conductor is the shaded one. Mutual capac-

itances are calculated with respect to this conductor. All conductors
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outside of the window are ignored in the subsequent calculation of
the capacitances, leading to a significantly smaller potential matrix to
be inverted.

With windowing,Ci,jx1 may be different fromCjx1,i, sincei has a
different set of conductors in its window than those in the window for
the jx1 conductor. This renders the completeC matrix (for the entire
system) asymmetric. In such cases, and since they are bounds (as we
will show below), one may choose the smaller two–terminal mutual
and the larger two–terminal self capacitance, to be nearer to the exact
values.

Let i be the index of the reference conductor, {jx} the set of indices
of all other conductorsinside the window ofi, and {jy} the set of in-
dices of all other conductorsoutside of the window ofi. It is known,
if i is assigned a unit potential and all other conductors are grounded,
then the charge oni will be the (short circuit) self capacitanceCii  of
i, and theqj’s are the mutual (short circuit) capacitancesCij  [8]. The
linear system describing this problem is

= (1)

where

(2)

P is the potential matrix of the entire system,Ps that of the system
in the window, andPy that of the system of all conductors outside of
the present window. Therefore, all three of these matrices are sym-
metric and positive definite, as well as diagonally dominant.Psy is
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the matrix which couples the conductors inside the window with
those outside.

After introducing the window, the charge on the conductors {jy}
are forced to zero, so their potential isnot fixed anymore. Fixing the
potential on the conductors {jy} which are outside of the window, in
addition to fixing the charges to zero, would lead to an overdeter-
mined linear system, which might not have a solution. The rows of
(1) corresponding to the potentials on the outside conductors are now
no longer necessary, so that the lower row of (2) falls away. Since the
charges on the conductors {jy} are zero in the altered system, (1) can
now be written as

(3)

where  represents the charges on the conductors in the altered sys-

tem (after forcing the charge on the outside conductors to zero) and
q specifies the charges in the original, exact system. The indices are
defined as above with reference to Fig. 1. From the above we know,

that . Defining

(4)

as the charge change on the conductors after introducing the window,
eq. (3) can be written as

(5)

The sum on the right side represents the superposition of the po-
tentials caused on the surfaces ofi and {jx} by the charges .
Equation (5) can be also written as

(6)

The linear system described in (6) represents a set of conductors
 which are connected to ground (right side is identical ze-

ro), while the conductors {jy} carry chargesopposite to those they
had in the original system. Now we look at the similar systems:

(7)

Equation (7) is the same as (6), except that in each of the rows in
(7) only one of the conductors from {jy} carries the opposite of its
normal charge, while all other conductors from {jy} do not exist.
Since this is a system with severalgrounded conductors and one
charged conductor, and it is known thatqk is negative , we
can conclude, that the elements of  arenegative or zerofor
all k. Superposing all systems represented by the equations in (7), we
get back to (6), and can conclude, that the charge changes on the con-
ductors inside the window due to ignoring the outside conductors are
alwaysless or equal zero.

Since this property is independent of the choice of the reference
conductor,all of the elements of theshort circuit capacitance matrix
are less or equal their exact values. Therefore — due to their defini-
tions [8] — thetwo terminal self capacitance is underestimated while
the two terminal mutual capacitances — between conductors in the
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window only — are overestimated.

2.2  Bounds for Shift–Truncate
In many cases, bounds opposite to those gained with the window-

ing technique are desired, largely to obtain a pessimistic approxima-
tion of the self capacitance. As we will show, theshift–truncate
potential method proposed in [1] and depicted in Fig. 3 yields such
bounds.

Referring to Fig. 3, the reference conductor is again the shaded
conductor. With the shift–truncate approach, instead of a window,
each charge on the conductors is assumed to posess an oppositely
charged shell of radius r0 so that the chargedoes not interact with
other charges further away than r0. Assuming all of the conductors
are small (panels of BEM), their shells are also approximately spher-
ical. The shell of the reference conductor is negative (solid), all other
shells are positive (dashed).None of the conductors is ignored, but
all potential matrix entries between conductors farther away than r0
are zero, making their charges zero as in windowing. But unlike win-
dowing, thereby all outside conductor charges arenaturally (contin-
uous potential function atr=r 0) zeroed by the potential function.
Thus there is no “window”per se. For this reason it is imperative that
the shift–truncate scheme must produce a positive definite potential
matrix. This can be assured by using shells that are physically based
[1].

The boundary conditions (unit potential on the reference conduc-
tor i and all {jx} and {jy} conductors connected to ground) are the
same for theexact system and theshift–truncate system

:
(8)

Using (4) and the definition
(9)

(8) can be transformed into
(10)

Since  is positive definite [1],  and the solution
of (10) exists and is unique. Equation (10) can be also written as

(11)

and its solution must exist and be unique (equivalence with (10)). To
consider the effect of the introduction of the shells in an incremental
fashion, we create an iterative representation of  by using the re-
cursive definition

(12)

(13)

Equation (13) properly defines all . SinceP is positive defi-
nite, the solutions of all equations in (12) and (13) exist and are
unique.

Summing over all of the equations in (12), (13) and exploiting the
linearity ofP andPsh yields

(14)

where (11) and (14) are similar linear systems. Therefore,
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(uniqueness) (15)

Now it is known that in the exact system the total amount of
charge must be positive [8]:

(16)

wherei is the reference conductor. Using (16) we will show in the
following paragraphs that  is anon–negative vector, thereby

indicating that (12) describes the system of conductors with a nega-
tive background potential.

If , then  — withk being the index of a conduc-
tor satisfying this condition — is, due to the definitions of

, equal to

(17)

Here is , but of the order of the size of a boundary element,
so that we still can consider the conductors to be pointlike. Here we
are making the assumption that the BEM isexact.

Since all  are negative or zero from (16), the sum in (17) be-
comessmaller when we replacer under the sum withr0. Factoring
1/4πεr0 out of the new sum, using (16) and the fact that we have un-
derestimated the exact expression, leads to

(18)

For  the elements  are equal to

(19)

Replacingr in the sum with  decreases its value, since all
are negative or zero (16) and  by definition. The underestimat-
ed sum is

(20)

This expression is known to be zero, sincek can only be a ground-
ed conductor ( ), and (20) isexactly the potential on the sur-
face ofk. Since (20) underestimates the value of , we can
conclude that  for . Together with (18) it follows
that the potential vector  — which is the right hand side of
(12) — isnon–negative.

We point out that in the previous paragraphs the restriction of the
potential function to that of the shift–truncate shell was necessary to
show the non–negativity of . Therefore this proof cannot be
extended to the new shell potentials which will be investigated in
section 3.

Equation (12) can be interpreted as describing a system of con-
ductors withall conductors grounded while anon–positive back-
ground potential — caused by shell charges  — is present. If the
background potential were zero, the charge on the grounded conduc-
tors would be trivially zero. Adding the background potential caused
by the shell chargeswhile leaving the charge on the conductors un-
changed will cause the surface potential of the conductors to become
negative. To re–establish the ground potential on the surfaces of the
conductors, one must connect them topositive voltage sources. This
is equivalent to adding positive charges to the surface of the conduc-
tors.  — the solution of (12) — is therefore alsonon–negative:
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Now assume that  were known to be non–negative.
Equation (13) determines the charges  which have to be on the
surfaces of the conductors when all of the conductors aregrounded
and each conductork is surrounded by a shell with radiusr0 and con-
taining charge  (uniformly distributed). Since  is
non–negative,only negative charges are causing the negative back-
ground potential. Because a negative point charge in a system of
grounded conductors causes only positive or zero charge on each
conductor (negative background potential) and the shells may be
viewed as a superposition of negative point charges, the total charge
oneach conductor must be positive or zero.  isnon–negative.
With (21) and induction, it follows that this is the case for all

.

With (15) it can be finally shown, that  isnon–negative. This
is independent of the choice of the reference conductor; thusall of
the elements of theshort circuit capacitance matrix are greater than
or equal to their exact values. The two–terminal self capacitance is
thereforeoverestimated and the two–terminal mutual capacitances
areunderestimated using a shift–truncate scheme.

2.3  Metal shell method
A grounded metal sphere with a radius of r0 and centered in the

center of the reference conductor is added to the original system (see
Fig. 1). This method yields bounds similar to those of the shift–trun-
cate method. The proof [2] does not require the conductors to be
pointlike as shift–truncate does. The metal shell method will there-
fore yield bounds even in cases for which the BEM has not con-
verged sufficiently yet. Since the shell potential near the reference
conductor is more negative on average in this case than for the shift–
truncate method, the accuracy of the metal shell method will not be
as high.

3 Physically Realizable New Shell Potentials
Numerical results show that the shift–truncate method results in

upper bounds for the self capacitance (see Fig. 5) and lower bounds
for the mutual capacitance, as predicted in section 2. The accuracy of
the mutual capacitances, however, is low at times. Referring to
Fig. 4, the reason for this behaviour becomes clearer. The potential

created by a unit valued point charge islower for all r > 0  (including
r < r 0) for the shift–truncate case compared with the exact case.
Shift–truncatethrows away some of the capability of the electrical
charges to create electrical potential. This is, of course, desirable for
the regionoutside of r0, but obviously the region withinr0 is also af-
fected. This effect increases with the seperation distance between the
grounded conductor and the reference conductor (within the “win-
dow”).
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To improve the accuracy it is desirable todecrease the potential
thrown away by moving the potential curve nearer to the exactr-1

curve withinr0, while keeping the potential function continuous atr0
and zero outside ofr0 to prevent the energy content of the shell
charge distribution to be comparable to that of the original surface
charge, which could lead to unstable capacitance matrices. Theho-
mogenously filled shell potential shown in Fig. 4 has the potential
function (1/r-r2/2r0

3-1/2r0) for r<r0 and has the desired properties.

It is important to usephysically realizable shells to ensure the pos-
itive definiteness of the entire resulting capacitance matrix [1]. The
appropriate charge distributions for the considered potential func-
tions are also depicted in Fig. 4. If only the bounding properties are
desired — as in the scheme described in section 4— methods such as
the windowing technique, which does not generally yield positive
definite matrices, may be used.

4 Selecting r0 — Window size
We will see in section 5 that solving for both the windowing and

shift–truncate case is quite straightforward. Given a limit for the er-
ror of the self and mutual capacitances, one may start calculating the
short circuit capacitance matrix with asmall value forr0. In this case,
windowing and the shell potential methods will be very efficient,
since only a few elements of the potential matrix will remain nonze-
ro. If the accuracy is not sufficient,r0 may be increased gradually to
include more distant conductors. To find a new value forr0, we can
exploit the fact that the shift–truncate capacitance values varycon-
tinuously with r0 and estimate their derivatives at the currentr0. A
modified version of the Newton–Raphson root–finding algorithm is
then applied to determine the optimalr0. The desired accuracy is
reached when the differences of the upper and lower bounds for the
self and mutual capacitances fall below a given threshold. Thatr0,fi-

nal represents the distance above which the capacitive influence be-
tween conductors is negligible. A design flaw preventing the
capacitive effects to remain localized is indicated by the resulting
r0,final being too large after this procedure or exceeding a predefined
maximum. This method may therefore generate design rules for lim-
iting capacitance.

5 Results of Numerical Computations
To visualize the bounds for the shift–truncate method and to test

the homogenously filled shell function, the capacitances of several
simple but frequently appearing structures were calculated for a) dif-
ferent values ofr0, b) different shell types and c) different panelsizes
(different accuracy of the BEM).

We used a zeroth order Galerkin–type BEM and the conjugate
gradient squared method for the matrix inversion. During the calcu-
lation of the double integrals for the Galerkin–type potential matrix,
the original Green’s function  is replaced by the alternative
version for the particular shell potential. These are given in Fig. 4
(without the constant factor ) for the shells used here. Since the
Green’s function can be implemented as a seperate function, which
is called whenever the potential of a point charge is needed, changing
the potential function only demands changing the formula in this one
function and is therefore very easy to do. The accuracy of the self ca-
pacitance calculation is increased by using analytical formulas for

Fig. 5 Self capacitance errorδC11 for
system below calculated with win-
dowing (1), shift–truncate (2),
homogenously filled shell (3)
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the potential of specific boundary element forms (rectangular, trian-
gle) derived withMathematica.

For the windowing technique the originalr-1 potential function is
used but all panels which are further away thanr0 from the reference
conductor aredeleted from the set of conductors for the time of the
calculation of this row of the capacitance matrix. This results in a
small, dense matrix which must be inverted instead of a large sparse
one.

The value of the shell potential function atr=0 without the r-1 con-
tribution of the original point charge is crucial for the bounding prop-
erties, since decreasing the ability of the charges on the reference
conductor to create potential increases the amount of charges neces-
sary to keep the reference conductor at unit potential. The shift–trun-
cate shell potential value at the origin is , which is provably
negative enough.

6 Conclusion
It has been shown that the results of shift–truncation and window-

ing combined bound the exact capacitance values of a given conduc-
tor system. This can be exploited to automatically determine the
appropriate window radiusr0 for this particular system.

In addition to this, further investigation of various — possibly
anisotropic — potential functions and their properties with respect to
sparsification for capacitance extraction is necessary.

Results from using shell potentials can be used as preconditioners
for fast multipole method based capacitance extraction programs [5].
Integration of fast multipole methods into the calculation of the shell
potentials could help further reducing the time necessary for calcu-
lating and inverting the potential matrix.
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